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Genome-scale metabolic modeling reveals
SARS-CoV-2-induced metabolic changes and
antiviral targets
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Abstract

Tremendous progress has been made to control the COVID-19
pandemic caused by the SARS-CoV-2 virus. However, effective ther-
apeutic options are still rare. Drug repurposing and combination
represent practical strategies to address this urgent unmet medi-
cal need. Viruses, including coronaviruses, are known to hijack host
metabolism to facilitate viral proliferation, making targeting host
metabolism a promising antiviral approach. Here, we describe an
integrated analysis of 12 published in vitro and human patient
gene expression datasets on SARS-CoV-2 infection using genome-
scale metabolic modeling (GEM), revealing complicated host meta-
bolism reprogramming during SARS-CoV-2 infection. We next
applied the GEM-based metabolic transformation algorithm to
predict anti-SARS-CoV-2 targets that counteract the virus-induced
metabolic changes. We successfully validated these targets using
published drug and genetic screen data and by performing an
siRNA assay in Caco-2 cells. Further generating and analyzing RNA-
sequencing data of remdesivir-treated Vero E6 cell samples, we
predicted metabolic targets acting in combination with remdesivir,
an approved anti-SARS-CoV-2 drug. Our study provides clinical
data-supported candidate anti-SARS-CoV-2 targets for future eval-
uation, demonstrating host metabolism targeting as a promising
antiviral strategy.
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Introduction

The coronavirus disease 2019 (COVID-19), a serious respiratory

disease caused by the coronavirus SARS-CoV-2, has evolved into

a major pandemic incurring millions of deaths worldwide (all

dates as of July 2021; WHO Coronavirus Disease Dashboard,

2021). Despite unprecedented global efforts in response to this

serious health threat including abundant studies on the disease

biology (e.g., Hoffmann et al, 2020, Zhou et al, 2020a, reviewed

in Tay et al, 2020, etc.), preclinical antiviral drug/target screens

or predictions (e.g., Daniloski et al, 2021, Riva et al, 2020, Wei

et al, 2021, with compiled resources such as Kuleshov et al,

2020), and thousands of registered clinical trials on COVID-19

(International Clinical Trials Registry Platform, 2021), therapeutic

options remain scarce. Remdesivir, a viral RNA-dependent RNA

polymerase inhibitor, represents the only drug approved by the

drug regulatory authorities of several countries, including the U.S.

Food and Drug Administration (FDA) (Beigel et al, 2020), and

confers only mild clinical benefits to a subset of COVID-19

patients (WHO Solidarity Trial Consortium et al, 2020). 11 dif-

ferent therapies, including the Janus kinase (JAK) inhibitor barici-

tinib (in combination with remdesivir), and virus-neutralizing

antibodies sotrovimab, and casirivimab plus imdevimab, have

obtained Emergency Use Authorization (EUA) from the FDA (U.S.

Food & Drug Administration, 2021a). Dexamethasone and other

corticosteroids have been recommended by the U.S. National

Institutes of Health (NIH) for hospitalized patients requiring

supplemental oxygen (National Institutes of Health, 2021;

RECOVERY Collaborative Group et al, 2021). Besides, several

SARS-CoV-2 vaccines have been approved or authorized for emer-

gency use in different countries (Dong et al, 2020; U.S. Food &

Drug Administration, 2021b). Nevertheless, there is still an urgent
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unmet medical need for the fast identification and development

of highly effective anti-COVID-19 therapies.

Viruses are known to “hijack” the host cell metabolism to

complete their own intracellular life cycle (Mayer et al, 2019),

modulating diverse pathways including carbohydrate, lipid, amino

acid, and nucleotide metabolism (Sanchez & Lagunoff, 2015; Mayer

et al, 2019). Coronaviruses including MERS-CoV rearrange cellular

lipid profiles upon infection (Yan et al, 2019a; Yuan et al, 2019b).

Recent studies have reported that SARS-CoV-2 also induces changes

in numerous metabolic pathways including TCA cycle, oxidative

phosphorylation, and lipid metabolism among others in human

patient samples (preprint: Ehrlich et al, 2020; Gardinassi et al,

2020). Notably, counteracting the metabolic demands of viruses

including MERS-CoV has been shown to abolish their ability to

infect the host cells (Mayer et al, 2019; Yuan et al, 2019), and the

PPARa-agonist fenofibrate can reverse some of the SARS-CoV-2-

induced metabolic changes and reduce the viral load (preprint:

Ehrlich et al, 2020). Therefore, targeting the virus-induced metabolic

changes can be a promising novel antiviral strategy (Mayer et al,

2019), and can be especially valuable in anti-SARS-CoV-2 drug

repurposing to address the current urgent COVID-19 crisis consider-

ing that many existing drugs are metabolism-targeting.

Genome-scale metabolic models (GEMs) are in silico constraint-

based models that comprehensively encompass the cellular network

of metabolic reactions, metabolic proteins, and metabolites (Baart &

Martens, 2012). GEM analysis has been repeatedly shown to gener-

ate accurate predictions and informative hypotheses for metabolism

research (Gu et al, 2019). Notably, we have previously developed

numerous GEM-based algorithms including iMAT (Shlomi et al,

2008), which computes genome-wide metabolic fluxes from gene

expression profiles, and the metabolic transformation algorithm

(MTA; Yizhak et al, 2013), which predicts metabolic targets whose

inhibition facilitates transformation between specified cellular meta-

bolic states (e.g., from diseased to healthy states). More recently,

Valc�arcel et al (2019) have described a variant of MTA named rMTA

with improved performance. Incorporating such high-performance

GEM methods in the analysis of data on SARS-CoV-2 infection

provides us with a unique opportunity to understand the metabolic

demands of SARS-CoV-2 and to systematically predict anti-SARS-

CoV-2 targets that counteract the virus-induced metabolic alter-

ations.

Here, we apply GEM algorithms in a comprehensive analysis

of 12 published bulk/single-cell RNA-sequencing (RNA-seq/

scRNA-seq) and mass spectrometry (MS)-based proteomics data-

sets on SARS-CoV-2 infection, involving both in vitro and human

patient samples. We find that metabolic reprogramming repre-

sents one of the most consistent molecular changes in SARS-CoV-

2 infection besides immune responses, and characterized the

complex patterns of metabolic flux alterations. Using rMTA, we

predicted anti-SARS-CoV-2 targets that reverse the virus-induced

metabolic changes, either as single targets or in combination with

remdesivir (the latter using our new RNA-seq data on remdesivir

treatment). The predictions are highly enriched for reported anti-

SARS-CoV-2 targets identified from various experimental screens,

and we further validated a core set of top predicted single targets

with an immunofluorescence-based siRNA assay in Caco-2 cells.

Our results demonstrate the potential of targeting host metabolism

to inhibit viral infection.

Results

Integrated analysis of multiple gene expression
datasets identifies coherent immune and metabolic changes in
SARS-CoV-2 infection

Multiple studies have characterized the gene expression changes

during SARS-CoV-2 infection in different in vitro and in vivo

settings. We collected a total of 12 published relevant datasets span-

ning a wide range of sample types (various cell lines, primary bron-

chial epithelial cells, nasopharyngeal swab, and bronchoalveolar

lavage fluid, i.e., BALF samples from patients) and assay platforms

(bulk RNA-seq, scRNA-seq, and MS-based proteomics). These data-

sets are summarized in Table 1. With each of the datasets, we

performed differential expression (DE) analysis comparing the

SARS-CoV-2-infected or positive samples to the non-infected control

or negative samples (Materials and Methods; Table EV1). For the

single-cell datasets, we focused on the airway epithelial cell, which

is known as the major virus-infected cell type. Comparing the data-

sets with a principal component analysis (PCA) plot based on the

inverse normal-transformed DE log fold change values (Fig 1A;

Materials and Methods) suggests that the cell lines tend to have

distinct DE profiles from the patient samples, although different

patient datasets exhibit considerable variation depending on sample

type and sequencing platform. Such variation is confirmed by

comparing the top significant DE genes (FDR < 0.1) from each pair

of datasets (Fig 1B; additional robustness analysis in Appendix Fig

S1; Materials and Methods). Examining only the top DE genes also

appears to mitigate the technical variation across datasets, with

reasonable coherence demonstrated by odds ratio median value

1.50 and maximum 5.89 (Fisher’s exact test adjusted P median

4.56e-6, minimum < 2.22e-16; Fig 1B).

We then performed gene set enrichment analysis (GSEA) (Subra-

manian et al, 2005) on the DE results from each dataset

(Table EV2), and further compared the datasets on the pathway

level by the significantly enriched pathways (FDR < 0.1; Materials

and Methods). Reassuringly, the level of coherence across datasets

on the pathway level is even stronger, with a median odds ratio of

4.53 (maximum is infinity followed by 40.73) across pairs of data-

sets (adjusted P median 2.88e-5, minimum < 2.22e-16; Fig 1C).

