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Abstract: Background: Aflatoxin By (AFB;), AFB,, AFGy, and AFG, are Group 1 human carcinogens,
with AFB; notably increasing hepatocellular carcinoma (HCC) risk. Sichuan Province, China, with its
subtropical monsoon climate, is susceptible to AF contamination in various food items. However,
the HCC disease burden attributable to lifetime chronic dietary AF intake in Sichuan has not been
investigated. Methods: The contamination data of AFB;, AFB,, AFG;, AFG,, and AFM; across
20 food categories were analyzed from 2012 to 2023 in Sichuan. Along with the consumption data
gathered from the 2011 China National Nutrition and Health Survey, the FDA-iRISK simulated the
lifetime chronic dietary exposure patterns of ) 5AF and estimated the associated HCC burden using
disability-adjusted life year (DALY) as the metric. Results: As for the mean AF contamination level in
food from Sichuan, the estimated lifetime average daily dose (LADD) of ) _sAF intake was 9.77 ng/kg
bw/day at minimum and 26.0 ng/kg bw/day at maximum, resulting in the lifetime HCC risks
per person of 0.106% and 0.283%. The corresponding HCC burdens were 16.87 DALY /100,000 peo-
ple/year and 44.95 DALY /100,000 people/year, respectively. In the same scenario, the LADD and
the risk of HCC in males were higher than in females, but the PAF was higher in females. However,
the high (Py5) AF contamination level in food caused 2-3 times higher LADD and HCC burden than
the mean level of AF occurrence. Among the studied food categories, grains and their products were
the primary dietary sources of dietary AF exposure. Conclusions: Sichuan population’s lifetime
exposure to ) 5AF results in an HCC burden higher than the global level. It is recommended to
continuously monitor and control AF contamination in Sichuan, particularly those highly vulnerable
food categories, and the HCC disease burden should remain a concern in future research efforts.

Keywords: aflatoxin; dietary exposure; lifetime average daily dose; hepatocellular carcinoma; disease
burden; disability-adjusted life year

1. Introduction

Aflatoxins (AFs) are toxic compounds produced as secondary metabolites by the
fungi species Aspergillus flavus and Aspergillus parasiticus [1]. Among all known categories
of AF, the most commonly found in food and feed crops are aflatoxin B; (AFB;), AFB,,
AFG,, and AFG; [2]. Additionally, AFM;, a hydroxylated derivative of AFB;, primarily
occurs in milk and dairy products and is produced by the metabolism of lactating animals
that consume AFB;-contaminated feed crops [3]. Chronic exposure to low doses of AF
through diet can result in chronic toxicity, and AF can act as endogenous genotoxic agents,
persistently stimulating carcinogenesis [4]. The International Agency for Research on
Cancer (IARC) has classified AFB;, AFB;, AFG1, and AFG; as Group 1 human carcinogens,
indicating sufficient evidence of their carcinogenicity to humans [5]. AFB; is the most
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potent carcinogenic aflatoxin and is a known cause of hepatocellular carcinoma (HCC).
Its toxic mechanism involves the metabolite AFB;-8,9-epoxide, which binds to DNA in
target cells, forming guanine adducts that lead to cell damage, gene mutations, and tumor
formation [6]. Human exposure to AF combined with hepatitis B virus (HBV) infection
greatly increases the risk of HCC, with an odds ratio (OR) of 54.1, compared to 5.91 for AF
exposure alone and 11.2 for chronic HBV infection alone [7].

AF can contaminate various crops, including grains, beans, nuts, oilseeds, spices, and
dairy products, with corn and peanuts being particularly susceptible. These food items are
sources of human dietary exposure to AF [8]. While AF-producing fungi are widespread,
contamination is more common in tropical and subtropical regions (16° to 35° latitude),
where warm and humid climates promote fungal growth and AF production [9]. Moreover,
in developing countries, AF contamination has become a severe social problem due to
lower levels of economic development and the inadequate implementation of food safety
standards. This is also a major global food safety issue [10]. The Joint FAO/WHO Expert
Committee on Food Additives (JECFA) and the European Food Safety Authority (EFSA)
have conducted a number of assessments on AF contamination in food and its impact
on human health [11-21]. EFSA considers the liver carcinogenicity of AF as a pivotal
consideration for assessing risks in both animals and humans. Many countries and regions
have assessed the health risks of dietary AF exposure. Globally, AF exposure is responsible
for 4.6-28.2% of liver cancer cases, with the highest rates in Sub-Saharan Africa, Southeast
Asia, and China, ranging from 12.1% to 28.9% [22]. Additionally, research indicated that
with an intake of 1 ng consumed per kilogram body weight per day, AFM; could cause
13-32 cases of HCC per 100,000 people annually worldwide [23]. For AFB,, AFG;, and
AFGy, the available in vivo data are not sufficient to derive carcinogenic potency factors, so
EFSA applied equal carcinogenic potency factors for them as AFB; [21]. Specially, under
a dietary AFB; exposure of 1 ng/kg bw/day, there would be 0.3 cases of HCC annually
among 100,000 HBsAg-positive (HBsAg") individuals and 0.01 cases for HBsAg-negatives
(HBsAg™) individuals [13]. For AFM;, JECFA concluded, based on a study in Fischer rats,
that AFM; induces liver cancer with a potency one-tenth that of AFB; [14].

