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Introduction
Various antivirals and immune modulatory agents as well as
potential inhibitors, either organic or inorganic materials, have
been proposed against SARS-CoV-2.1–3 Recent advances in
nanoscience and nanotechnology have revolutionized various
fields of research, particularly medicine.4–8 The application of
nanotechnology in medicine has led to the emergence of a
new realm of research, known as nanomedicine, opening new
horizons and applications.9 For instance, nanomedicine has
shown significant achievements in, and potential for, the man-
agement of SARS-CoV-2, which causes COVID-19, including,
but not limited to, the design of innovative drug and delivery
systems with high efficiency and efficacy, the design of smart
nanobiosensors for early detection of the virus, production of
high-efficiency personal protective equipment, and so on.10,11

However, comprehensive clinical trials and clinical translational
studies are needed to evaluate the efficacy of these approaches.
Innovative pharmacological formulations are under develop-
ment, and elaborative works have focused on the preparation
of drugs and inhibitory agents for combating viral infections
and modulating efficient antiviral immunity12,13; pharmacologi-
cal agents have been studied for homing in on the different
stages of the life cycle of SARS-CoV-2. One of the main chal-
lenges to developing drugs and potential inhibitory agents with
completed preclinical/clinical assessments is the time required
for exhaustive clinical trials.14 In addition, the impact of viral
mutations can have a significant effect on both the resistance
and susceptibility of the virus to inhibitory agents as well as their
pathogenicity; the ensuing complications ought to be considered
when designing advanced nanoscale materials against SARS-
CoV-2.15,16 Thus, there is an urgent need to fast-track efficient
inhibitory agents, such as nanodevices and nanoformulations,
with high safety to control and eliminate this virus.10,17–20 Some
of the targets comprise the RNA-dependent polymerases, hemag-
glutinin esterase, spike (S) and envelop (E) proteins, and viral
proteases (e.g., 3-chymotrypsin-like protease), which have been
explored as inhibitory agents, whereas other candidates are
aimed at targeting the angiotensin-converting enzyme 2
(ACE2) receptor to treat COVID-19.21–23 In addition, various
FIGURE 1
Schematic of the structure of cyclodextrin-based nanosponges. Adapted, with
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nanovaccines, including mRNA–lipid nanoparticle-based vacci-
nes, have been developed and are in clinical trials for further
evaluations against a variety of viruses, including Zika, influenza,
and rabies.24 However, the higher costs associated with main-
taining, manufacturing, and transporting thermolabile mole-
cules (such as RNA, or lipids) might be prohibitive to massive
vaccination of the developing world.25

Limitations to the efficacy and delivery of drugs, and their
associated adverse effects, have led researchers to move toward
nanocarriers with unique properties, optimal effectiveness, speci-
ficity, and fewer adverse effects; an effective solution is to deploy
nanostructures to effectively transport antiviral drugs or other
formulations.26,27 In this context, nanosponges have shown sev-
eral advantages, such as biocompatibility, porosity, biomimetic
features, sustained release behavior, and therapeutic activity
(e.g., antimicrobial action against pathogenic bacteria), which
make them suitable candidates for improving the bioavailability,
stability, and solubility of therapeutic agents or drugs to provide
the desired pharmacokinetics (PK) effects28–30; nanosponges can
generate a variety of complexes with hydrophilic or lipophilic
molecules, improving their transferring and protecting them
from degradability.31–33 For instance, b-cyclodextrin
nanosponge-based delivery systems34 were designed to formulate
lipophilic drugs (e.g., dexibuprofen), offering an alternative strat-
egy for enhancing the solubility of these drugs and improving
their oral administration.35 Versatile applications of nanos-
ponges in different fields of biomedical, pharmaceuticals, envi-
ronmental, catalysis, and sensors, along with their advantages
in each field, are discussed in detail elsewhere 36–39; in this
review, we focus mainly on the delivery of drugs and antiviral
agents using nanosponges.

Fig. 1 shows a schematic of the structure of cyclodextrin-based
nanosponges. Nanosponges with high drug-loading or release
behavior could improve the solubility of docetaxel in aqueous
media, offering a promising strategy for the efficient and specific
delivery of drugs, proteins/peptides, genetic materials, antineo-
plastic agents, and so on.40–42 Lapatinib nanosponges were for-
mulated to enhance solubility and bioavailability parameters
and reduce the oral dose required for the anticancer drug lapa-
Drug Discovery Today
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tinib.43 Extensive research has been conducted to improve the
selectivity, solubility, and targeting properties of anticancer
drugs/agents. Palminteri et al.44 reported an innovatively
designed smart drug delivery system based on cyclodextrin
nanosponges for glutathione-mediated delivery of resveratrol to
the targeted cancer cells. In addition, the oral bioavailability of
avanafil and dapoxetine could be improved by cyclodextrin
nanosponges.45 By contrast, recent advances in the preparation
of bioinspired self-catabolic DNAzyme nanosponges for pro-
grammable and controllable drug delivery and efficient gene-
silencing activity provide promising opportunities for the devel-
opment of smart gene therapeutic- and personalized
nanomedicine-based strategies.46,47.

