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ARTICLE INFO ABSTRACT

Keywords: Background: Following a relatively mild first wave of coronavirus disease 2019 (COVID-19) in India, a deadly
SARS-CoV-2 second wave of the pandemic overwhelmed the healthcare system due to the emergence of fast-transmitting
COYID-19 SARS-CoV-2 genetic variants. The emergence and spread of the B.1.617.2/Delta variant considered to be
;ir‘lz?;s driving the devastating second wave of COVID-19 in India. Currently, the Delta variant has rapidly overtaken the

previously circulating variants to become the dominant strain. Critical mutations in the spike/RBD region of these
variants have raised serious concerns about the virus's increased transmissibility and decreased vaccine effec-
tiveness. As a result, significant scientific and public concern has been expressed about the impact of virus variants
on COVID-19 vaccines.

Objectives: The purpose of this article is to provide an additional explanation in the context of the evolutionary
trajectory of SARS-CoV-2 variants in India, the vaccine-induced immune response to the variants of concern
(VOCQ), and various vaccine deployment strategies to rapidly increase population immunity.

Content: Phylogenetic analysis of SARS-CoV-2 isolates circulating in India suggests the emergence and spread of
B.1.617 variant. The immunogenicity of currently approved vaccines indicates that the majority of vaccines elicit
an antibody response and some level of protection. According to current data, vaccines in the pre-fusion
configuration (2p substitution) have an advantage in terms of nAb titer, but the duration of vaccine-induced
immunity, as well as the role of T cells and memory B cells in protection, remain unknown. Since vaccine effi-
cacy on virus variants is one of the major factors to be considered for achieving herd immunity, existing vaccines
need to be improved or effective next-generation vaccines should be developed to cover the new variants of the
virus.

1. Introduction

After a year of the coronavirus disease 2019 (COVID-19) pandemic,
the world was hopeful that the spread of the virus could be stopped when
multiple vaccine candidates were discovered to be safe and effective.
However, multiple variants of the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) have emerged, threatening progress toward
COVID-19 pandemic control [1]. The Centers for Disease Control and
Prevention (CDC) has classified these variants as variants of interest
(VOD), variants of concern (VOC), and variants of high consequence
(VOHC) [2]. Among the many variants, B.1.1.7/Alpha (first seen in Kent,
UK), B.1.351/Beta (first seen in South Africa), and B.1.1.28.1 or

P1/Gamma (first seen in Brazil) have been classified as VOC due to
increased transmissibility and decreased vaccine effectiveness [2-5].
Over the last three months, a second wave surge of COVID-19 had swept
India predictably by variants assigned as B.1.617.2/Delta (G/452R.V3)
and B.1.617.1/Kappa (G/452R.V3) [6]. This highly transmissible
B.1.617.2 variant first seen in India has been categorized as VOC [7] and
found in at least 98 countries around the world. The ongoing evolution of
SARS-CoV-2 variants has been reminiscent of a ‘Red Queen’ dynamics in
which each increase in the fitness of the pathogen possibly causes an
equivalent reduction in the fitness of the host. The Red Queen hypothesis
of evolution is well established in RNAviruses, where the genomes are
designed to mutate faster than the co-evolving host in order to maintain a
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competitive edge [8].
2. Evolution and spread of SARS-CoV-2 genetic variants in India