Disease burden refers to the impact of diseases, injuries, and premature deaths on so-
cietal health and economies. The disability-adjusted life year (DALY) is a critical metric for
assessing the loss of healthy life due to illness or injury [24,25]. The World Health Organiza-
tion (WHO) has reported that global AF exposure leads to an estimated 21,757 cases of HCC,
with 19,455 deaths and 636,869 DALY [26]. In China, however, there is limited knowledge
about the burden of HCC from dietary AF exposure, as most researchers have focused on
exposure risk without evaluating the related disease burden. For example, Li et al. assessed
AF in cereals and oils in the Yangtze Delta, and Ding et al. examined AFB; in peanuts after
harvest in the Yangtze River’s ecological region, focusing only on exposure risk [27,28].
China spans over 20 degrees of latitude and has a diverse climate, encompassing five
distinct climatic zones. A study has shown that regions in China with a high incidence
of liver cancer generally have warm and humid climates [29]. Chen et al. estimated the
DALY due to dietary AF intake in different regions of China (including Sichuan), but this
study focused on only two food categories, peanuts and peanut oil, as well as corn and its
products, which may lead to an underestimation of the overall foodborne aflatoxin-related
disease burden for the target population [30]. In 2023, we estimated the disease burden of
HCC due to }_4AF (the sum of AFB;, AFB,, AFG;, and AFG,) exposure from three food
categories among the population of Chongqing municipality, a city adjacent to Sichuan
Province in southwest China with a subtropical monsoon climate.

Various studies have highlighted the health risks posed by AF in grains, nuts, oilseeds,
and spices [31,32]. These foods are commonly consumed in Sichuan, a major grains-
producing region located between 26° N and 34° N with a subtropical monsoon climate that
promotes fungal growth and toxin production [33,34]. According to the latest GLOBOCAN
estimates produced by the IARC, the age-standardized incidence rate by world standard
population of liver cancer in the Chinese population is significantly higher than the global
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level (15.0 cases per 100,000 persons in China, compared to 8.6 cases per 100,000 persons
globally) [35,36]. According to Chinese cancer registry data, the age-standardized incidence
rate by the Chinese standard population of liver cancer in the Sichuan population is higher
than the national level in China (17.75 cases per 100,000 persons in Sichuan, compared to
9.71 cases per 100,000 persons in China) [37,38]. Despite this, no studies have yet assessed
the health risks and corresponding HCC disease burden from exposure to } 5AF (the sum
of AFB;, AFB,, AFG;, AFG,, and AFM;) among the population of Sichuan. Therefore,
estimating the HCC disease burden from dietary exposure to ) sAF in Sichuan is crucial to
provide more evidence for the risk management of AF in this area.

2. Materials and Methods
2.1. Sample Collection

Based on the sampling guidelines of the China National Food Safety Risk Monitoring
Program and excluding food categories with less than 10 samples, a total of 4359 samples
were collected from 2012 to 2023, covering all cities and prefectures in Sichuan Province.
The collected food types mainly included those commonly consumed by the population of
Sichuan and potentially susceptible to AF contamination. Food categories included grains
and their products (rice and its products, corn and its products, wheat and its products,
and coix seed), condiments (spices, hot-pot seasoning, vinegar, sauce and its products,
and soy sauce), nuts and seeds (peanut and its products, other nuts, and seeds), milk and
dairy products, beans and their products, foods for special dietary use (infant formula and
complementary cereals for infants), plant-based protein drinks, vegetable oil (peanut oil
and corn oil as well as other vegetable oil), puffed food (based on corn, such as popcorn,
puffed corn chips, corn crisps, and puffed corn balls), beer, and tea leaves.

2.2. Sample Analysis

According to the China National Food Safety Standards (GB/T 18979-2003 [39], GB/T
5009.23-2006 [40], GB 5413.37-2010 [41], and GB 5009.22-2016 [42]), the samples were
analyzed using high-performance liquid chromatography (HPLC) or HPLC coupled with
tandem mass spectrometry. AFB;, AFB,, AFG;, and AFG, were analyzed in food categories
excluding infant formula, milk, and dairy products, which only analyzed AFM;. AF
standard substances and isotope-labeled internal standard substances were used as certified
reference materials. All chemicals and solvents used were of analytical grade or higher,
and participating laboratories were provincially accredited, ensuring that they met the
quality control requirements for testing. The aflatoxin contamination data used in this
study were obtained from the testing laboratories of all municipal-level Centers for Disease
Control and Prevention in Sichuan Province. Due to advances in detection methods over
the past decade (from chromatography to mass spectrometry) and differences in instrument
sensitivity across laboratories, the limits of detection (LOD) varied. The LOD for AFB; was
0.001-10 pg/kg, and for AFB,, AFG;, and AFG,, it was all 0.001-5 ug/kg, and for AFMy, it
was 0.0002-0.1 ug/kg. All LODs met the required standards of the methods used.

2.3. Data Processing

In adherence to the Global Environment Monitoring System/Food Contamination
Monitoring and Assessment Program’s principles for handling undetected values, these
values were assigned either 0 for lower bound (LB) estimates or LOD for upper bound (UB)
estimates [43]. })_4AF (the sum of AFBq, AFB,, AFG;, and AFG,) was calculated based on
the principles of the EFSA report in 2020 [15]. JECFA pointed out that the carcinogenic
potency of AFM; is one-tenth that of AFB;. Therefore, the exposure level of ) sAF for the
target population was calculated using the ) 4AF contamination level and one-tenth of the
AFM; contamination level [14,19-21].
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2.4. Consumption Data

The consumption data in Sichuan Province were mainly obtained from the 2011 China
National Nutrition and Health Survey [44,45]. A multi-stage stratified and population-
proportional cluster random sampling method was used in this survey to form a nationally
representative dietary nutrition and health database. Dietary consumption data for re-
spondents aged 2 and above were collected via 3 consecutive 24 h dietary recalls through
in-person interviews. After data cleaning and sorting, the consumption data of 2836 respon-
dents aged 2 years and above were obtained from Sichuan Province. Since the consumption
data of respondents under 2 years old were excluded in the above survey, our study esti-
mated the consumption of formula and complementary cereals for infants under 2 years old
by referring to the data from the 2015 China National Food Consumption Survey reported
in the literature [46,47]. For each individual surveyed, the total food consumption in each
category was aggregated and aligned with the contamination data for the corresponding
food categories.