Examining the most consistently enriched pathways across the data-

sets while giving higher importance to the various in vivo patient

datasets (Fig 1D; Table EV3; Materials and Methods), we see many

up-regulated pathways involved in innate immune response to viral

infection, e.g., interferon signaling. Among the pathways involving

coherently down-regulated genes upon SARS-CoV-2 infection, we

find antigen presentation, as well as numerous pathways spanning

many major categories of cellular metabolism, e.g., TCA cycle and

the respiratory electron transport, sphingolipid metabolism, glucose

metabolism, and N-glycan biosynthesis. These may reflect the speci-

fic metabolic requirements of SARS-CoV-2 or underlie its pathogenic

effects (see Discussion). Visualizing a more complete landscape of

metabolic pathway alterations across the datasets reveals further

consistent, although weaker, changes (based on GSEA normalized

enrichment score, i.e., NES; Fig 1E; Table EV2; Materials and Meth-

ods). The major findings above are robust to the DE algorithms used

(Appendix Fig S2). These results suggest that besides immune

response, metabolic reprogramming represents one of the most
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robust changes induced by SARS-CoV-2 infection across various

systems, consistent with the key roles of metabolism in viral infec-

tion. We next focused on characterizing the SARS-CoV-2-induced

metabolic changes in the infected host cells on the metabolic flux

level.

Genome-scale metabolic modeling (GEM) identifies SARS-CoV-2-
induced patterns of metabolic flux changes

Since gene expression does not necessarily correlate with protein

level or enzyme activity and thus may not truthfully reflect meta-

bolic activity (Maier et al, 2009), we applied GEM to infer the meta-

bolic fluxes (i.e., rates of all metabolic reactions) across the

datasets. Specifically, for each dataset, the iMAT algorithm (Shlomi

et al, 2008) was applied to the median expression profiles of the

control and virus-infected samples to compute the refined metabolic

models representative of the two respective groups. Briefly, iMAT

uses mixed integer programming to optimally identify high- and

low-activity reactions that match the high and low gene expression

patterns in a sample-specific manner, thus defining sample-specific

model constraints to obtain contextualized models (Shlomi et al,

2008). For the base metabolic models, we mainly used the more

recent Recon 3D (Brunk et al, 2018), but also used Recon 1 (Duarte

et al, 2007) for increased robustness (Materials and Methods). After

obtaining the dataset and sample-specific constrained model with

iMAT, the marginal distribution of flux values of each metabolic

reaction was obtained by sampling. The flux distributions of the

control and infected groups were compared, and reactions with dif-

ferential fluxes (DF) were identified (Materials and Methods;

Table EV4). We again examined the consistency across the datasets,

here on the flux level, by checking the overlap of the top DF reac-

tions between each pair of datasets. Like on the gene expression

level, we are assured by the overall reasonable level of coherence of

the DF reactions (odds ratio median 2.05, maximum 2.89; adjusted

P value median 1.45e-11, minimum < 2.22e-16; Fig 2A shows the

result for the positive DF reactions, the result is similar for negative

DF reactions. We note that the sign of DF represents the direction of

flux change with regard to the positive direction of a reaction, which

can be reversible, and not the increase or decrease in the absolute

flux). Although no reaction shows fully consistent changes across

all 12 datasets, we identified a set of most consistently changed

reactions across datasets while giving higher importance to the

in vivo patient datasets (Table EV5A; Materials and Methods), and

examined the metabolic pathways they are enriched in with Fisher’s

exact tests (significant pathways with FDR < 0.1 shown in Fig 2B;

Table EV5B). We see that consistent flux changes are found in vari-

ous noteworthy pathways including metabolite transport (mitochon-

drial and extracellular), pentose phosphate pathway, hyaluronan

metabolism, pyrimidine synthesis, glycine, serine, alanine and thre-

onine metabolism, inositol phosphate metabolism, and fatty acid

synthesis, among others. Many of these pathways have been impli-

cated in the infection and life cycle of different viruses including

SARS-CoV-2 (Mayer et al, 2019; preprint: Bojkova et al, 2020a;

preprint: Ehrlich et al, 2020; Gardinassi et al, 2020; Ou et al, 2020;

Thomas et al, 2020; Li et al, 2021, see Discussion).

Next, we closely inspect the fluxes within specific pathways by

visualizing their alteration patterns overlaid on the metabolic

network, for virus-infected vs the control group. For example, the

pyrimidine (de novo) synthesis pathway mostly contains consis-

tently increased fluxes toward the synthesis of UMP (the precursor

Table 1. Summary of the published gene expression datasets on SARS-CoV-2 infection analyzed in this study.

Dataset
namea Sample type

Sample
sizeb Platform Reference

Vero Vero E6 cell line 6 Bulk RNA-seq Riva et al (2020)

NHBE Primary normal human bronchial epithelial cell 6 Bulk RNA-seq Blanco-Melo et al (2020)

A549 A549 human lung adenocarcinoma cell line with exogenous ACE2
expression

6 Bulk RNA-seq Blanco-Melo et al (2020)

Calu-3 Calu-3 human lung adenocarcinoma cell line 6 Bulk RNA-seq Blanco-Melo et al (2020)

293T HEK293T human embryonic kidney cell line 12 Bulk RNA-seq Weingarten-Gabby et al
(2021)

Caco-2 Caco-2 human colorectal adenocarcinoma cell line 6 MS-based
proteomics

Bojkova et al (2020b)

Swab.Butler NP swab samples from human individuals 580 Bulk RNA-seq Butler et al (2021)

Swab.Lieberman NP swab samples from human individuals 484 Bulk RNA-seq Lieberman et al (2020)

BALF BALF from human individuals 6 Bulk RNA-seq Xiong et al (2020b)

SC.Liao BALF from human individuals (epithelial cells were used in analysis) 13 scRNA-seq Liao et al (2020)

SC.Chua.Basal NP and bronchial samples from human individuals (basal cells were
used in analysis)

24 scRNA-seq Chua et al (2020)

SC.Chua.Ciliated NP and bronchial samples from human individuals (ciliated cells were
used in analysis)

24 scRNA-seq Chua et al (2020)

BALF, bronchoalveolar lavage fluid; MS, mass spectrometry; NP, nasopharyngeal; RNA-seq, RNA-sequencing; scRNA-seq, single-cell RNA-sequencing.
aThese are the names used in figure labels throughout the text.
bThe total number of replicates (virus-infected and control combined) used for analysis in in vitro datasets, or the total number of human individuals (patients
and controls combined) used for analysis in in vivo datasets. In some datasets, only a subset of all the available samples were analyzed.

ª 2021 The Authors Molecular Systems Biology 17: e10260 | 2021 3 of 19

Kuoyuan Cheng et al Molecular Systems Biology



of pyrimidines; Fig 2C), consistent with the nucleic acid synthesis

needs of the virus. As examples of pathways with more complex

flux change patterns, in the inositol phosphate metabolism pathway,

we see increased fluxes converging to phosphatidylinositol 4,5-

bisphosphate (pail45p_hs[c]) and inositol (inost[c]), but decreased

fluxes to inositol 1-phosphate (mi1p_DASH_D[c]; Fig 2D); in the

fatty acid synthesis pathway, we see that the synthesis and intercon-

version of different fatty acids show distinct flux changes (Fig 2E).

A

D

E

B C

Figure 1.
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These highly intricate metabolic programs revealed by the GEM

analysis are consistent with many previous reports and possibly

reflect the specific metabolic demands of SARS-CoV-2 during its life

cycle (see Discussion), which also demonstrates the value of the

modeling approach over gene expression-level analyses.

Prediction of anti-SARS-CoV-2 targets that act via counteracting
the virus-induced metabolic changes

We have demonstrated that SARS-CoV-2 can induce recurrent and

complex alterations in host cell metabolism. As was proposed previ-

ously, targeting the virus-induced metabolic changes can be an

effective antiviral strategy (Mayer et al, 2019), which we adopted

here to predict anti-SARS-CoV-2 targets. Specifically, we applied the

GEM-based rMTA algorithm (Valc�arcel et al, 2019) to each of our

collected datasets to predict metabolic reactions whose knockout

(KO) can transform the cellular metabolism from the SARS-CoV-2-

infected state to the non-infected normal state, based on both the

Recon 3D and Recon 1 models like above for higher robustness

(Materials and Methods; Table EV6). Recon 3D results are described

below unless otherwise noted. MTA computes a score for each of

the metabolic reactions in the cell, and usually, the 10–20% reac-

tions with the highest MTA score contain promising candidate

targets (Yizhak et al, 2013). We first compared the top 10% MTA-

predicted reactions across datasets and found that they have reason-

able overlap (odds ratio median 1.83, maximum 6.90, Fisher’s exact

test adjusted P median 6.95e-14, minimum < 2.2e-16 across all pairs

of datasets; Fig 3A). Interestingly, some strong overlaps are seen

between certain cell lines and patient datasets, consistent with the

recurrent metabolic changes across these datasets as seen above.