The genomic phylogeny of SARS-CoV-2 isolates collected and
sequenced in India suggests that the previously dominant lineages (B.1,
B.1.1, and B.1.36) were replaced in late 2020 by B.1.36.29 (N440K
strain) and B.1.1.306, and more recently by B.1.1.7 and B.1.617 (Fig. 1a).
About 318 genomes (Suppl Table 1) were strategically selected from the
>8500 high-quality SARS-CoV-2 genome sequences (collected until June
2021) available in GISAID (https://www.gisaid.org/) for the construc-
tion of a phylogenetic tree (Fig. 1b). All major lineages and/or sub-
lineages found in India have been highlighted. To represent the three
sub-clades of the B.1.617 variant (Suppl Table 2), a separate phylogenetic
tree (n = 124) was constructed (Fig. 1c). Among the subclades of B.1.617,
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the variant B.1.617.2/Delta (VOC-21APR-02) was found to be lacking the
E484Q mutation in the S protein and have recently spread in many
countries, including India and the United Kingdom [9]. The new variants
are thought to have improved replicating fitness as they outcompete the
ancestral strains and eventually become dominant in many countries
[10]. Recently a sublineage of Delta variant assigned as AY.1 (commonly
known as ‘Delta Plus’) was detected in India with an additional mutation
(K417N) in the RBD region. Preliminary observation suggests AY.1 is
unlikely to be more transmissible but further studies are needed to
confirm the same.

The newly emerging variants confer a competitive advantage with
respect to viral replication, transmission, or escape from host immune
system over the ancestor lineages. The increase in transmission of VOCs
was substantiated by a higher effective reproduction number (Rp) and
increases the viral fitness landscape [11]. Such increment in the fitness of

mB.1351 mP1 mB.1617 m®B.1.618

mB.1.1.7

Pangolin lineage
B B (Wuhan-Hu-1)
516171

W 516172

W 516173

Tree scale: 0.00001 ]

Fig. 1. Evolution and lineage distribution of SARS-CoV-2 genomes across India (February 2020 - June 2021). (a) Temporal and spatial distributions of SARS-
CoV-2 lineages in India depict the emergence and extinction of lineages over time. Lineage-wise breakdown of Indian genomes suggests the dominance of ancestral
lineages (D614 & G614) during the first 6-8 months while these lineages were replaced by novel variants (B.1.36.29, B.1.1.7, B.1.351, B.1.617) during the latter half.
(b) Maximum Likelihood (ML) phylogenetic tree inferred from 318 representative SARS-CoV-2 genomes from India shows the evolutionary divergence of the virus.
Major lineages have been simplified as colored cartoon triangles using FigTree http://tree.bio.ed.ac.uk/software/figtree/ (c) Phylogenetic tree of the B.1.617 variant
emerging in India (n = 124) illustrates the three B.1.617 sub-lineages. All genome sequences were downloaded from GISAID (https://gisaid.org) and lineages were
assigned using PANGOLIN v3.0 (https://pangolin.cog-uk.io/). The phylogenetic tree was constructed using multiple genome sequence alignment (MAFFT) by mapping
against the Wuhan-Hu-1 strain (Accession: MN908947.3). ML tree was generated using IQTREE v.1.6.1 (http://www.iqtree.org/) under the GTR nucleotide substi-

tution model with 1000 bootstrap replicates.
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the virus with an equivalent reduction in fitness of the host suggests the
possible play of red queen effect [12]. In the Indian setting, it is highly
evidential that the emergence and spread of B.1.617.2/Delta variant with
55% higher R than the circulating B.1.1.7/Alpha variant is a classic Red
Queen evolutionary dynamics with the former replacing the latter over
time.