2.5. Estimation Method

FDA-iRISK 4.2 (iRISK), comprising four pivotal components: hazard, food, process,
and risk scenario modules, was utilized to estimate lifetime chronic dietary exposure to
Y 5AF and corresponding HCC burden [48]. Figure 1 shows the technical route.

ﬁ;
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Figure 1. Technical route for assessing chronic exposure to AF in multiple food used in iRISK.

2.5.1. Lifetime Exposure Assessment
Consumption Model

In iRISK, food consumption patterns were defined using a linear empirical distribution
to account for varying consumption rates across life stages, including a portion of the
population with zero consumption [49]. For infant formula and complementary cereals,
a single average consumption value was assumed with a 100% probability for infants
under 2 years old. Population groups were categorized by life stages, based on average
life expectancy, as shown in Supplementary Table S1. Individuals exceeding this age were
included in the “66-average life expectancy” group.

Process Model

The process model assessed how different interventions throughout the “farm-to-table”
process influenced AF contamination level in food and then calculated the } 5 AF exposure
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for the target population by integrating the hazard and food modules. Since food samples
were homogenized and not cooked prior to analysis, AF concentrations can be considered
uniformly distributed within the food and assumed to remain constant throughout the
process. This means that the proportion of AF contamination per unit mass of food was
100% before and after conducting the process model (initial and final prevalence were both
100%) [50]. This study found that varying the set value of unit mass, defined as 1.0 kg, did
not impact the contamination levels of AF in food. Supplementary Table S1 shows these
input parameters. Each subject was assumed to maintain the same type of diet throughout
their lives as declared during the three days considered in the interview. Any variations
in their diet predicted by iRISK were only related to age group, which were associated
with variations in body weight and the quantity of food consumed. Additionally, the
AF contamination levels of foods consumed by the subjects throughout their lives were
assumed to be same as that measured during this study.

The lifetime average daily dose (LADD) to the ) sAF intake across all studied food
categories was calculated according to the following formulas:

m m
LADD =)  LADCy x Cy x 100% = Y | LADDy (1)
k=1 k=1
n
LADC, =Y A; xY;/L 2)

i=1

where LADCj, is the lifetime average daily consumption of food category k (g/kg bw/day).
Food categories include rice and its products, corn and its products, wheat and its products,
coix seed, peanut and its products, other nuts and seeds, spices, vinegar, sauce and its
products, soy sauce, peanut oil and corn oil, other vegetable oil, beans and their products,
milk and dairy products, plant-based protein drinks, beer, puffed food, tea leaves, infant
formula, and complementary cereals for infants. LADDj is the LADD of } 5AF from food
category k (ng/kg bw/day); Cy is the final AF content in food category k (ug/kg); 100% is
the final AF prevalence; m is the number of food categories; A; is the daily consumption per
kg bw for life stage i (g/kg bw/day); Y; is the duration of life stage i (years); n is the number
of life stages; and L denotes the average life expectancy. According to the Sichuan Popu-
lation Health and Key Diseases Report of 2022, the average life expectancy is 77.91 years
(75.26 years for males and 80.99 years for females) [51]. The calculation methodology and
illustrative examples of the LADD are detailed in Supplementary Tables S2 and S3.

2.5.2. HCC Disease Burden Estimation
Dose-Response Model

To quantify the relationship between AF exposure and the incidence of HCC, the
cancer slope factor (SF), derived from JECFA cancer potency factor (PF), was employed
as a metric. JECFA estimated that for a dietary AFB; exposure of 1 ng/kg bw/day, there
would be 0.3 cases of HCC annually among 100,000 HBsAg* individuals and 0.01 cases for
HBsAg™ individuals [13]. According to EFSA and JECFA, the carcinogenic potency of AFB,,
AFGj, and AFG; was assumed to be the same as that of AFB, and the carcinogenic potency
of AFM; was one-tenth that of AFB; [14,19-21]. Therefore, the carcinogenic potency of
Y 5AF (the sum of AFB;, AFB;, AFG;, AFG;, and one-tenth of AFM;) was conservatively
assumed to be the same as that of AFB; in our study.

The SF [50] and PF were calculated according to the following formulas:

SF =1+ (100,000 persons x 10%/PF/L) 3

PF = pHBsAg+ x 0.3+ (1 — PHBSAg+) x 0.01 (4)

where 10% is a 10-percentage-point elevation in the lifetime hepatocellular carcinoma
risk [50]. The calculated SF is shown in Supplementary Table S1. Pppsaq+ represents the



Nutrients 2024, 16, 4381

6 of 17

HBsAg" rate of 1.29% for the population of Sichuan, as reported in the China National
Seroepidemiological Survey on Hepatitis B in 2014 [52].

DALY Estimation

Due to the inclusion of subjects with zero food consumption in the consumption
distribution, it is possible that not all 20 food types were consumed at each life stage
in the exposure pattern simulation. Therefore, the simulation of the lifetime chronic
exposure patterns considered both qualitative and quantitative patterns. iRISK estimated a
large number of LADD values by simulating various individual lifetime chronic exposure
patterns within the consumers. The distinct variants of LADD were consolidated into a
representative value (LADDR). The dose-response model was then used to calculate the
average HCC risk for each consumer.