To validate these predictions, we collected multiple validation

sets of reported anti-SARS-CoV-2 gene targets or drugs identified

from large-scale chemical or genetic screens. These include CRISPR-

Cas9 genetic screens in Vero E6 cells (Wei et al, 2021) and in cells

with exogenous ACE2 expression (A549ACE2; Daniloski et al, 2021),

and additional lists of experimentally validated drugs reported in

different in vitro studies compiled by Kuleshov et al, 2020 (Materials

and Methods). We first tested for significant overlap between our

top 10% MTA-predicted targets from each of the datasets and the

validation sets described above with Fisher’s exact tests (after

mapping all validated target genes or drugs to the metabolic reac-

tions; Materials and Methods). Strongly significant overlaps were

found between our predictions from 9 out of the 12 datasets with

the antiviral hits (i.e., those whose KO inhibits SARS-CoV-2 infec-

tion) identified in the CRISPR-Cas9 screens (all nine cases have

FDR < 3.18e-3, the other three have FDR > 0.1; Fig 3B;

Table EV6B), these significant datasets include the Vero (Riva et al,

2020) and A549ACE2 data (Blanco-Melo et al, 2020) from the same

cell types as those used in the CRISPR-Cas9 screens, but encourag-

ingly also include four in vivo patient datasets (Liao et al, 2020;

Lieberman et al, 2020; Xiong et al, 2020b; Butler et al, 2021).

Further examining the experimentally validated anti-SARS-CoV-2

drug sets from previous studies (compiled by Kuleshov et al, 2020),

we also found a few cases of significant overlap (FDR < 0.1; Fig 3C;

Table EV6C). Most of these drug sets are relatively small, but when

we pooled all validated drugs compiled by Kuleshov et al, their

targets are also enriched in the predictions from the BALF, Vero,

and 293T datasets (Fig 3C). The top predicted reactions from some

datasets are also enriched for host proteins identified to interact

with SARS-CoV-2 proteins from Gordon et al (2020) and preprint:

Stukalov et al (2020) (FDR < 0.1; Fig 3D; Table EV6D). Overall, our

MTA-based top predictions obtained strong validation from the

published CRISPR-Cas9 screens, with additional support from the

drug screens and host–virus protein–protein interaction (PPI) data.

We further take advantage of the genome-wide CRISPR-Cas9

screens to more closely evaluate the performance of our MTA

predictions. Unlike in many of the drug-screen datasets where the

screens are of low-throughput or complete screen results were not

available, we were able to confidently define positive and negative

sets (i.e., genes whose KO inhibits or promotes the viral infection,

respectively) from the CRISPR-Cas9 screen data. The positive and

negative sets were defined in a balanced way (Materials and Meth-

ods), with which we performed ROC curve analysis of our MTA

predictions from each of the datasets (Materials and Methods).

Although the MTA prediction is only based on the transformation of

cellular metabolic states and does not consider the possible effect of

other anti-/pro-viral mechanisms, we see that the predictions based

on 6 of the datasets achieved area under ROC curve (AUROC) values

above 0.6 and as high as 0.72, although two of the other datasets

apparently yielded AUROC significantly lesser than 0.5 (Fig 3E; see

◀ Figure 1. Analysis of SARS-CoV-2-induced gene expression changes with 12 published datasets.

A PCA plot using the rank-based inverse normal-transformed differential expression (DE) log fold change values (virus-infected compared to control samples) across all
the datasets analyzed.

B Visualization of the overlap of the top significant DE genes (FDR < 0.1) between each pair of datasets analyzed using Fisher’s exact tests (Materials and Methods).
The dot size corresponds to the effect size of the overlap as measured by odds ratio, and the color corresponds to the negative log10 adjusted one-sided P value (gray
means below 0.05).

C Visualization of the overlap of the top significantly enriched pathways (FDR < 0.1) from the gene set enrichment analysis (GSEA) between each pair of datasets
analyzed using Fisher’s exact tests (Materials and Methods). The meanings of dot size and color are the same as (B), and dots with black borders correspond to
infinity odds ratio.

D A summary visualization of the GSEA result for the top consistently altered pathways during SARS-CoV-2 infection across the datasets, with more importance given to
the various in vivo patient datasets (Materials and Methods). The dot color corresponds to the negative log10 adjusted P values from GSEA, with two sets of colors
(red-orange and blue-purple) distinguishing up-regulation from down-regulation (positive or negative normalized enrichment scores, i.e., NES); dot size corresponds
to the absolute value of NES measuring the strength of enrichment. The left- and right-hand side blocks represent the pathways that tend to be consistently up-
regulated and down-regulated in infected vs control samples, respectively; within each block, the pathways are ordered by negative sum of log P values across
datasets (i.e., Fisher’s method).

E Heatmap summarizing the landscape of metabolic pathway alterations (based on gene expression) during SARS-CoV-2 across datasets. The heatmap color
corresponds to the GSEA NES values (explained above) for KEGG metabolic pathways grouped into major categories. Only the metabolic pathways with FDR < 0.1
enrichment in at least one dataset are included in the heatmap. The dataset labels used in this figure correspond to those given in Table 1.
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Discussion). As examples, ROC curves from Vero and SC.Liao are

shown in Fig 3F, representing the best-performing in vitro and

in vivo datasets, respectively. These results testify that our

metabolism-targeting strategy using the MTA algorithm is able to

achieve reasonable prediction performances.

Next, we seek to integrate our predictions from the 12 datasets

into a final consensus list of high-confidence candidate targets for

further extensive experimental validation and investigation. We

applied a procedure to pick highly recurrent top predictions across

both the in vitro and in vivo datasets, as well as from both the Recon

3D- and Recon 1-based results (Materials and Methods), resulting in

a final list of 36 candidate target metabolic reactions mapped to 81

genes, and 14 are targeted by known drugs (Table EV7A). This final

list of candidates is also strongly enriched for the positive targets

identified in the two anti-SARS-CoV-2 CRISPR-Cas9 screens

described above (Wei et al, 2021 and Daniloski et al, 2021; odds

A

C D E

B

Figure 2. Genome-scale metabolic modeling (GEM)-based analysis of SARS-CoV-2-induced metabolic alterations across datasets.

Genome-scale metabolic modeling (GEM) was used to compute the metabolic fluxes from the gene expression profiles, and reactions with differential fluxes (DF)
between the SARS-CoV-2-infected and control groups were identified for each dataset (Materials and Methods).
A Visualization of the overlap of the top DF reactions between each pair of datasets analyzed using Fisher’s exact tests (Materials and Methods). The dot size

corresponds to the effect size of the overlap as measured by odds ratio, and the color corresponds to the negative log10 adjusted one-sided P value (gray means
below 0.05).

B A summary visualization of the metabolic pathway enrichment result for the top consistent DF reactions across the datasets, with more importance given to the
various in vivo patient datasets (Materials and Methods). Y-axis represents the odds ratio of enrichment, the dot color corresponds to the adjusted P value from
Fisher’s exact tests, and dot size corresponds to the number of enriched reactions within each pathway. Half-dots plotted on the top border line correspond to
infinity odds ratio values. The pathways on the X-axis are ordered by P value, and only those with FDR < 0.1 are shown.

C–E Visualization of the relatively consistent DF patterns in selected enriched pathways. The DF results are based on metabolic modeling using the human GEM Recon
3D (Brunk et al, 2018), but for clear visualization, the metabolic network graphs are based on the human GEM Recon 1 (Duarte et al, 2007) to reduce the number of
metabolites and reactions displayed (Materials and Methods). Metabolites are represented by nodes, reactions are represented by directed (hyper) edges, with edge
direction corresponding to the consensus reaction direction and edge color corresponding to the consensus DF direction across datasets (Materials and Methods).
Red and blue colors correspond to increased and decreased fluxes, respectively; gray color corresponds to reactions not showing consistent DF changes across
datasets, some of such reactions are not shown to increase clarity. (C) Pyrimidine synthesis. (D) Inositol phosphate metabolism. (E) Fatty acid synthesis. Metabolites
are labeled by their names in (C) or IDs in (D, E), with suffixes denoting their cellular compartments: [c] cytosol; [m] mitochondria. The mapping between the IDs
and metabolite names in (D, E) is given in Table EV5C.
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ratio = 8.90, P = 1.3e-4). These candidates are enriched for meta-

bolic pathways including cellular transport and inositol phosphate

metabolism, among others (FDR < 0.1; Fig 3G; Table EV7B; Materi-

als and Methods). These are consistent with the known biology of

SARS-CoV-2; e.g., phosphoinositides are known to be critical for

SARS-CoV-2 cell entry by endocytosis, and inhibiting

phosphatidylinositol-3,5-bisphosphate with the drug apilimod has

been shown to suppress SARS-CoV-2 entry (Ou et al, 2020).