One of the efficient ways to target viruses is via biological neu-
tralization using biofunctionalized nanostructures to attach to
harmful molecules/agents or pathogenic viruses to block their
activities, thus preventing their replication. By developing effi-
cient nano-scaled therapeutics with attractive advantages, such
as low toxicity, targeted/sustained release behavior, good biosaf-
ety, and improved long-term biocompatibility, nanosponges can
be suitable options for improving immunizations (cellular ad
humoral immune responses) besides the specific/controlled
delivery properties providing personalized therapeutics poten-
tials.48–50 Herein, recent advancements pertaining to the delivery
FIGURE 2
Advantages and disadvantages of nanosponges in drug delivery applications.
of antiviral agents as well as the inhibitory effects of
nanosponge-based systems as an overlooked but promising
nano-based strategy against SARS-CoV-2 are deliberated, focus-
ing on important challenges and future perspectives.

Nanosponges against SARS-CoV-2
Nanosponges exist in both crystalline and paracrystalline forms,
which are determined based mainly on the reaction/synthesis
and processing conditions; crystallization of nanosponges can
help in controlling and determining their drug-loading capac-
ity.38 Different approaches have been explored for synthesizing
nanosponge-based systems, including interfacial phenomena,
hot melting processes, hyper-crosslinked cyclodextrin,
ultrasound-assisted synthesis, solvent condensation,
microwave-assisted synthesis, interfacial condensation,
mechanochemical synthesis, chain-growth polycondensation,
and emulsion solvent evaporation 33. A full description of each
method can be found elsewhere.36,37 In contrast to extensive
research on the biological neutralization potential of cellular
nanosponges, there are only limited investigations pertaining
to their applicability as nanoplatforms for antiviral delivery
(Fig. 2).26,51 Cyclodextrin-based nanosponges (�400 nm) bearing
carboxylic groups within their structures have been evaluated for
the delivery of acyclovir and demonstrated high loading capacity
Drug Discovery Today
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FIGURE 3
(a) Cellular nanosponges engineered for inhibitory effects against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To express azido groups,
the host cells were incubated with N-azidoacetylmannosamine-tetra-acylated (Ac4ManNAz). Then, the collected membranes were used to coat poly(lactic-co-
glycolic acid) (PLGA) polymers to produce cellular nanosponges expressing azido groups (N3-NS). Functionalization with heparin was performed by applying
dibenzocyclooctyne groups (DBCO-heparin), which conjugated to azido-NS via copper-free click chemistry. The resulting heparin-modified cellular
nanosponges (HP-NS) were examined for SARS-CoV-2 viral infectivity applications. (b) Dose-dependent binding of different HP-NS preparations with SARS-
CoV-2 S proteins. (c) Dose-dependent viral infectivity inhibition by N3-NS and various HP-NS formulations with low (L), medium (M), and high (H) heparin
densities. Reproduced, with permission, from 55.
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for this antiviral drug (�70 % w/w) with prolonged-release per-
formance52; further in vivo analysis is required in terms of com-
prehensive efficacy and biodistribution assessments of these
nanosponges. Notably, the cytotoxicity and biosafety parameters
are vital for future clinical and biomedical uses of nanosponge-
based systems. Rao et al.53 evaluated the cytotoxicity of b-
cyclodextrin nanosponges constructed for encapsulation of a
phytotherapeutic agent (Babchi oil) against HaCaT cell lines.
The prepared nanosponge-based delivery system exhibited high
biosafety, stability, and therapeutic effects with targeting proper-
ties, reducing the required dose/consumption of the drug/thera-
peutic agents and minimizing systemic adverse effects, with
improved drug localization at the targeted sites. Babchi oil has
been explored for its antibacterial, antifungal, antioxidant,
anti-inflammatory, immunomodulatory, and antitumor effects;
however, its antiviral effects should be further explored.53.