B.1.618
India

H146 del
Y145 del
D614G
E484K
determined
Not
determined

Not

3. Currently approved COVID-19 vaccines for emergency use

B.1.36.29
India
D614G
N440K
determined
Not
determined

Not

Ten of the 108 candidate vaccines (As of July 27, 2021) in human
clinical trials have received emergency use authorization from various
countries and are already being rolled out globally [13]. These 10 leading
vaccines against SARS-CoV-2 can be classified according to the vaccine
development strategies and platforms (Suppl Table 3). The
Pfizer-BioNTech (mRNA-BNT162b2) and the Moderna (mRNA-1273)
COVID-19 vaccines were first-of-their-kind messenger RNA (mRNA)
vaccines that revolutionized the way vaccines are developed. Despite the
complex production of viral vector-based vaccines, at least four under the
name AZD1222/ChAdOx1 nCoV-19 (AstraZeneca/Oxford University),
Gam-COVID-Vac/Sputnik  V  (Gamaleya Research Institute),
JNJ-78436735/Ad26.COV2.S (Janssen) and Convidecia/Ad5-nCoV
(CanSino Biological) have been approved or rolled out in some capac-
ity globally. CoronaVac (Sinovac), BBIBP-CorV (Sinopharm), and Cova-
xin/BBV152 (Bharat Biotech) are the authorized inactivated virus
vaccines while NVX-CoV2373 (Novavax) is the only protein subunit
vaccine that has been recently approved in some parts of the world [14].

In India, emergency approval has been granted to Covishield (Astra-
Zeneca/Oxford University), Covaxin, Sputnik V and Moderna. Also, four
other vaccine candidates indigenously produced in India are in various
stages of clinical trial and are expected to be available in the coming
months. These vaccine candidates include plasmid DNA vaccine (ZyCoV-
D) from Zydus Cadila, a protein subunit vaccine (BECOV-2) from Bio-
logical E. Limited, an intranasal adenovirus vectored vaccine (BBV154)
from Bharat Biotech and mRNA based vaccine from Gennova Bio-
pharmaceuticals (Pre-clinical stage).
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4. 2P approach in COVID-19 vaccine design

Vaccines developed by Pfizer-BioNTech, Moderna, Janssen, and
Novavax used ‘the 2P approach’ which resulted in higher titers of
neutralizing antibodies and fewer side effects [15,16]. In this design, 2P
mutations (K986P and V987P) are introduced in spike protein to stabilize
it in a prefusion trimeric conformation. Interestingly, vaccines that did
not use 2P stabilized spike antigen appear to generate a more variable
neutralizing response, which makes it difficult to establish a protective
immune response against emerging SARS-CoV-2 variants [17,18].

B.1.1.28.1 (P.1)
Gamma
GR/501Y.V3
20J/8:501Y.V3
Brazil
VOC-202101/02
L18F

T20 N

P26S

D138Y

R190S

K417T

E484K

N501Y

D614G

H655Y

T10271

1.4-2.2 times
25-61% reduction in
neutralization

5. Heterologous prime-boost or mix and match of vaccines
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Another strategy that is expected to be effective for augmenting
effective humoral and cell-mediated responses is a heterologous prime-
boost vaccination regimen. This strategy reduces immune responses to
vector components, resulting in improved vector replication efficiency
and an improved protective vaccine response [19]. This has worked
particularly well for the Sputnik V vaccine developed by Russia's
Gamaleya Institute, which uses prime-boost with two different vectors
(Ad26 and Ad5). Sputnik V is 91.6% effective when using alternative
vectors to deliver genetic information [20]. Because this strategy ne-
cessitates a better understanding of the memory B and T cell responses,
several clinical trials involving the combination of two different vaccines
are currently underway.

No significant reduction in
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6. VOCs, transmission, and vaccine efficacy
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Scientists are currently working to learn more about SARS-CoV-2
variants to better understand their ability to transmit and evade

Summary of SARS-CoV-2 variants carrying critical Spike/RBD mutations.

Table 1
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natural or vaccine-induced immunity. Among the variants, B.1.1.7/
Alpha, B.1.351/Beta, B.1.1.28.1 (P1)/Gamma, and B.1.617.2/Delta have
been identified as particularly concerning, and extensive information is
already available [21] (Fig. 2). In general, the Alpha variants have been
linked to 50-75% higher transmission, whereas the Beta and Gamma
variants use a neutralization-escape strategy (Table 1) [22]. The Delta
variant appears to have high transmissibility and reduced sensitivity to
antibody neutralization. A summary of neutralization by vaccine-elicited
sera against SARS-CoV-2 variants is provided in Suppl Table 3.