A

C

D

F G

E

B

Figure 3.
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Validation of the predicted anti-SARS-CoV-2 targets with an
in vitro siRNA assay

We next seek to experimentally validate the consensus predictions

using an in vitro siRNA-based target knockdown assay. We have

previously conducted a genome-wide siRNA screen to identify host

factors that are essential for SARS-CoV-2 replication (Materials and

Methods). To further prioritize targets for validation, we applied our

computational predictions to this dataset and selected a small subset

of 39 genes among the 81 consensus predicted targets (Materials

and Methods; target list given in Table EV7C). siRNAs targeting

each of these 39 genes were individually transfected into Caco-2

cells (n = 4), which were then infected with SARS-CoV-2. Viral

replication at 48 hours post-infection was assayed with immunoflu-

orescence labeling of the viral nucleoprotein (N) protein, and

siRNA-mediated toxicity was evaluated with DAPI staining (illus-

trated in Fig 4A; Materials and Methods). Overall, compared with

negative control non-targeting siRNAs (scrambled), we observed

that siRNAs targeting the 39 consensus targets significantly reduced

viral replication (Wilcoxon rank-sum test, P = 1.7e-9, Fig 4B; raw

data in Table EV7D; Materials and Methods). Inspected individu-

ally, knocking down 34 of the 39 targets significantly reduced SARS-

CoV-2 replication (adjusted P < 0.05, Table EV7E). Notably, we also

evaluated 4 randomly selected metabolic genes that were not

predicted to revert SARS-CoV-2-induced metabolic changes using

our analyses (negative controls), which showed much weaker viral

inhibition effects (blue dots in Fig 4B). ACE2 and TMPRSS2, two

genes known to be essential for SARS-CoV-2 cellular entry (Hoff-

mann et al, 2020), were included as positive controls for compar-

ison (red dots in Fig 4B). Overall, knockdown of the predicted

consensus targets did not significantly reduce cell number

(P = 0.73, Fig 4C), indicating that their impact on viral replication is

likely not due to siRNA-mediated cytotoxic effects. Representative

fluorescence microscopy images for the siRNA targeting the top

three predicted targets (together with the scrambled non-targeting

control and ACE2 as positive control) are shown in Fig 4D. These

results experimentally validate the efficacy of our predicted targets

in vitro.

Prediction of metabolic targets for anti-SARS-CoV-2 in
combination with remdesivir

Given that our MTA-based prediction of single anti-SARS-CoV-2

metabolic targets has yielded promising results, we proceed to

extend the same strategy for the prediction of targets that can be

combined with remdesivir to achieve higher antiviral efficacy. To

this aim, we cultured Vero E6 cells infected by SARS-CoV-2, with or

without remdesivir treatment. A control group (no viral infection or

remdesivir treatment) and a remdesivir-only group (no viral infec-

tion) were also included (Materials and Methods). Bulk RNA-seq

was performed to obtain the gene expression profiles of these

samples (Materials and Methods). Visualizing the gene expression

data with a PCA plot, we see that remdesivir can indeed effectively

reverse the virus-associated expression changes (mostly along the

first PC axis), but also results in additional orthogonal changes

along the second PC axis (Fig 5A). Performing a GSEA comparing

the virus+ remdesivir group with the normal control group, we see

that many pathways show significant differences in their expres-

sion, including some metabolic pathways, e.g., cholesterol and

steroid biosynthesis (Fig 5B; Table EV8; Materials and Methods).

Some of these differences can be attributed to the incomplete rever-

sion of virus-induced expression changes by remdesivir, while

others may arise from remdesivir-specific effects (Fig 5B). Further

computing the metabolic flux profiles representative of each group

of samples with iMAT (Shlomi et al, 2008) then inspecting the flux-

level PCA plot (Fig 5C; Materials and Methods), we observe a simi-

lar pattern from that seen on the gene expression level. The DF

between the virus+remdesivir and the control group are enriched

for various metabolic pathways (FDR < 0.1; Fig 5D; Table EV9;

Materials and Methods), many also have DF comparing virus-

◀ Figure 3. Genome-scale metabolic modeling (GEM)-based prediction of anti-SARS-CoV-2 targets that act via reversing the virus-induced metabolic
alterations.

The robust metabolic transformation algorithm (rMTA, Valc�arcel et al, 2019) was used to predict metabolic reactions whose knockout can reverse the SARS-CoV-2-
induced metabolic changes using each of the collected datasets (Materials and Methods).
A Visualization of the overlap of the top 10% MTA-predicted target reactions between each pair of datasets analyzed using Fisher’s exact tests (Materials and Methods).

The dot size corresponds to the effect size of the overlap as measured by odds ratio, and the color corresponds to the negative log10 adjusted one-sided P value (gray
means below 0.05).

B A summary visualization of the enrichment of the top 10% MTA-predicted targets from each dataset for the antiviral hits (i.e., those whose KO inhibits SARS-CoV-2
infection) identified in the two published CRISPR-Cas9 screens (Wei et al, 2021 and Daniloski et al, 2021; Materials and Methods). Y-axis represents the odds ratio of
enrichment, the dot color corresponds to the negative log10 adjusted one-sided P value from Fisher’s exact tests, and dot size corresponds to the number of enriched
target reactions. The datasets are ordered by P values, the first eight datasets have FDR < 0.1.

C Cases of significant enrichment (FDR < 0.1) of top 10% MTA-predicted targets from each dataset for the experimentally validated anti-SARS-CoV-2 drug sets from
previous studies (compiled by Kuleshov et al, 2020). “Union” means the union of all drug sets. Axes and the meanings of dot color and size are similar to (B), but the
axes are flipped and the adjusted P values are not log-transformed.

D Significant cases of significant enrichment (FDR < 0.1) of top 10% MTA-predicted targets from each dataset for the host proteins involved in host-SARS-CoV-2
protein–protein interactions (combined from preprint: Stukalov et al, 2020 and Gordon et al, 2020). Axes and the meanings of dot color and size are similar to (C).

E A summary of the area under ROC curve (AUROC) value of the MTA prediction using each dataset, based on positive and negative sets (i.e., genes whose KO inhibits
or promotes the viral infection, respectively) from the two published CRISPR-Cas9 screen data (Wei et al, 2021 and Daniloski et al, 2021; Materials and Methods). The
error bars (vertical lines through the dots) represent 95% confidence intervals obtained with bootstrapping. The horizontal dashed line corresponds to AUROC of 0.5
(i.e., performance of a random predictor).

F Example ROC curves from two of the best-performing datasets, one in vitro (Vero) and one in vivo (SC.Liao). The curves are colored by color gradients corresponding
to the threshold of top MTA predictions.

G Summary of the metabolic pathways significantly enriched (FDR < 0.1) by the final list of consensus candidate targets identified across datasets (Materials and
Methods). The axes and the meanings of dot color and size are similar to (B) except that the axes are flipped.
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infected samples with control (see Fig 2B), suggesting that these

metabolic changes are not fully reversed to normal by remdesivir.

We hypothesize that further reversing the cellular state in the

virus+remdesivir group toward the healthy control state may be an

effective combinatory targeting strategy to improve the antiviral

efficacy of remdesivir.

A

B

D

C

Figure 4. Validation of the predicted anti-SARS-CoV-2 targets with an immunofluorescence-based in vitro siRNA assay.

A A schematic illustration of the siRNA assay in Caco-2 cells infected with SARS-CoV-2 to validate the antiviral efficacies of the consensus predicted metabolic targets.
Caco-2 cells were transfected with siRNAs for 48 h prior to infection with SARS-CoV-2 (MOI = 0.1). Four replicates were performed for each target. At 48 h post-
infection, cells were subjected to staining with SARS-CoV-2 nucleoprotein (N) antibody and DAPI, and then imaged to determine the percentage of infected cells after
each target knockdown (Materials and Methods).

B Quantification of SARS-CoV-2 infection. After the siRNA knockdown of each target, viral infection was quantified as mean log2 fold change (log2FC) of the percentage
of SARS-CoV-2+ cells relative to the mean of scrambled non-targeting siRNAs (“SCRAMBLED”, green dots; accordingly, the mean log2FC value of scrambled non-
targeting siRNAs was normalized to zero). Predicted positive targets (“TARGETING”, gray dots), predicted negative targets (“NEG”, blue dots), and positive controls
(“POS”, red dots, including ACE2 and TMPRSS2) are all shown. Wilcoxon rank-sum test P value comparing the predicted positive targets with scrambled non-targeting
siRNAs is given.

C Quantification of cell number after each target knockdown, calculated as the mean fraction of DAPI+ cells relative to the scrambled non-targeting siRNAs (i.e., the
latter was normalized to 1). Colors of dots and P value are interpreted in the same way as in (B).

D Representative fluorescence images from the siRNA assay showing SARS-CoV-2 infection (green channel, top row), cell number (blue channel, middle row), and
merged cells (bottom row). Results for scrambled non-targeting siRNA as negative control (left column), knockdown of three predicted top metabolic targets (PIKFYVE,
SLC16A10, and PIP5K1C, middle columns), and knockdown of positive control (ACE2, right column) are shown. Scale bar = 10 lm.
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As before, we focused on the domain of cell metabolism and

applied rMTA on our data from Vero E6 cells to predict targets for

reversing the metabolic flux profile in the virus+remdesivir group

toward normal using both Recon 3D and Recon 1 models (Materials

and Methods; Table EV10A). Trying to validate these predictions,

we obtained a list of 20 experimentally tested drugs showing syner-

gistic anti-SARS-CoV-2 effects with remdesivir in the Calu-3 cell line

(preprint: Nguyenla et al, 2020). Despite the cell type difference, we

A B

C D

E

Figure 5.



observed that the targets of these drugs are significantly enriched by

our top 20% MTA predictions when using Recon 1 as the human

metabolic model (Fisher’s exact test P = 0.011, odds ratio 4.83;

there is also a trend of enrichment by the top 10% MTA predictions

with odds ratio 2.01, but it failed to achieve statistical significance

at P = 0.30; the enrichment was not significant when using the

Recon 3D model). The top 20% Recon 1-based predictions recov-

ered six of the 11 metabolic reaction targets from Nguyenla

(preprint: Nguyenla et al, 2020), corresponding to drugs including

cilostazol, ezetimibe, ivosidenib, and valdecoxib. Some of the top

predicted targets overlap with our predicted single anti-SARS-CoV-2

targets as described above, e.g., various inositol phosphate metabo-

lism reactions. This is consistent with the observation that the

virus-induced metabolic changes in these pathways are not effec-

tively reversed to normal by remdesivir (as seen from Figs 2B and

5D). Performing a pathway enrichment analysis, we see that the top

predictions from both Recon 1 and Recon 3D are enriched in

heparan sulfate and hyaluronan metabolism pathways, among

others (Fig 5E; Table EV10B); steroid metabolism pathway, which

was seen to be different in the gene expression level between the

virus + remdesivir and control samples (see Fig 5B), is also

enriched for the top predicted targets (Fig 5E). We provide a list of

87 consensus gene targets common to the top 20% predictions from

both Recon 1 and Recon 3D (Table EV10A; Materials and Methods).