Various innovatively designed nanomaterials have been
widely explored as antivirals because of their potential to mimic
the cellular attachment of pathogenic viruses. Given that these
viruses bind to molecules on host cells using glycoproteins on
their surfaces, nanosponges could be designed based on this pre-
mise after eliminating the cellular contents while retaining only
the membranes. Subsequently, these membranes can be broken
into thousands of tiny vesicles �100-nm wide. Biocompatible
FIGURE 4
Membrane nanoparticles constructed from angiotensin-converting enzyme 2
syndrome coronavirus 2 (SARS-CoV-2).
and biodegradable nanostructures built from polymers, such as
poly(lactic-co-glycolic acid), could be coated with cellular mem-
branes to form core–shell structures with high stability, function-
ing as a decoy of a human cell. The designed nanosponges with
their binding points on the membranes can surround viruses,
preventing them from entering host cells.54,55 Rao et al.56

reported a powerful two-step neutralization approach based on
a decoy nanoparticle against COVID-19, including SARS-CoV-2
neutralization, followed by cytokine neutralization. These
nanosponges can effectively protect host cells from infection
by SARS-CoV-2 by competing with them for virus binding. By
introducing these nanosponges, interactions between the com-
plex of the SARS-CoV-2 S protein and human ACE2 decreased
and, instead, viral receptors of the nanosponges showed high
affinity for binding to ACE2.

Overall, cellular binding and the entry of SARS-CoV-2 can be
mediated by its S protein via attachment to the ACE2 receptor
and glycosaminoglycans (e.g., heparin).55 Accordingly, cellular
nanosponges mimic host cells for attracting and neutralizing
SARS-CoV-2 through natural cellular receptors, thus providing
a broad-spectrum antiviral approach. Increasing the heparin den-
sity on the cellular nanosponge surface also improved the inhibi-
tory effects of heparin against the virus. Consequently, azido was
expressed on host cell membranes to prepare cellular nanos-
Drug Discovery Today

(ACE2)-rich cells with inhibitory effects against severe acute respiratory
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ponges with heparin adhered to their surfaces. These cellular
nanosponges demonstrated significant binding potential with
viral S glycoproteins, providing effectual inhibition against
SARS-CoV-2 infectivity. Thus, the surface engineering of host-
mimicking cellular nanosponges with glycosaminoglycans is a
promising technique for enhancing inhibition of SARS-CoV-2,
and could extended to other glycan-dependent viruses
(Fig. 3).55 In addition, plasma membrane-derived nanosponges
have been evaluated for in vitro neutralization of SARS-CoV-2;
these plasma membranes originated from human lung epithelial
type II cells or human macrophage-coated poly(lactic-co-glycolic
acid) nanoparticles.54 The designed nanosponges contained pro-
tein receptors essential for the cellular entry of SARS-CoV-2. Con-
sequently, SARS-CoV-2 was neutralized, and its infectivity was
reduced in a concentration-dependent manner; virus was unable
to infect cells after the incubation with these engineered nanos-
ponges. Such nanosponge-based platforms with promising inhi-
FIGURE 5
(a) Nanodecoys designed for neutralizing the S1 spike protein. S1 (red) and nano
nanodecoys were internalized by macrophages (confocal image; CD4, red). In ad
with lung cells (confocal image; CD90, green). Scale bars: 50 lm. (b) SARS-CoV-2
bars: 100 nm. (c) Inhalation of nanodecoys in a mouse model: these nanodecoys
CoV-2 replication/infection. (d) The inhalation of nanodecoys enhanced clearanc
from 66.

6 www.drugdiscoverytoday.com
bitory effects should be further evaluated against SARS-CoV-2
mutants and other viral species. Notably, nanosponges shrouded
with the cell membranes of macrophages offer the extra advan-
tage of soaking up circulating inflammatory cytokine proteins
generated as a result of the immune system response to viral
infection.54

Hybrid membrane-coated biomimetic nanomaterials with
attractive and unique biological properties have attracted
increasing research attention for biological and biomedical appli-
cations, especially for drug delivery,57 with an emphasis on
immune therapy, tumor vaccines, phototherapy, and detoxifica-
tion.58 For example, membrane nanoparticles derived from
ACE2-rich cells displayed efficient blocking effects against
SARS-CoV-2 infectivity (Fig. 4) because they efficiently sup-
pressed the entrance of SARS-CoV-2 S pseudo-virions into host
cells by obstructing viral infectivity both in vitro and in vivo.59