This study utilized DALY as a metric to estimate the HCC disease burden attributable
to foodborne AF. According to the 2019 China Cancer Registry Annual Report, the DALY
per HCC case in China was calculated to be 12.37 [30,53]. To calculate the total DALYs
caused by foodborne ) 5AF, the number of HCC cases related to foodborne ) sAF was
multiplied by a factor of 12.37.

The lifetime DALY of the target population (DALYs) was calculated according to the
following formulas:

DALY, = 12.37 x N (5)
N=PxM (6)
P = LADDg x SE x 100% 7)

where N is the number of HCC cases; P is the average probability of developing HCC
over a lifetime for an individual consumer (%); M is the number of target populations
(consumers). According to the major figures in the 2020 Population Census of China, the
population of Sichuan Province consists of 8,367,000 individuals, with males at 50.54% and
females at 49.46% [54].

DALY Rate Calculation

DALY rate was employed to quantify the annual burden of HCC attributable to dietary
Y 5AF intake among 100,000 persons. Taking into account the number of individuals in
the target population and the average life expectancy, the DALY rate (DALY /100,000 per-
sons/year) was calculated as follows:

DALY rate = DALY, x 100,000/ M/L (8)
where L is the average life expectancy.

Population Attributable Fraction Calculation

Population attributable fraction (PAF) was employed to estimate the proportion
of HCC cases in Sichuan that is attributable to } s AF intake. The PAF was calculated
as follows:

PAF = N % 100,000 x 100%/M/L/R )

where L is the average life expectancy; R is the annual all-cause liver cancer incidence
(cases /100,000 persons/year). According to the latest 2019 cancer registry data of Sichuan
Province, the incidence of all-cause liver cancer in the whole population in Sichuan Province
was 31.21 cases /100,000 persons/year, with 46.63 cases/100,000 persons/year in males and
15.04 cases /100,000 persons/year in females [37].

2.6. Statistical Analysis

Statistical analysis was performed using SPSS 25.0 [55]. Since the AF contamination
data did not follow a normal distribution, the values were represented by the mean and the
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percentiles. The lifetime chronic dietary exposure levels of } 5 AF and the corresponding
disease burden of HCC were assessed using FDA-iRISK 4.2 [49].

3. Results
3.1. AF Contamination Levels

As listed in Table 1, the rate of Y 4AF detection in food from Sichuan was 10.4%, with
high detection rates primarily found in grains and their products, condiments, and plant-
based protein drinks. Hot-pot seasoning had the highest detection rate at 42.9%, followed
by plant-based protein drinks at 32.3%. In terms of the mean concentration of ) 4AF in
various food categories, corn and its products had the highest levels (5.25-6.00 ng/kg,
LB-UB), approximately 2-3 times that of the total samples. The max concentration level of
Y 4AF in corn and its products was up to 865.0-865.2 pg/kg, followed by peanut and its
products (318.0 ug/kg). Although hot-pot seasoning and plant-based protein drinks had
higher } 4 AF detection rates than all other food categories, their }_4AF concentrations were
relatively low. Regarding AFM; detection, none of the 143 infant formula samples were
detected positive, and only 2 out of 525 milk and dairy product samples were detected,
with not significantly contaminated.

Table 1. ) 4AF contamination levels (ug/kg) across various food categories in Sichuan Province,

China.
Food C Positive Mean Median P95 Max
00¢ Category N Samples (%) B! UB2 LB UB LB UB LB UB

Grains and their products

Rice and its products 324 23(7.1) 035 0.57 0.00 0.12 0.36 1.60 70.80  70.92

Corn and its products 965 132 (13.7) 525 6.00 0.00 0.40 8.48 10.00 865.0  865.2

Wheat and its products 263 0(0.0) 0.00 0.48 0.00 0.60 0.00 1.00 0.00 1.00

Coix seed 79 17 (21.5) 071 1.05 0.00 0.40 5.13 5.33 19.13 1953
Nuts and seeds

Peanut and its products 328 60 (18.3) 2.75 347 0.00 0.20 5.53 10.00 318.00 318.00

Others 425 17 (4.0) 0.10 0.87 0.00 1.00 0.00 2.00 11.80 11.86
Condiments

Spices 340 62 (18.2) 035 0.73 0.00 0.20 0.78 3.00 28.15 28.35

Hot-pot seasoning 21 9 (42.9) 0.05 0.18 0.00 0.20 0.26 0.46 0.27 0.47

Vinegar 16 0(0.0) 0.00 0.25 0.00 0.25 0.00 N/AS3  0.00 0.30

Sauce and its products 72 13 (18.1) 022 037 0.00 0.16 1.58 1.64 5.11 5.17

Soy sauce 28 2(7.1) 0.04 0.15 0.00 0.10 0.51 0.61 0.54 0.64
Vegetable oil

Peanut oil and corn oil 68 5(7.4) 0.02 1.96 0.00 1.28 0.20 6.00 0.40 6.00

Others 154 0(0.0) 0.00 1.67 0.00 1.28 0.00 4.00 0.00 4.00
Beans and their products 55 2 (3.6) 0.03 0.67 0.00 0.10 0.16 3.00 0.82 3.00
Complementary cereals for infants 60 2 (3.3) 0.01 0.28 0.00 0.20 0.00 0.48 0.24 0.64
Plant-based protein drinks 96 31 (32.3) 0.06 0.07 0.00 0.02 0.28 0.30 1.34 1.36
Beer 20 1(5.0) 0.04 1.29 0.00 0.06 0.70 8.00 0.74 8.00
Puffed food 48 3(6.3) 0.03 0.03 0.00 0.20 0.26 0.32 0.90 1.10
Tea leaves 329 4(1.2) 0.03  0.69 0.00 0.50 0.00 2.00 2.39 2.39
Total 3691 383 (10.4) 192 256 0.00 0.20 0.95 3.00 865.00 865.20

1 Lower bound estimate: the non-detected results were assigned to 0. 2 Upper bound estimate: the non-detected
results were assigned to LOD. 3 Not available.