These predictions represent candidate targets that can potentially

improve the antiviral efficacy of remdesivir in combination and

warrant further testing in future studies.

Discussion

In this study, we provide a comprehensive GEM analysis integrating 12

published gene expression datasets on SARS-CoV-2 infection, spanning

multiple in vitro and in vivo sample types and expression profiling plat-

forms. We revealed the complexity of host metabolic reprogramming

by SARS-CoV-2, and further predicted anti-SARS-CoV-2 single or

combinatory (with remdesivir) targets that act via counteracting the

virus-induced metabolic changes. Our GEM-based prediction algo-

rithm showed good performance based on validation with published

targets from in vitro screens, and the predicted targets represent highly

promising candidates for further experimental testing.

To date, a large number of studies have been published that

contributed to our fast understanding of the host molecular changes

associated with SARS-CoV-2 infection. These studies involve a vari-

ety of different experimental models and/or sample types, making it

necessary to perform a systematic analysis across datasets and eval-

uate the robustness and clinical relevance of the findings in human

patients. Although we do not aim to (and cannot) include all rele-

vant published data, we tried to cover datasets on both popular

in vitro models of SARS-CoV-2 infection and human patients (na-

sopharyngeal swab and BALF samples), aiming to increase the

robustness and clinical relevance of our findings. This strategy may

also facilitate the testing of our predicted targets and bridge preclini-

cal and potential future clinical drug development. While many

other studies have shed light on the systemic and immune cell-

specific response characteristic of SARS-CoV-2 infection (e.g., Zheng

et al, 2020 and many of the patient studies we collected in Table 1),

our focus is specifically on the virus-infected host cells, i.e., primar-

ily the airway epithelial cells in vivo. Therefore, for human samples,

in addition to bulk RNA-seq, we analyzed scRNA-seq data to sepa-

rate the distinctive changes within the epithelial cells from, e.g.,

various types of immune cells. In terms of methodology, our

complex collection of data from a wide range of platforms with large

technical variations (bulk RNA-seq, scRNA-seq, MS-based proteo-

mics) poses a challenge to a formal effect size-based meta-analysis.

Despite the progress in multi-omic data integration (Pierre-Jean

et al, 2020), to the best of our knowledge there is currently no

method specifically for integrating the data types we used in this

study that are also compatible with our downstream metabolic

modeling. Therefore, we instead relied mostly on P values, and

made subjective decisions that give higher importance to the various

patient datasets when defining consistent findings, aiming to obtain

results of higher clinical relevance. By integrated analysis of all these

data, we found that metabolism is one of the cellular domains that

exhibit the most coherent changes across datasets in SARS-CoV-2

infection (besides immune responses; Fig 1D). This finding is consis-

tent with our prior knowledge on the need of a wide spectrum of

viruses to manipulate host metabolism for viral proliferation (Mayer

◀ Figure 5. Analysis of the gene expression and metabolic flux profile of remdesivir treatment and prediction of metabolic targets for anti-SARS-CoV-2 in
combination with remdesivir.

A PCA plot of the gene expression profiles for the Vero E6 samples from all experimental groups: control (no virus or remdesivir treatment), virus (SARS-CoV-2-infected),
virus+remdesivir (SARS-CoV-2-infected treated by remdesivir), and remdesivir (remdesivir treatment alone without virus). There are three replicates in each group.

B A visualization of selected differentially expressed pathways comparing the virus+remdesivir group with the control group using gene set enrichment analysis (GSEA).
Y-axis represents normalized enrichment score (NES), and positive value means higher expression in the virus + remdesivir group compared with control, vice versa.
The dashed line corresponds to NES = 0 (i.e., separating positive and negative enrichment). Pathways on the x-axis are ordered by their NES values, all pathways
displayed have adjusted P < 0.05; pathways with names in red are those that are not significantly different (adjusted P > 0.2) when comparing the virus group to the
control group using GSEA; i.e., changes in these pathways may arise from remdesivir-specific effects. The dot color corresponds to the negative log10 adjusted GSEA P
value, and dot size corresponds to the number of enriched genes (i.e., “leading edge” genes in GSEA).

C PCA plot of the average metabolic flux profile computed using the iMAT algorithm (Shlomi et al, 2008; Materials and Methods) representative of each of the
experimental groups, the labels are the same as (A).

D A visualization of metabolic pathway enrichment results of the differential metabolic fluxes in the virus + remdesivir group vs the control group, using Fisher’s exact
tests (Materials and Methods). Y-axis represents the odds ratio of enrichment, the horizontal dashed line corresponds to odds ratio of 1. The dot color corresponds to
the negative log10 adjusted one-sided P value from Fisher’s exact tests, and dot size corresponds to the number of enriched target reactions. The datasets are ordered
by P values, all pathways displayed have FDR < 0.1.

E The robust metabolic transformation algorithm (rMTA, Valc�arcel et al, 2019) was used to predict metabolic reactions whose knockout can further transform the
metabolic state of the remdesivir-treated SARS-CoV-2-infected cells back to the normal control state, using the Vero E6 cell samples (Materials and Methods). The
significant metabolic pathways (FDR < 0.1) enriched by the top 10% MTA-predicted targets are shown. Axes and the meanings of dot color and size are similar to (D).
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et al, 2019). Specific findings from the pathway analysis are also

consistent with previous reports; e.g., both TCA cycle and OXPHOS

have been shown to decrease based on gene expression during the

virus infection (preprint: Ehrlich et al, 2020; Gardinassi et al, 2020),

and have been implicated in the systemic syndromes of the virus (Li

et al, 2021). Factors involved in sphingolipid metabolism have been

found to inhibit the replication of SARS-CoV-2 (Martin-Sancho et al,

2021). These set a solid basis for our GEM-based metabolic flux anal-

ysis and antiviral target prediction.

The application of GEM in complement to gene expression-level

analysis is a central part of our study. It is known that gene expres-

sion does not always perfectly correlate with protein level or

enzyme activity (Maier et al, 2009). Besides, many metabolic reac-

tions are reversible, while the directions of reactions are important

biologically, such information is missing on the gene level. By

taking advantage of the additional information in the topological

constraints of the metabolic network, GEM allows us to infer the

actual metabolic fluxes, thus revealing extra complexity in SARS-

CoV-2-induced metabolic reprogramming, as is evident from

Fig 2C–E. Many of these inferred metabolic changes are consistent

with what is known about SARS-CoV-2 and other related viruses.

For example, the highly coherent increase in pyrimidine biosynthe-

sis (Fig 2C) corresponds to the increased need of viral genome repli-

cation and gene expression (Bojkova et al, 2020b), and pyrimidine

de novo synthesis inhibitors have been shown to have anti-SARS-

CoV-2 effects (Xiong et al, 2020a). Inositol phosphate metabolism

(Fig 2D) is important for the life cycle of many viruses due to the

structural or signaling roles of different phosphoinositides (Beziau

et al, 2020), with the inhibition of certain phosphoinositides disrupt-

ing endocytosis and blocking SARS-CoV-2 cell entry (Ou et al,

2020). Fatty acid synthesis was reported to increase in SARS-CoV-2

infection (preprint: Ehrlich et al, 2020), whereas our results suggest

a more complex pattern for different fatty acid species (Fig 2E),

which echoes the results of several metabolomics studies (Barberis

et al, 2020; Shen et al, 2020; Thomas et al, 2020). Despite that GEM

can help to suggest such intricate flux-level patterns, these

computed fluxes should be verified with isotope labeling experi-

ments, and their biological significance in the virus infection needs

to be further investigated.