Biomimetic nanocarriers have been constructed for antiviral drug
Drug Discovery Today

decoys (white) interacted after their co-culture with lung cells (green). These
dition, the nanodecoys were internalized by macrophages after co-culturing
-mimicking viruses were neutralized using the designed nanodecoys. Scale
directly accumulated in the lung, which is one of the main targets of SARS-
e of the SARS-CoV-2 mimic in a mouse model. Reproduced, with permission,
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FIGURE 6
(a) Functionalized liposomal-based nanotrappers utilizing anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies,
phagocytosis-specific phosphatidylserines, or recombinant angiotensin-converting enzyme 2 (ACE2). The accumulation and trapping of SARS-CoV-2 virions
was achieved by these nanotrappers in the lung, producing virus–nanotrap complexes. (b) Pseudo-colored scanning electron microscopy (SEM) images of
nanotrap complexes with SARS-CoV-2 pseudovirus. (c) (i) Untreated (right upper lobe), virus alone (right middle lobe), and virus–nanotrap complexes (lingula)
regions in a human ex vivo lung perfusion system. (ii) Luciferase expression quantification analyses, 8 h after infection. (iii) Ex vivo lung perfusion after
hemoxylin and eosin (H&E) staining, including untreated, virus alone, and virus–nanotrap complex samples. Reproduced, with permission, from 69.
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delivery applications against COVID-19 and concurrently exhi-
bit anti-inflammatory effects.60 Lopinavir-loaded polymeric
nanoparticles were coated with macrophage membranes, neu-
tralizing proinflammatory cytokines and suppressing macro-
phage/neutrophil activation. The increased potential to target
inflammation as well as enhanced therapeutic effects resulting
in the reduction of viral loads are the important advantages of
these nanosystems.60

Zhou et al.61 illustrated an innovative tool with prophylactic
and therapeutic uses. Plasma membrane-ACE2-extracellular vesi-
cles were deployed for neutralizing SARS-CoV-2 (pseudo-type
and authentic) in human ACE2 transgenic mice, with efficient
blocking effects reported against viral loads of authentic SARS-
CoV-2, thus protecting the host from lung inflammation
induced by SARS-CoV-2 infection.61 Typically, antiviral agents
target a singular viral site, thus suffer limitations of infectiveness
against viruses because of their various mutations and escape
strategies.62–64 For instance, biomimetic proteolipid bilayer
decoy receptor nanosponges constructed molecularly (�100-
nm nanospheres) were explored against SARS-CoV-2, and
demonstrated promising inhibitory effects. This nanosystem
neutralized SARS-CoV-2 infections in animal/human cells and
also trapped the viral particles. Intravenous (I)-injected
nanosponge-based platforms can be suitable for multivalent cap-
turing of SARS-CoV-2 in the body; however, preclinical and clin-
ical evaluations are required to understand the underlying
mechanisms and its efficacy against several mutated variants of
SARS-CoV-2.62 In particular, the emergence of new variants of
concern (VOCs) of SARS-CoV-2 (such as Omicron and its differ-
ent variants) caused health experts to re-evaluate the effective-
ness of available strategies and think about more
comprehensive and critical studies to better manage the ongoing
pandemic as well as possible future outbreaks 64,65. Li et al.66

designed human lung spheroid cell-derived ACE2 nanodecoys
for binding and neutralizing SARS-CoV-2, as well as protecting
host lung cells from infection (Fig. 5); these nanodecoys with
no noticeable toxicity could be transported through inhalation
therapy and remained in the lungs for over 72 h after delivery,
accelerating viral clearance and reducing lung injury. Such nan-
odecoys with unique properties and efficiency can be considered
as potential inhibitory and therapeutic agents against COVID-
19.66 These nanosponge-like nanodecoys can be deployed to
unravel crucial issues regarding drug development and nanother-
apy, including the reduction of off-target effects (the improve-
ment of targeting features) and unwanted biodistribution.
Notably, complexes of nanosystems encompassing viruses can
be used for the development of vaccine production technologies;
cell membrane-mimicking nanodecoys with their ability to trap
FIGURE 7
Development of nanosponge-laden 3D in vitromodels to manage severe acute re
Once produced, nanosponges active against SARS-CoV-2 infection can be loade
3D bioprinted constructs, nanofibrous scaffolds, microfluidic-on-chips, and so on
for different applications, such as: discovery of novel and effective drugs to treat
SARS-CoV-2, and the inhibitory roles of nanosponges in these developmental st
nanosponges; to investigate host–virus complex interactions; and for disease mo
CoV-2.

3

and detain pathogenic viruses should be further evaluated for
the systemic protection against, and prevention of, infectious
diseases.67,68.