3.2. Food Consumption Data

As shown in Tables 2 and 3, grains and their products were the main food category
in the diet of the respondents aged 2 years and above in Sichuan. Among these, rice
and its products had the lowest proportion of non-consumers (1.9%) and the highest
average consumption (2.26 g/kg bw/day), followed by wheat and its products (9.3%,
1.55 g/kg bw/day). However, more than 99% of the respondents aged 2 years and above
in Sichuan did not consume coix seed, sauce and its products, plant-based protein drinks,
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puffed food, and tea leaves, with the average consumption of these foods being close to
0 g/kg bw/day. In Table 4, the consumption of infant formula and complementary cereals
for infants under 2 years old was based on the reported data from the 2015 China National
Food Consumption Survey. This study assumed that the proportion of non-consumers of
the above baby foods in this age group was 0%.

Table 2. Percentage (%) of non-consumers for various food categories in Sichuan Province, China.

2-6 Years Old 7-17 Years Old 18-65 Years Old >65 Years Old
Food Category ! Total
Male Female Male Female Male Female Male Female
Grains and their products
Rice and its products 8.3 3.1 0.0 2.2 1.1 19 3.1 2.4 1.9
Corn and its products 97.2 100.0 93.3 94.6 95.0 93.6 92.3 93.3 94.1
Wheat and its products 8.3 94 10.5 14.1 8.4 8.9 11.2 9.9 9.3
Coix seed 100.0 100.0 100.0 100.0 99.4 99.7 97.7 99.2 99.4
Nuts and seeds
Peanut and its products ~ 97.2 96.9 98.1 97.8 93.4 93.5 93.4 95.6 94.1
Others 94.4 100.0 98.1 96.7 97.6 94.5 95.8 97.6 96.2
Condiments
Spices 47.2 46.9 50.5 50.0 62.7 62.9 68.3 68.7 62.6
Vinegar 55.6 78.1 59.0 64.1 47.0 47.0 45.6 433 48.0
Sauce and its products 100.0 100.0 99.0 100.0 99.4 99.6 98.8 99.2 99.4
Soy sauce 16.7 21.9 20.0 239 14.8 15.5 21.2 16.7 16.4
Vegetable oil
Peanut oil and corn oil 97.2 93.8 93.3 97.8 97.3 97.0 96.1 97.6 96.9
Others 139 18.8 14.3 14.1 10.3 11.1 13.5 12.3 115
Beans and their products 61.1 62.5 52.4 53.3 58.5 60.2 54.4 52.8 58.0
Milk and dairy products 58.3 59.4 61.9 52.2 90.5 88.6 83.8 87.7 85.9
Plant-based protein drinks 97.2 87.5 100.0 100.0 99.4 99.7 98.8 99.6 99.4
Beer 100.0 100.0 99.0 100.0 97.8 99.5 99.2 100.0 98.9
Puffed food 100.0 100.0 98.1 98.9 99.6 99.5 99.6 99.2 99.5
Tea leaves 100.0 100.0 99.0 98.9 99.2 99.5 97.3 99.2 99.1
! Zero consumption of these food categories was assumed to be 100% for infants under 2 years old in Sichuan
Province, China.
Table 3. Average daily consumption levels (g/kg bw/day) for various food categories among the
consumers of Sichuan Province, China.
2-6 Years Old 7-17 Years Old 18-65 Years Old >65 Years Old
Food Category 1 Total
Male Female Male Female Male Female Male Female
Grains and their products
Rice and its products 2.67 2.97 3.16 2.65 2.32 2.10 2.24 2.04 2.26
Corn and its products 0.01 0.00 0.05 0.03 0.03 0.04 0.03 0.04 0.04
Wheat and its products 1.93 2.05 1.56 1.38 1.64 1.51 1.47 1.43 1.55
Coix seed 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
Nuts and seeds
Peanut and its products ~ 0.02 0.01 0.01 0.02 0.04 0.02 0.03 0.01 0.03
Others 0.03 0.00 0.01 0.00 0.01 0.02 0.01 0.01 0.01
Condiments
Spices 0.40 0.20 0.14 0.19 0.11 0.09 0.08 0.06 0.10
Vinegar 0.12 0.05 0.05 0.09 0.07 0.07 0.09 0.06 0.07
Sauce and its products 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Soy sauce 0.32 0.29 0.16 0.19 0.15 0.15 0.12 0.13 0.15
Vegetable oil
Peanut oil and corn oil 0.05 0.03 0.05 0.01 0.01 0.02 0.01 0.01 0.02
Others 0.84 0.95 0.91 0.68 0.77 0.71 0.63 0.62 0.73
Beans and their products 0.19 0.11 0.16 0.22 0.14 0.13 0.21 0.17 0.15

Milk and dairy products 3.62 2.83 1.64 2.57 0.24 0.27 0.41 0.41 0.48




Nutrients 2024, 16, 4381

90f17

Table 3. Cont.

Food Category !

2-6 Years Old 7-17 Years Old 18-65 Years Old >65 Years Old

Total
Male Female Male Female Male Female Male Female ota

Plant-based protein drinks
Beer

Puffed food

Tea leaves

0.06 0.49 0.00 0.00 0.01 0.00 0.01 0.00 0.01
0.00 0.00 0.00 0.00 0.10 0.01 0.03 0.00 0.04
0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

! Consumption of these food categories was assumed to be 0 g/kg bw/day for infants under 2 years old in
Sichuan Province, China.