Given the importance of metabolism during virus infection,

targeting host metabolism has already been proposed as a promising

novel antiviral strategy (Mayer et al, 2019). For this, the MTA algo-

rithm we previously developed (Yizhak et al, 2013), again a method

under the GEM framework, can be particularly valuable for the

metabolic target discovery. MTA has been successfully applied to

predict lifespan extending interventions in yeast (Yizhak et al,

2013), a metabolic cancer driver gene (Auslander et al, 2017), and a

novel therapeutic target for intractable epilepsy (Styr et al, 2019). A

recent variant of MTA named rMTA was shown to deliver better

performance (Valc�arcel et al, 2019), and here, we used an optimized

implementation of rMTA in our study. MTA/rMTA are not based on

supervised machine learning techniques and do not use any of the

validation datasets for target prediction. Yet, we were able to

achieve decent performance during the validation (Fig 3B–F). It is

particularly encouraging to see that in several cases, the validation

data (which mostly originated from in vitro experiments) correlated

well with the predictions based on in vivo human data. In some

datasets, however, our predictions were not successfully validated

by the genetic screen data (Fig 2B and E). One reason could be that

MTA can only consider the metabolism-related effects and ignores

other potential mechanisms that determine the antiviral efficacy of a

target. Nevertheless, it could also be due to biological differences

between the datasets used for prediction and those used for valida-

tion. To avoid overdependence on the limited validation sets avail-

able in defining the final consensus candidate target list, we did not

explicitly exclude any dataset used for prediction but enforced the

inclusion of the human patient data to achieve higher clinical rele-

vance. With such an approach, we were able to identify a set of

high-confidence consensus targets, which were then successfully

validated with an immunofluorescence-based siRNA assay using

SARS-CoV-2-infected Caco-2 cell line. Our assay has the advantage

of directly measuring the number of SARS-CoV-2-infected cells via

staining of its N protein, while monitoring cytotoxicity (reduction in

cell number) via DAPI staining. Reassuringly, knocking down the

predicted targets did not exhibit any significant cytotoxicity. These

in vitro findings should be further validated in vivo in future studies.

The prediction for combinatory targets with remdesivir also showed

promising preliminary results, although our validation is more

limited in this case. Our GEM-based pipeline thus complements

other computational methods in predicting anti-SARS-CoV-2 targets

and drugs, including those based on network analysis (Zhou et al,

2020b) or artificial intelligence (Zhou et al, 2020c). Follow-up stud-

ies are warranted to solidly test and validate these predicted targets

for potential further antiviral therapy development.

This study has several limitations that should be more thor-

oughly addressed in future studies incorporating the GEM modeling

approach. First, as we aimed to identify targets in airway epithelial

cells, we did not fully characterize cell type- and tissue-specific

metabolism associated with SARS-CoV-2 infection. Notably, future

studies should analyze single-cell datasets to construct cell type-

specific GEMs to identify cell type-specific antiviral targets and

virus-induced alterations, e.g., immunometabolic changes

(O’Carroll & O’Neill, 2021). Second, it is known that people of dif-

ferent sexes and ages respond differently to SARS-CoV-2 infection

(Peckham et al, 2020; Canas et al, 2021) and that the infection can

result in a wide spectrum of disease severity (Sandoval et al, 2021),

which may be associated with metabolic underpinnings that can in

turn be studied in the future with sex, age, and clinical outcome-

specific GEMs, given sufficient pertaining preclinical and clinical

data. Third, while we predicted combinations of targets based on

the principle of restoring cellular homeostasis, it is also feasible to

predict synergistic target combinations under the GEM framework

via modeling of synthetic lethality, which has also been proposed as

a viable antiviral approach (Mast et al, 2020).

In summary, we identified prevalent and intricate metabolic

reprogramming in the host cell as a feature of SARS-CoV-2 infec-

tion, and further predicted single and combinatory antiviral targets

with promising performance seen in preliminary validations. These

targets should be rigorously validated experimentally. Since our

predictions are in part based on human patient data, they are

likely to have high clinical relevance and may ultimately help to

achieve better efficacy in COVID-19 treatment. Our study demon-

strates the targeting of host metabolism as a promising antiviral

strategy and highlights the power of GEM analysis to advance the

understanding of cell metabolism during viral infection and antivi-

ral target prediction.
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Materials and Methods

Differential gene expression analysis

We obtained each of the gene expression datasets on SARS-CoV-2

infection from the sources listed in Table 1. For the bulk RNA-

sequencing (RNA-seq) datasets whose read count data are available

at the time of analysis, we performed differential expression (DE)

analysis comparing the SARS-CoV-2-infected or positive samples

with the non-infected control or negative samples with DESeq2

(Love et al, 2014). For Butler et al (2021) and Xiong et al (2020b),

we obtained the DE results provided from the supplementary mate-

rials of the respective publication. For Butler et al (2021), among

their multiple versions of DE results we used the one from limma-

voom with sva correction “Voom:Positive_vs_Negative:10M_sam-

ples:sva_correction_2sv”. To test whether the mixed use of multiple

DE methods could introduce bias to the results, we also used

limma-voom (Law et al, 2014) on all of the bulk RNA-seq datasets

(for results in Appendix Fig S2) and found that the major conclu-

sions were not affected by the change of DE methods. We also took

the DE results of the proteomic data from Bojkova et al (2020b) as

provided by the authors, and used the 24-h post-infection data,

which is the latest time point available with the largest number of

DE proteins. For the single-cell RNA-sequencing (scRNA-seq) data-

sets, The “FindMarkers” function in the R package Seurat (Stuart

et al, 2019) was used to call the MAST method (Finak et al, 2015)

for DE analysis in each annotated cell type, with “logfc.threshold”

set to 0 to obtain full results across genes. We focused on the airway

epithelial cells since our major aim in this study is to investigate the

changes in the cell types infected by the SARS-CoV-2 virus, these

include the “Epithelial” cell type from Liao et al, 2020 and the “Cili-

ated” and “Basal” cell types from Chua et al, 2020 (Data ref: Chua

et al, 2020; other epithelial subtypes from these datasets yielded no

significant DE genes). All DE results are given in Table EV1.

Gene set enrichment analysis of the differential
expression results

Using the DE log fold change values from each dataset, gene set

enrichment analysis (GSEA) (Subramanian et al, 2005) was

performed using the implementation in the R package fgsea

(preprint: Korotkevich et al, 2021). The gene set/pathway annota-

tions used were the Reactome (Jassal et al, 2020) and KEGG (Kane-

hisa et al, 2021) subsets from the “Canonical Pathway” category in

version 7.0 MSigDB database (Liberzon et al, 2011). For metabolic

pathways (in Fig 1E), those under the category “Metabolism” from

KEGG (Kanehisa et al, 2021) were used. All GSEA results are given

in Table EV2.

Comparison of the differentially expressed genes and pathways
across datasets

The DE results across datasets were compared in a descriptive

manner. As a first approach, the DE log fold change values were

inverse normal-transformed across all genes within each dataset,

which preserves only the order (i.e., rank) of DE effect sizes, and

then, PCA was applied to the transformed data. As a second

approach, top significantly DE genes or enriched pathways with

FDR < 0.1 from each pair of datasets were tested for significant over-

lap using Fisher’s exact tests. To identify the consistent DE changes

across datasets, a formal meta-analysis of all 12 datasets is challeng-

ing given the wide range of assay platforms and DE algorithms used.

So instead, we adopted subjective criteria that give high importance

to the various in vivo patient datasets, such that the results may be

more clinically relevant: We identified pathways that are signifi-

cantly (FDR < 0.1) enriched in the consistent direction (up/down-

regulation) in at least one of the bulk RNA-seq patient datasets and

also at least one of the scRNA-seq datasets, while never showing

significant enrichment (FDR < 0.1) in the opposite direction in any

of the datasets (for the results in Fig 1D; Table EV3).

Computation of metabolic fluxes from gene expression data with
genome-scale metabolic modeling

For each dataset, we used the genome-scale metabolic modeling

(GEM) algorithm iMAT (Shlomi et al, 2008) to compute the meta-

bolic flux profile from gene expression data. iMAT requires gene-

length-normalized expression values in the bulk RNA-seq datasets;

for this, we computed TPM values with Salmon (Patro et al, 2017)

from the raw fastq files for datasets where TPM data are not

provided. Then for each dataset, we took the median expression

values of the control and virus-infected samples, respectively, as the

representative expression profile for each group, and used it as input

to iMAT. The human genome-scale metabolic model (GEM) Recon

3D (Brunk et al, 2018) was used as the base model for iMAT. Since

Recon 3D is a large model that in some cases may pose difficulty to

the mixed integer programming (MIP) solver used in iMAT, we also

used an older and smaller version of the human GEM, i.e., Recon 1

(Duarte et al, 2007) to double-check the numerical stability and

robustness of results. The output of iMAT is a refined GEM for the

each of the virus-infected and control groups in each dataset, with

metabolic reaction bounds adjusted to achieve maximal concor-

dance with the gene expression data while satisfying the stoichio-

metric constraints of the cellular metabolic network (Shlomi et al,

2008). Each output model defines a space rather than a single

unique solution of the global metabolic flux profile, and artificial

centering hit-and-run (ACHR) was used to sample the metabolic

space and obtain the distribution of flux values for each metabolic

reaction in each condition (control or virus-infected) and dataset.