7. Comparative data on the humoral and cell-mediated immune
responses of vaccines

Since the start of the COVID-19 pandemic, questions have been raised
about the long-term protective immunity against SARS-CoV-2, after
natural infection or vaccination. Memory B cells, CD4" T cell memory
titers, and CD8™ T cell memory titers are all thought to be important for
the persistence of protective immunity against COVID-19 [23].

7.1. B cell antibody titer as an indicator for protection

The production of specific neutralizing antibodies (nAbs), which
block virus entry into target host cells, has been largely attributed to the
primary protective immunity after infections or immunization. As a
result, regular antibody identification and quantification of titers would
provide a basic understanding of how the immune system responds to
virus or vaccine candidates. Typically, antibody response titers peak
around 30-40 days after illness onset and then decline moderately over
the next 8 months [24]. Nonetheless, establishing a link between pro-
tection from SARS-CoV-2 infection and a specific nAb titer remains
difficult. Based on a logistic model of protection, the neutralization level
required for 50% protection against detectable infection and severe

Indian Journal of Medical Microbiology 39 (2021) 417-422

infection is 20.2% and 3% of the mean convalescent level, respectively
[25].

Currently, there is insufficient agreement to confidently attribute
certain anti-spike/anti-RBD/Anti-S1&S2 titers with protection. In the
context of plasma therapy, the FDA recommends a virus neutralization
antibody titer of 1:160 for therapeutic transfusion of convalescent
plasma, which corresponds to approximately 93% of PRNT50 and 54% of
PRNT90. As a result, at 1:1350, anti-RBD or anti-ED may serve as a
surrogate marker for virus neutralization and protection [26].

7.2. T and B cell memory as contributors to protection

The humoral immune response to natural infection or vaccination
results in the production of antibodies by antibody-secreting cells (ASCs),
which provide immediate protection, as well as the generation of mem-
ory B cells, which allow for robust recall responses. If circulating anti-
bodies fail to protect against a future exposure, memory B cells can
robustly elicit faster recall responses to generate high-affinity new anti-
bodies through a preferential proliferation of new clones of ASCs or
activation of the germinal centers for somatic hypermutation [27]. A
lower level of nAb titers in asymptomatic or mild COVID-19 infected
patients suggests that T and B cell memory cells play an important role in
defense against SARS-CoV-2 infection [28]. According to available data,
the memory B cell frequency in recovered patients remains stable and
generates neutralizing antibodies upon reinfection for at least six months
[29]. Nevertheless, there is a relative scarcity of data on vaccine-induced
memory B and T cell induction [30].

7.3. Vaccine-induced protection — a comparison

The comparative immunogenicity and protection data of the leading
vaccines are of great scientific and public interest. Different vaccines
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Fig. 2. Schematic representation of major mutations that characterize SARS-CoV-2 variants are illustrated. Mutations in receptor-binding motif (RBM) are colored in

yellow, RBD in Cyan and S1, S2 regions are in blue.
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responses to immunization via specific antibodies, memory B cells, CD4 "
and CD8™" T-cells were evaluated using various experimental designs. As
a result, comparing vaccine immunogenicity is difficult because assays
for measuring antibody binding and viral neutralization vary greatly
[31]. The immunogenicity of vaccine candidates tested in non-human
primates (NHP) and human clinical trials indicate that the majority of
vaccines elicit an antibody response and some level of protection [31].
According to current data, vaccines in the pre-fusion configuration (2p
substitution) have an advantage in terms of nAb titer [17], but the
duration of vaccine-induced immunity, as well as the role of T cells and
memory B cells in protection, remain unknown.