Table 4. Estimated consumption levels of two types of baby food in China (g/kg bw/day).

Age Group (Months) ! Infant Formula Complementary Cereals for Infants

0-6 5.19 0.27
7-12 5.01 0.74
13-24 473 0.26

1 Consumption of these two types of baby food was estimated using data from the 2015 China Food Consumption
Survey, as reported in the literature by Wang et al. in 2019 and Li et al. in 2021 [46,47].

3.3. Lifetime Dietary Exposure to }_5AF

As listed in Table 5, at both the mean and high (Pgs) AF contamination levels in food, the
LADDg for total population in Sichuan ranged from 9.77 (LB) to 26.0 (UB) ng/kg bw/day
and from 22.1 to 85.5 ng/kg bw/day, respectively. Regardless of whether AF contamination
levels in food were at the mean or high, the LADDg, for males (9.44-25.0 ng/kg bw/day and
20.6-83.4ng/kg bw/day) in Sichuan was higher than that of females (8.74-21.2 ng/kg bw/day
and 18.6-61.3 ng/kg bw/day). For the percentile values of LADD, except for the Pg5 and
Pgg values of LADD under the LB estimate of the average AF contamination level and the
Pys5 value of LADD under the LB estimate of the high AF contamination level, the LADD
values for males were higher than those for females in all other cases. Except for the median
LADD of the total population under the LB estimate of the average AF contamination level,
which lies between the median LADD values of females and males, in all other cases, the
total population LADD is higher than the LADD values for both males and females. As
shown in Figure 2, among all food categories, grains and their products contributed the
most to dietary exposure to ) 5AF for the whole population of Sichuan Province, account-
ing for 46.2%. Specifically, the contribution rate was 44.5% for males but exceeded 50%
for females.

Table 5. Lifetime dietary exposure levels to ) sAF for different groups in Sichuan Province, China
(ng/kg bw/day).

Aflatoxin
Contamination Level !

LADDR Median P95 P99
LB 2 UB?3 LB UB LB UB LB UB

Group

Mean

Male 9.44 25.0 9.31 245 13.8 34.3 16.0 40.1
Female 8.74 21.2 7.88 20.3 15.2 30.0 16.8 34.9
Total 9.77 26.0 9.14 253 15.8 36.1 18.2 419

4
Pos

Male 20.6 83.4 20.3 81.3 29.1 118 33.2 132
Female 18.6 61.3 17.5 59.9 29.2 81.7 32.6 92.7
Total 22.1 85.5 21.3 83.0 327 121 37.2 136

! Due to the lack of consumption data of hot-pot seasoning and the fact that the main ingredients of hot-pot
seasoning are spices such as chill pepper, Sichuan pepper, star anise, cinnamon, and so on, hot-pot seasoning
was included in the “Spices” category for exposure calculation. 2 Lower bound estimate: the non-detected values
in the contamination data were assigned 0 and then used to calculate the exposure. 3 Upper bound estimate:
the non-detected values in the contamination data were assigned LOD and then used to calculate the exposure.
4 The UB of max value of y'4AF contamination in vinegar which was not available was substituted with the
corresponding Pgs value.
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Figure 2. Contribution rate of various food categories to lifetime dietary exposure to ) 5 AF in Sichuan
Province, China.

3.4. HCC Disease Burden of Lifetime y 5 AF Exposure

As shown in Table 6, at the mean level of AF contamination, the LADDg, led to an
estimated 89,100-237,000 HCC cases in Sichuan, causing 41,900-111,000 HCC cases in
males and 40,900-99,200 HCC cases in females. In addition, the lifetime risk of HCC per
person ranged from 0.106% to 0.283%, with the total number of corresponding DALYs,
DALY rate, and PAF estimated to be 1,100,000-2,930,000, 16.87-44.95 /100,000 persons/year,
and 4.4-11.6% for the entire population, respectively. In the same scenario, the lifetime risk
of both HCC and DALYs for males in Sichuan was higher than those for females. However,
PAF was higher in females (8.1-19.7%) than in males (2.8-7.5%) because the incidence of
all-cause liver cancer was significantly lower in females (15.04 cases/100,000 persons/year)
than in males (46.43 cases /100,000 persons/year). Notably, compared to the HCC disease
burden associated with mean contamination levels, lifetime dietary exposure to extreme
cases (Where ) 5AF contamination levels reach Pys in all food categories studied) resulted
in a 2-3 times higher HCC disease burden.

Table 6. HCC disease burden attributable to the LADDg of dietary exposure to } 5AF in Sichuan
Province, China.

DALY Rate
Aflatoxin (Hclg OCO‘(‘;"' HCC Risk (%) 1 P";E‘f)zo) (DALY/100,000 PAF (%)
Contamination Group * 20 s Persons/Year)
Level LB2 UB® LB UB LB UB LB UB LB UB
Male 419 1110 00991 0262 518 137 1628 4305  28%  7.5%
Mean Female 409 992 00987 0240 505 123 1507 3670  81%  19.7%
Total 891 2370 0106 0283 110 293 1687 4495  44%  11.6%
Male 916 370 0217 0875 113 458 3561 1435  62%  24.9%
Pos Female 869 286 0210  0.692 107 354 3210 1057  17.3%  56.8%
Total 202 780 0241 0932 249 965 3825 1476  99%  382%