Although not a single value representing a unique solution, we were

able to determine reactions with DF by comparing the flux distribu-

tions of a reaction in control and virus-infected conditions (see next

section). We did not apply flux balance analysis (FBA) on the

iMAT-derived constrained models, as maximal biomass production

may not be appropriate especially for the in vivo patient samples,

and tissue type-specific objective functions for these samples are not

trivial to define. All GEM analyses were performed using our in-

house R package named gembox, with the academic version of IBM

ILOG CPLEX Optimization Studio 12.10 as the optimization solver

on a high-performance computing cluster.

Differential flux analysis of virus-infected vs control group in
each dataset

The flux distributions of the control and infected groups were

compared to identify reactions with DF. Since an arbitrarily large
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number of sample points can be sampled from the metabolic space

of each group, resulting in statistical tests with arbitrarily small P

values, we adopted the following effect size-based criterion for DF

reactions: absolute rank biserial correlation (an effect size measure

of the difference between the two flux distributions in the control

and virus-infected groups) > 0.5, and absolute relative flux change

(i.e., the absolute difference of the mean fluxes between the two

groups over the absolute mean flux in the control group) > 50%.

Positive DF reactions have flux value difference in infected vs

control group > 0, and vice versa for negative DF reactions. Note

that for non-reversible reactions, flux values are non-negative and

the sign of DF can be interpreted similar to differential gene expres-

sion; for reversible reactions, flux values can be negative, represent-

ing reactions happening in the reverse direction; thus, the sign of

DF needs to be interpreted differently; e.g., negative DF represents

flux shift toward the reverse direction and not necessarily decreases

in absolute flux. The DF results are given in Table EV4, these are

based on modeling results with Recon 3D.

Analysis of reactions with consistent differential fluxes across
datasets and their pathway enrichment analysis

To compare the DF results across datasets, the DF reactions from

each pair of datasets were tested for significant overlap using

Fisher’s exact tests (separately for positive and negative DF). Since

no reaction shows fully consistent DF across all 12 datasets

analyzed, similarly as with the DE analysis, we identified the DF

reactions with high level of consistency especially in the in vivo

patient datasets, such that the results may be more clinically rele-

vant: We identified DF reactions in the consistent direction (posi-

tive/negative) in at least one of the bulk RNA-seq patient datasets

and also at least one of the scRNA-seq datasets, while showing DF in

the opposite direction in no more than three datasets (Table EV5A).

The metabolic pathway enrichment of these DF reactions was

analyzed with Fisher’s exact tests (results in Table EV5B), with the

“subSystems” slot in the Recon 3D metabolic model used as pathway

annotation. However, we also performed the enrichment analysis

with the Recon 1 modeling results and the corresponding “subSys-

tems” annotation, and we removed pathways that show inconsistent

enrichment results between Recon 3D and Recon 1. Note that due to

the special interpretation of the sign of DF values as explained above,

the GSEA used for gene expression-level analysis is not appropriate

for pathway enrichment analysis on the flux level.

Analysis of the consistent flux alteration patterns in different
metabolic pathways

For each of the significantly enriched metabolic pathways identified

in the consistent DF reaction analysis described above, we defined

the “consensus” direction of each reaction as represented by those

shown in the virus-infected group from the majority (> 6 out of 12)

of the datasets, and also similarly for the “consensus” direction of

DF for each reaction. The consensus directions of reactions and their

DF were overlaid onto network diagrams of the pathways and visu-

alized, where metabolites are represented by nodes, reactions are

represented by directed (hyper) edges with edge direction corre-

sponding to the consensus reaction direction and edge color corre-

sponding to the consensus DF direction. Parts of the metabolic

pathways where reactions are not consistently altered across data-

sets are grayed out or removed to increase the clarity. The DF

results from the Recon 3D model (Brunk et al, 2018) was used, but

for clear visualization, the network diagrams of the metabolic path-

ways are based on the smaller Recon 1 model (Duarte et al, 2007) to

reduce the number of metabolites and reactions displayed. Common

reactions shared by Recon 3D and Recon 1 were mapped by their

IDs when the IDs are the same, or were manually mapped according

to the metabolite interconversion relationship when the IDs are dif-

ferent. Further, upon visual inspection, potential futile loops in the

network are also removed from the visualizations.

Prediction of anti-SARS-CoV-2 target metabolic reactions with
metabolic transformation algorithm

For each of the collected datasets, the DE result of virus-infected vs

control samples and the representative flux distribution of the virus-

infected group computed with iMAT (Shlomi et al, 2008) followed by

ACHR sampling were used as inputs for the GEM-based MTA

(Yizhak et al, 2013; a variant called rMTA was used; Valc�arcel et al,

2019) to predict metabolic reactions whose knockout can transform

cellular metabolic state from that of the virus-infected to that of the

control samples (full prediction results from all datasets in

Table EV6A). The output of rMTA is a score (rMTA score) for each

metabolic reaction, with higher scores corresponding to better candi-

dates for achieving the metabolic transformation as specified above.

From our previous experience (Yizhak et al, 2013), the top 10–20%

MTA predictions contain promising targets. The human Recon 3D

(Brunk et al, 2018) GEM was used for the MTA analysis, and we also

used Recon 1 GEM (Duarte et al, 2007) to confirm the robust predic-

tions. The rMTA algorithm implemented in our in-house R package

named gembox was used, with the academic version of IBM ILOG

CPLEX Optimization Studio 12.10 as the optimization solver on a

high-performance computing cluster. To compare the MTA predic-

tions across datasets, the top 10% predictions from each pair of data-

sets were tested for significant overlap using Fisher’s exact tests.

Computational validation of the MTA-predicted anti-SARS-CoV-2
metabolic targets

Multiple datasets of reported anti-SARS-CoV-2 gene targets or drugs

identified from large-scale chemical or genetic screens were

collected to validate our predictions. Gene-level results of two

published CRISPR-Cas9 genetic screens (Wei et al, 2021 and Dani-

loski et al, 2021) were obtained from the supplementary materials

of the respective publication. For Wei et al, gene hits with

FDR < 0.1 and mean z score > 0 (i.e., KO inhibits the viral infec-

tion) were taken; Daniloski et al reported two screens with different

multiplicities of infections (MOIs) and provided only single-sided

FDR, so gene hits with FDR < 0.1 from either screen were taken.

The union set of hits from both studies were used. Lists of experi-

mentally validated drugs reported in different studies compiled by

Kuleshov et al (2020) were downloaded from https://maayanlab.

cloud/covid19/, which are then mapped to the genes they inhibit

using data from DrugBank v5.1.7 (Wishart et al, 2018). Addition-

ally, host proteins identified to interact with SARS-CoV-2 proteins

were obtained from the supplementary materials of Gordon et al

(2020) and preprint: Stukalov et al (2020). The genes from these
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validation datasets are mapped to metabolic reactions wherever

applicable based on the human GEM Recon 3D (Brunk et al, 2018)

data. Then, the significant overlap between the top 10% MTA-

predicted targets from each dataset and each of the validation sets

described above was tested with Fisher’s exact tests on the reaction

level (full results in Table EV6B–D). Reaction-level test is performed

because multiple reactions can be mapped to the same gene, and

performing Fisher’s exact test on the gene level fails to consider

such multiple mapping and is thus inappropriate.

For ROC analysis, negative sets (i.e., genes whose KO promotes

SARS-CoV-2 infection) were defined based on the two CRISPR-Cas9

screens described above. For Wei et al, gene with FDR < 0.1 and

mean z score < 0 were taken; since Daniloski et al provided only

single-sided FDR, the log fold change threshold corresponding to the

FDR < 0.1 cutoff was identified, and genes with more extreme log

fold changes in the opposite direction were taken. The union of the

negative sets from both studies was used. Both the positive (de-

scribed in the previous paragraph) and negative sets of genes are

then mapped to metabolic reactions as described above. The nega-

tive set defined as such contains a relatively balanced number of

reactions compared with the positive set (306 vs 238). The rMTA

score for the reactions produced by MTA was used as the predicted

value for ROC analysis. The R package pROC (Robin et al, 2011)

was used to compute the AUROC values and their 95% confidence

intervals (the latter computed with bootstrapping).

Defining and analyzing the consensus set of candidate
anti-SARS-CoV-2 metabolic targets across datasets

Based on top 10% MTA predictions from the 12 datasets (six in vitro

and six in vivo) using Recon 3D, the metabolic reaction targets that

are recurrent in at least two of the in vitro datasets, and also in two of

the in vivo datasets (i.e., the intersection of the two) were taken, and

were then mapped to genes based on the model data. This procedure

was repeated for the Recon 1-based predictions, and the intersection

between the Recon 3D predictions and Recon 1 predictions was taken

to be the final consensus candidate gene targets with high-confidence

support across datasets. These target genes were further mapped to

known drugs inhibiting the gene targets using data from DrugBank

v5.1.7 (Wishart et al, 2018; target list given in Table EV7A; the reac-

tion and rMTA score information in this table was based on the Recon

3D results). The metabolic pathway enrichment of these targets was

analyzed with Fisher’s exact tests, with the “subSystems” slot in the

metabolic model used as pathway annotation. For our siRNA assay-

based experimental validation of the predictions, we focused on a

further subset of those consensus candidate gene targets with negative

log fold change regardless of P value in a previous genome-wide

siRNA screen we performed (data deposited at https://figshare.com/

s/4117ac39b1d21b56f5e6); namely, our computational predictions

were used to prioritize the targets for focused replicated validation

assays from the much more noisy results of genome-wide screens.