Various nanotrappers have been designed to neutralize and
capture SARS-CoV-2 and inhibit viral infections, as exemplified
by functionalized nanosponges that perform as nanotrappers
against SARS-CoV-2. Chen et al.69 functionalized liposomal-
based nanotrappers using anti-SARS-CoV-2-neutralizing antibod-
ies, phagocytosis-specific phosphatidylserines, or recombinant
ACE2 proteins to capture SARS-CoV-2 with complete blockage
of viral infection; these nanotrappers illustrated high in vitro
and in vivo biosafety and biocompatibility, representing an inno-
vative nano-based strategy for inhibiting SARS-CoV-2 infection
(Fig. 6).69 It appears that these innovatively designed
nanosponges- and other nanotrap-based nanoformulations have
excellent potential for application as nasal sprays or inhalers70

for simple and direct delivery/accumulation in the respiratory
system. Moreover, additional formulations for specific targeting
of these nanosystems to different sites of SARS-CoV-2 exposure
show promise.

Engineered in vitro 3D-nanosponge models to combat SARS-
CoV-2
The severity of COVID-19 and its exponential rate of spread (par-
ticularly newly emerged variants, such as Omicron) are clear.
Therefore, the development of techniques and strategies, thera-
peutics targets, vaccines, and all other types of platform that
can improve our understanding of the virus and its mechanism
of infection in the body will help manage the spread of infection
and eradicate the virus. However, because of a lack of appropriate
and reliable in vitro models to recapitulate the complex structure
of different organs of the body (from the early stages of develop-
ment to a mature state), our understanding of the mechanism of
SARS-CoV-2 infection in different tissues/organs is limited.
Therefore, there is an unmet need for further well-developed
models to be able to accurately investigate the ultrastructural,
functional, molecular analysis, histochemical, and gene expres-
sion characteristics of different organs in the presence of SARS-
CoV-2. Among various in vitro models, 3D in vitro models have
been extensively used in viral and antiviral studies, with promis-
ing results,71 given that such bioengineered 3D models provide a
more realistic platform compared with simple 2D monolayer cell
cultures. They can also properly and adequately recapitulate the
physiological microenvironment of the tissue/organs of the body
and, therefore, are able to successfully model SARS-CoV-2 virus
infection and replication for the development of new drugs or
vaccines to eventually manage COVID-19 (Fig. 7A). The most fre-
quently used 3D in vitro models include hydrogels,72 orga-
spiratory syndrome coronavirus 2 (SARS-CoV-2) infection and replication. (a)
d into various 3D in vitro models, including hydrogels, organoids, spheroids,
. The developed 3D model can be then used against SARS-CoV-2 infection
COVID-19; to study the development of different diseases in the presence of
ages; to study the mechanism of infection and inhibition in the presence of
deling of (b) different tissues/organs that can be severely affected by SARS-
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noids,71,73–75 spheroids,76 3D bioprinted constructs,77,78 nanofi-
brous scaffolds,79 microfluidics-on-chips,73 among others. For
instance, microfluidics-on-a-chip or organoid models loaded
with multiple cell lineages together with nanosponges are poten-
tial platforms for the early diagnosis of symptoms related to mul-
tiorgan infection. This is particularly relevant given that SARS-
CoV-2 is capable of rapid spread to, and infection of, different
organs of the body, including lung,80 heart,81,82 liver,74

brain,75,83,84 intestine,85 reproductive system,86 thymus,87 and
lymph nodes88 (Fig. 7B).

Concluding remarks, challenges, and prospects
Nanosponges have been deployed against SARS-CoV-2 with
promising inhibitory effects for biological neutralization and
antiviral drug delivery applications. However, more research is
needed to clarify the precise mechanisms of action and their effi-
cacy in animal disease models as well as their long-term biocom-
patibility and biosafety issues. Furthermore, some important
challenging questions need to be addressed before clinical assess-
ments, including the identification of suitable delivery pathways
for these engineered nanosponges, given that they can be
directly delivered to the lungs by an inhaler or intravenously
transported for the treatment of cytokine storm-related compli-
cations. Future studies need to harness the additional beneficial
10 www.drugdiscoverytoday.com
attributes of these membrane-cloaked nanosponges for vaccine
and antiviral delivery as well as their use as broad-spectrum
antiviral therapy. Additionally, such cellular nanosponges could
be appropriate for the biological neutralization of chemical toxic
agents, inflammatory cytokines, bacterial toxins, viral particles,
and pathological antibodies. Remarkably, high-compatibility cell
membrane-originating nanomaterials have opened the door to
effective pharmacotherapy by circumventing the limitations of
currently deployed methods, especially for immune modulation.
3D in vitro models can be used in viral and antiviral studies as
platforms that can help understand better the SARS-CoV-2 and
its mechanism of infection in the body and, thus, to manage
the spread of infection, support the drug-screening process and
discovery of therapeutic agents, eventually eradicating the virus.
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