8. Can a single-dose vaccine be sufficient for those who've
already been infected?

As India battles the world's worst COVID-19 outbreak, the current
priority is to boost immune protection and slow the spread of the vari-
ants. At the time of writing (July 29, 2021) 7.4% of the population were
fully vaccinated and 26.4% has received one dose of the vaccine
(https://www.mygov.in/covid-19). One method for accelerating the
process of achieving herd immunity is single-dose vaccination. Boosting
with a single vaccine dose in people who had previously been infected
resulted in an improved immune response to variants such as Alpha and
Beta [32]. Alternatively, India could follow the UK [33] or Canadian
policies of maximum deployment of first doses to the greatest number of
people possible by extending the time interval to the second dose. This
could be especially beneficial because recent studies have shown that
Covishield (ChAdOx1 nCoV-19) has 81.3% efficacy when administered
12 weeks apart, but only 55.1% when administered less than six weeks
apart [34]. In the case of Covaxin, the interval can be extended up to 45
days after the first shot because inactivated vaccines typically provide
only minor protection with a single dose.

8.1. Single-dose vaccines for India's large population

Another strategy for increasing vaccination rates in India could be the
introduction of single-dose vaccines such as Ad26.COV2.S (Janssen) or
Sputnik light (Gamaleya: NCT04741061). Even the mRNA vaccines
Pfizer-BioNTech and the Moderna vaccine showed promising efficacy
data after only one dose [35]. Although long-term protection from a
single dose is unknown, this strategy is very promising for controlling the
current outbreak, with a second dose to follow later. Maximum benefit
with adequate coverage can be obtained by vaccinating twice as many
people with a single dose. This has the potential to reduce disease
transmission, infection density, and severity in the community [36].
However recent studies showed that the first dose of two-dose vaccines
such as Pfizer or AstraZeneca could barely inhibit the Delta variant. This
shows the increased vulnerability to the Delta variant to individuals
having received one dose of vaccine [37]. Hence genomic epidemiolog-
ical studies will be vital during the rollout of single-dose vaccines to
ensure their effectiveness.

8.2. Vaccination strategies and herd immunity

Given India's limited vaccine supply, an effective vaccination strategy
will be required to have a greater impact on epidemic control. Multiple
factors, including vaccine efficacy on currently circulating variants, must
be considered to achieve theoretical herd immunity in a multilayer
population network [38]. According to the model developed by MacIn-
tyre and colleagues, with a vaccine efficacy of 90%, herd immunity can
be achieved by vaccinating 66% of the population, whereas, with a
vaccine efficacy of 70%, herd immunity can only be achieved by vacci-
nating 100% of the population [39]. Because both Covishield and
Covaxin, which were rolled out in India, have only ~80% efficacy, herd
immunity would require more than 75% vaccine coverage. The goal in
India is to simulate the impact of various COVID-19 vaccine strategies
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under a limited supply scenario with varying vaccine efficacy.
9. Conclusion

As we near the 18-month mark after the first confirmed COVID-19
case of SARS-CoV-2, much has changed in terms of the genomic epide-
miology of the virus as well as the host immune response. At the earlier
stage, the immunological naivety of the host population was the major
challenge whereas the circulation of the virus in partially immune pop-
ulations is the new challenge. This has resulted in evolutionary pressure
for competitive survival of host and virus as observed in the classic Red
Queen competition. Such continuous struggle between virus and their
hosts has driven the emergence of variants with mutations that increase
transmissibility and/or decrease sensitivity to neutralizing antibodies.
Slow vaccination campaigns and lack of potent antiviral agents are
possibly driving the evolution of the virus currently. Hence existing
vaccines need to be improved or effective next-generation vaccines
should be developed to counter the threat of emerging new variants of
the virus. From a public health standpoint, it is likely that repeated im-
munization rounds with vaccine booster shots tailored to new variants
may be required. The difficulty with SARS-CoV-2 is the global scope of
the immunization requirement. An immediate scale-up in global capacity
for viral surveillance is required to monitor the emergence and spread of
new variants in different parts of the world to bring the COVID-19
pandemic under control.

Methodology

Detailed methodology, including sequence data retrieval, data cura-
tion, sequence alignment, and phylogenetic tree construction is included
in the Supplementary section.
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