This list of targets for experimental validation is given in Table EV7C.

Validation of the consensus set of predicted anti-SARS-CoV-2
targets with siRNA assay

A targeted small-scale siRNA screen was carried out in human Caco-

2 cells to evaluate whether the predicted metabolic targets affect the

replication of SARS-CoV-2. The siRNAs (ON-TARGETplus SMART-

pool, Dharmacon) were individually arrayed in 384-well plates at a

concentration of 12.5 nM per well. In addition, non-targeting

siRNAs (scrambled) were added to each plate as negative controls,

and siRNAs targeting SARS-CoV-2 entry factors ACE2 and TMPRSS2

were included as positive controls. siRNAs were mixed with 0.1 ll
Lipofectamine RNAiMAX transfection reagent diluted in 9.90 ll
Opti-MEM (both reagents from Thermo Fisher Scientific) to enable

the formation of siRNA transfection reagent complexes. Following a

20-min incubation period at room temperature, 3,000 Caco-2 cells

diluted in 40 ll DMEM (Gibco) supplemented with 10% heat-

inactivated fetal bovine serum (FBS, Gibco), and 50 U/ml peni-

cillin–50 µg/ml streptomycin (Fisher Scientific) were seeded on top

of the complexes and incubated for 48 h at 37°C, 5% CO2. Cells

were then infected with SARS-CoV-2 (USA-WA1/2020) at a multi-

plicity of infection (MOI = 0.1) for 48 h at 37°C, 5% CO2, and then

fixed with 4% PFA (Boston BioProducts) for 4 h at room tempera-

ture. Cells were then washed twice with PBS, permeabilized with

0.5% Triton X-100 for 20 min, followed by blocking with 3% BSA

(Sigma) for 1 h at room temperature. Primary anti-SARS-CoV-2 N

protein rabbit polyclonal antibody (gift from Dr. Adolfo Garcia-

Sastre) was added for 2 h at room temperature, followed by three

washes with PBS and 1-h incubation with Alexa Fluor 488-

conjugated anti-rabbit secondary antibody (Thermo Fisher Scien-

tific) diluted in 3% BSA. Following three washes with PBS, cells

were stained with DAPI (4,6-diamidine-2-phenylindole, KPL), and

plates were sealed and stored at 4°C until imaging. SARS-CoV-2

replication after each individual target knockdown was quantified

using high-content imaging. The assay plates were imaged with the

IC200 imaging system (Vala Sciences) at the Conrad Prebys Center

for Chemical Genomics (CPCCG) and analyzed using the analysis

software Columbus v2.5 (PerkinElmer). Based on the number of

Alexa 488+ objects and the number of DAPI+ objects, the percentage

of infected cells was quantified. The log2FC infection was calculated

relative to the negative control scrambled siRNA-treated wells. Cyto-

toxicity resulting from siRNA transfection was evaluated by normal-

izing the percentage of DAPI+ objects to that of the negative control

scrambled siRNA. All experiments dealing with SARS-CoV-2 were

performed in a Biosafety Level 3 laboratory under the approval of

the Sanford Burnham Prebys Medical Discovery Institute Biosafety

Committee.

Preparation of Vero E6 cell samples with SARS-CoV-2 infection
and remdesivir treatment, RNA-sequencing, and gene expression
data analysis

Vero E6 cells (ATCC� CRL-1586TM) were maintained in Dulbecco’s

modified Eagle’s medium (DMEM, Gibco) supplemented with 10%

heat-inactivated fetal bovine serum (FBS, Gibco), 50 U/ml peni-

cillin, 50 lg/ml streptomycin, 1 mM sodium pyruvate (Gibco),

10 mM 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid

(HEPES, Gibco), and 1× MEM non-essential amino acid solution

(Gibco). The SARS-CoV-2 USA-WA1/2020 strain was obtained from

BEI Resources (NR-52281). The virus was inoculated on Vero E6

cells, and the cell supernatant was collected at 72 h post-inoculation

(hpi), when extensive cytopathic effects were observed. The super-

natant, after clarification by centrifugation for 15 min at 4°C at

5,000 g, was aliquoted and stored at �80°C until use. 500,000 Vero
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E6 cells were seeded in six-well plates. The following day, the cell

medium was replaced with fresh medium supplemented with either

DMSO or 1 µM remdesivir (Adooq Bioscience), and cells were either

mock-infected or infected with SARS-CoV-2 USA-WA1/2020

(MOI = 0.3). Twenty-four hours after infection, cells were collected,

and total intracellular RNA was extracted using the Qiagen�

RNeasy� Plus Mini Kit. Three replicates were performed for each

group, resulting in a total of six samples. The quality of the

extracted RNA was assessed with Agilent� 2100 Bioanalyzer.

Libraries were prepared on total RNA following ribosome RNA

depletion with standard protocol according to Illumina�. Total

RNA-sequencing was then performed on the Illumina� NextSeq

system, 150-bp paired-end runs were performed, and 100 million

raw reads per sample were generated. STAR (Dobin et al, 2013) was

used to align the reads to reference genome of the African green

monkey (Chlorocebus sabaeus, https://useast.ensembl.org/

Chlorocebus_sabaeus/Info/Annotation), with the SARS-CoV-2

genome (https://www.ncbi.nlm.nih.gov/nuccore/NC_045512)

added to the reference genome. DESeq2 (Love et al, 2014) was used

for DE analysis between pairs of experimental groups (including

virus+remdesivir vs control and virus vs control; DE results in

Table EV8A). GSEA (Subramanian et al, 2005) was performed using

the implementation in the R package fgsea (preprint: Korotkevich

et al, 2021), results are provided in Table EV8B. The gene set/path-

way annotations used were the Reactome (Jassal et al, 2020) and

KEGG (Kanehisa et al, 2021) subsets from the “Canonical Pathway”

category in version 7.0 MSigDB database (Liberzon et al, 2011). All

experiments dealing with SARS-CoV-2 were performed in a

Biosafety Level 3 laboratory under the approval of the Sanford Burn-

ham Prebys Medical Discovery Institute Biosafety Committee.

Genome-scale metabolic modeling of the remdesivir-treated
Vero E6 cell samples and prediction of anti-SARS-CoV-2
metabolic targets in combination with remdesivir

As with the metabolic modeling of the other datasets on SARS-

CoV-2 infection, iMAT (Shlomi et al, 2008) together with ACHR

was used to compute the metabolic flux distribution for each of

the experimental groups, using the median expression TPM values

of each group as the input to iMAT. Reactions with DF between

groups (including virus + remdesivir vs control and virus vs

control) were identified as described above, and their significant

metabolic pathway enrichment was tested with Fisher’s exact tests,

with pathways defined by the “subSystems” from the Recon 3D

model (Brunk et al, 2018; results in Table EV9). Like above, the

smaller Recon 1 model (Duarte et al, 2007) was also used to iden-

tify robust findings, and non-robust pathway-level results were

discarded similarly as above and not considered in the main text.

The DE result of virus+remdesivir vs control group and the mean

flux distribution of the virus+remdesivir group computed with

iMAT were used as inputs for rMTA to predict metabolic reactions

whose knockout can further transform the virus+remdesivir meta-

bolic state to the normal control state. The top 10% and 20%

MTA-predicted targets from either Recon 3D or Recon 1 were

tested for significant enrichment for the targets of a list of experi-

mentally validated synergistic drugs with remdesivir (preprint:

Nguyenla et al, 2020) using Fisher’s exact test (performed on the

metabolic reaction level as described above). Metabolic pathway

enrichment analysis of the top rMTA-predicted targets was

performed as described above (results in Table EV10B). The top

20% reactions in Recon 1- and Recon 3D-based predictions were

mapped to genes, and the intersection between the two sets of

predicted genes were taken as a final consensus list of candidate

gene targets. Like above, these target genes were also further

mapped to known drugs inhibiting the gene targets using data

from DrugBank v5.1.7 (Wishart et al, 2018; target list given in

Table EV10A; the reaction and rMTA score information in this

table was based on the Recon 3D results).

Notes on statistical analysis and visualization

R version 3.6.3 was used for all statistical tests. P values lesser than

2.22e-16 may not be computed accurately and are reported as

“P < 2.22e-16” throughout the text. The Benjamini–Hochberg (BH)

method was used for P value adjustment throughout the text. The R

packages ggplot2 (Wickham, 2016), ComplexHeatmap (Gu et al,

2016), and visNetwork (https://cran.r-project.org/web/packages/

visNetwork/index.html) were used to create the visualizations.

Data and code availability

The gene expression data analyzed in this study are from published

studies, with detailed information given in Table 1. The bulk RNA-

seq data for SARS-CoV-2 infection in Vero E6 cells with remdesivir

treatment have been deposited to the GEO database (accession ID:

GSE165955; http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE165955). The code used for the analyses can be found in the

GitHub repository: https://github.com/ruppinlab/covid_metabolism.

Our in-house R package named gembox used for all the GEM analy-

sis in this study can be found on GitHub: https://github.com/

ruppinlab/gembox.
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