! Lifetime risk of HCC per person. 2 Lower bound estimate: the non-detected values in the contamination data
were assigned 0 and then used to calculate the disease burden. 3 Upper bound estimate: the non-detected values
in the contamination data were assigned LOD and then used to calculate the disease burden.
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4. Discussion

This study is the first to simulate lifetime dietary chronic exposure patterns to ) sAF
across 20 food categories in Sichuan Province, China, and estimate corresponding HCC
disease burden. Under the mean AF contamination level, the LADDy of dietary exposure
to Y 5AF in Sichuan was similar to the results of 24.9 ng/kg bw/day for adults from a
study assessing dietary AF exposure in the Yangtze River Delta region of China. However,
the high (Pgs5) exposure levels (49.8 ng/kg bw/day) were higher than our estimates, with
the AF exposure in that study coming solely from grains and their products [28]. The
discrepancy may be attributed to the higher mean and Pgs daily grain consumption figures
used in our calculations, which were derived from per capita daily intake values of 402 g
and 804 g for adults and children. In 2023, we estimated the ) 5AF exposure from three
food categories in Chongging, China, to be 2.4-8.25 ng/kg bw/day [56], lower than the
Y 5AF exposure in Sichuan Province due to fewer food categories (only three) and AF
types (AFB;, AFB;, AFGy, and AFG,) included. Asian comparisons revealed significantly
lower AFB; exposure in Korea and Japan compared to Sichuan. Korean exposure ranged
from 0.0640 to 0.3612 ng/kg bw/day, while Japan’s heavy consumers’ exposure was
merely 0.003-0.004 ng/kg bw/day [57,58]. However, in India, the average AF intake solely
through rice consumption for children, adolescents, and adults reached 18.55, 13.09, and
12.32 ng/kg bw/day, respectively. These figures are close to the estimates of lifetime
dietary exposure to ) 5AF from 20 food categories in the population of Sichuan. The
reason may be due to the higher mean AF contamination in rice (1.92 pg/kg) and the
higher rice consumption in India, with adults consuming 386 g/person/day, adolescents
328 g/person/day, and children 184 g/person/day [59].

In the EFSA’s 2020 report, the estimated ranges of average and Pgs exposure to ) sAF
from multiple foods for different age groups in Europe were 0.42-9.14 ng/kg bw/day and
0.95-16.08 ng/kg bw/day, respectively, both lower than in Sichuan [15]. This discrepancy
may be related to the fact that AF contamination received more attention, as most regions
in Europe have a temperate climate, whereas most regions in Sichuan have a subtropical
climate. Multiple studies have indicated that AF exposure levels are higher in Sub-Saharan
Africa, Southeast Asia, and China, as these regions are in tropical or subtropical zones
where climatic conditions favor AF contamination in foods [60,61]. For instance, Sub-
Saharan Africa experiences significant exposure, with AFB; estimates spanning from 4 to
526 ng/kg bw/day [62]. A recent Accra study highlights even higher aflatoxins intakes,
estimating 436 ng/kg bw/day from maize consumption and 63.2 ng/kg bw/day from
peanut consumption [63].

The iRISK calculates the HCC disease burden due to lifetime chronic dietary ex-
posure to } 5AF from multiple foods for population in Sichuan. This result contrasts
significantly with a 2022 study in China, which reported a national average DALY rate of
1.53 DALY /100,000 persons/year caused by dietary exposure to } sAF and a much lower
DALY rate of only 0.07 DALY /100,000 persons/year in Sichuan. This significant differ-
ence may stem from the previous study’s focus solely on AF in peanuts within Sichuan,
estimating an exposure level of just 0.138 ng/kg bw/day. However, our results indicated
that the AF contamination levels in grains and their products, as well as the consump-
tion of grains and their products in the population, were both the highest among 20 food
categories in Sichuan. Hence, grains and their products are the primary dietary sources
of AF exposure for the population in Sichuan [30]. Taiwan of China found that AF con-
tamination resulted in 4110 DALY caused by HCC annually for the Taiwanese population,
translating to 24.63 DALY /100,000 persons/year. Although this result was lower than the
corresponding DALY rate for Sichuan, the Taiwanese study only assessed the AF exposure
risk from peanuts, and the HBsAg™ rate in Taiwan (17.3%) was much higher than in Sichuan
(1.29%) [50].

Globally, this study found Sichuan’s DALY rate related to AF intake to be higher
than WHO'’s 2015 median estimates (9 DALY /100,000 persons/year). Among the 14 sub-
regions, the highest median DALY rate was in the Africa D region at 28 DALY /100,000 per-
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sons/year, while the Western Pacific B region (which includes China) had a median
of 17 DALY /100,000 persons/year. Both of these DALY rates are lower than the esti-
mates from this study. The regions with the lowest DALY rates were the Americas A
region and the Europe A region, with medians of 0.04 DALY /100,000 persons/year and
0.3 DALY /100,000 persons/year, respectively [26]. The WHO'’s estimate of the foodborne
AF burden was based on counterfactual analysis, which might lead to differences from the
dose-response method used in our study. The global number of HCC cases attributable
to AF was estimated to be 22,000 (9000-57,000) annually using counterfactual analysis,
whereas using a dose-response approach, it was estimated to be 25,200-15,500. Although
there was overlap between the two ranges, the differences were still significant. The WHO
suggested that the dose-response method might overestimate the disease burden, while
the global HCC disease burden might be underestimated, particularly in Africa [64]. At
the national level, the HCC disease burden due to dietary AF exposure in the Portuguese
population was only 0.08-0.30 DALY /100,000 persons /year, and that from maize alone in
the Nigerian population (126.85-38,682.29 DALY /100,000 persons /year) was far higher
than in Sichuan [65,66]. Based on the demographic data from the UN’s World Population
Prospects 2022, the HCC disease burden from AF exposure in Tanzanian maize and peanuts
(5.61-280.5 DALY /100,000 people/year) was much higher than in Sichuan, as maize and
peanuts were the most important crops in Tanzania, with maize accounting for 40% of
the total caloric intake of Tanzanian households [67]. The above findings were consistent
with the WHO'’s conclusion that the foodborne AF disease burden was highest in the
African region.

Based on the AF contamination in Sichuan from 2012 to 2023, hot-pot seasoning
exhibited the highest detection rate (42.9%). This could be attributed to the fact that the raw
materials for hot-pot seasoning encompass a diverse array of spices such as chili peppers,
Sichuan peppers, star anises, cinnamon, bay leaves, and cumin seeds, among others [68].
These spices are prone to mold growth and toxin production during the food production
process, ultimately leading to AF contamination in the final products. Notably, the detection
rate of AFB; in commercially available hot-pot seasoning in Guizhou Province, China, also
reached a substantial level of 40% [69]. The AF detection rate in plant-based protein drinks
from Sichuan (32.3%) ranked second, likely due to their raw materials. These drinks,
made primarily from nuts like peanuts, walnuts, and almonds, are highly susceptible to
AF contamination [70]. Apart from nuts, grains, particularly corn and its products, also
constituted a significant source of AF contamination in Sichuan. Among nuts, peanut and
its products exhibit the highest levels of AF contamination. As both of these crops are
grown in tropical climates with temperatures ranging from 25 to 35 °C, with high water
content and rich nutrition, they are particularly vulnerable to fungus development and AF
contamination [71]. According to the data of AF contamination in food from 2012 to 2023
in this study, the AF contamination level in food in Sichuan Province had no decreasing
trend, especially in corn and spices, but there was an obvious rising trend. As future
climate change may increase AF contamination in food, effective measures are needed to
reduce dietary AF exposure and lower the HCC disease burden. Vigilant monitoring and
control throughout the food production chain are essential to mitigate AF contamination in
high-risk food categories.

Although this study was the first to use the iRISK to simulate the lifetime chronic
dietary exposure to } 5AF in Sichuan and quantify the HCC disease burden, several un-
certainties remain. First, due to a lack of research data on cancer potency factors for all
AF types, this study applied the carcinogenic of AFB; to } sAF. While this conservative
assumption introduced some uncertainty, EFSA has suggested it minimally impacts health
risk conclusions for dietary AF exposure [12]. Secondly, the consumption data for the
population aged 2 years and above were obtained from the 2011 China National Nutrition
and Health Survey, while the estimated consumption data for those under 2 years old were
obtained from the data of the 2015 China National Food Consumption Survey reported in
the literature. Dietary patterns may have shifted over the past decade due to socio-economic



Nutrients 2024, 16, 4381

13 of 17

changes. Furthermore, the AF contamination data used in this study spanned more than
ten years (2012-2023). This dual temporal misalignment and the difference in recruitment
between the two sets of consumption data may have introduced certain uncertainties
in the results. The 3-day, 24 h recall method used in the China National Nutrition and
Health Survey relies on respondents” accurate recall of their dietary intake. The Chinese
Center for Disease Control and Prevention developed a unified quality control plan for
the survey, which includes standardized questionnaires and interviewer training to ensure
data accuracy. Furthermore, the survey design includes multiple days of data collection
(3 consecutive days) to account for variations in individual eating patterns, thus reducing
bias from a single day’s recall. In addition to the 3-day recall, the survey also includes
food frequency questionnaires, which help mitigate potential bias from relying on a single
method. Additional uncertainties arise from the iRISK simulation itself. In the consumption
model, since the food consumption data for infants under 2 years old were estimated as a
single value, it was impossible to construct a complete food consumption distribution for
this group, introducing uncertainty into the overall food consumption distribution, model
iterations, and final exposure estimates across all life stages. Each subject was assumed
to follow the same diet throughout their life as declared during the interview. It was also
assumed that the AF contamination levels in their diet throughout their life would remain
constant as measured in this study. The samples in this study were primarily collected
from markets. The iRISK process module assumed that AF content in the food remained
unchanged throughout processing. However, different food preparation (washing, peeling,
etc.) and cooking methods (steaming, frying, baking, etc.) can reduce AF levels in foods to
varying degrees [72-74], and improper storage of foods after purchase could potentially
increase AF levels. Due to the lack of data in this study to assess the extent of change in
AF levels during food preparation and cooking after food procurement, this study follows
risk assessment principles and assumes transparency, considering such factors only as
uncertainties acknowledged as a limitation in our study and discussed as such. Therefore,
the above assumptions introduced uncertainties that could not be quantified into this study.
Future studies should comprehensively assess the AF contamination process to minimize
uncertainties and gain a more accurate understanding of the HCC disease burden from
lifetime chronic dietary exposure to total AF.

5. Conclusions

Based on Sichuan Province’s demographics, dietary patterns, and AF contamination
levels in vulnerable foods, the population’s lifetime exposure to ) 5AF results in an HCC
burden higher than the global level. Additionally, while males had a higher risk of devel-
oping HCC, the PAF was higher in females. Among the studied food categories, grains
and their products contributed the most to AF exposure in Sichuan population. Given the
potential for future climate change to increase AF contamination in food, it is recommended
to continuously monitor and control AF contamination, particularly in highly vulnerable
food categories. Additionally, the disease burden of HCC attributed to lifetime chronic
exposure to AF should also be a focus of further research. This will help reduce dietary
exposure to total AF among the population, thereby mitigating the HCC disease burden at
its source.
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