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Abstract

Background

Bacterial meningitis is challenging to diagnose in infants, especially in the common setting of

antibiotic pre-treatment, which diminishes yield of cerebrospinal fluid (CSF) cultures. Prior stud-

ies of diagnostic markers have not demonstrated sufficient accuracy. Interleukin-23 (IL-23),

interleukin-18 (IL-18) and soluble receptor for advanced glycation end products (sRAGE) pos-

sess biologic plausibility, and may be useful as diagnostic markers in bacterial meningitis.

Methods

In a prospective cohort study, we measured IL-23, IL-18 and sRAGE levels in CSF. We

compared differences between infected and non-infected infants, and conducted receiver

operating characteristic (ROC) analyses to identify individual markers and combinations of

markers with the best diagnostic accuracy.

Results

189 infants <6 months, including 8 with bacterial meningitis, 30 without meningitis, and 151

with indeterminate diagnosis (due to antibiotic pretreatment) were included. CSF IL-23, IL-

18 and sRAGE levels were significantly elevated in infants with culture proven meningitis.

Among individual markers, IL-23 possessed the greatest accuracy for diagnosis of bacterial

meningitis (area under the curve (AUC) 0.9698). The combination of all three markers had

an AUC of 1.

Conclusions

IL-23, alone and in combination with IL-18 and sRAGE, identified bacterial meningitis with

excellent accuracy. Following validation, these markers could aid clinicians in diagnosis of

bacterial meningitis and decision-making regarding prolongation of antibiotic therapy.
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Introduction

Neonatal bacterial meningitis is associated with both short and long term adverse conse-

quences, including death and neurodevelopmental impairment [1–3]. The incidence of men-

ingitis is higher in preterm and very low birth weight infants, as well as infants who have

experienced invasive instrumentation of their central nervous system, such as myelomeningo-

cele repair or placement of a ventriculoperitoneal shunt [4–6].

There are several challenges to diagnosis of bacterial meningitis in infants. In contrast to

adults, signs and symptoms of meningitis are non-specific, and overlap with other non-infec-

tious etiologies [7, 8]. Further, the yield of bacteria from CSF cultures is often low with up to

one third of infants demonstrating negative blood cultures [4, 9]. Lumbar punctures (LPs) are

often deferred for hours or days after antibiotic administration due to cardiorespiratory insta-

bility, or perceived low risk of meningitis, making cultures unreliable [6, 10, 11]. CSF WBC,

protein and glucose have only modest sensitivity and specificity for detection of meningitis in

this population, highlighting the need for adjunctive diagnostic markers [5, 12]. As a conse-

quence, investigators have evaluated a variety of biomarkers including acute phase reactants

and cytokines, and while some have shown promise, none has possessed sufficient diagnostic

accuracy to merit widespread clinical use [6, 13, 14].

Most recently several novel cytokines have been identified which play important roles in

the initiation and perpetuation of the inflammatory response. IL-23 promotes neutrophil

recruitment early in the course of infection, while IL-18 plays a pivotal role in the perpetuation

of the inflammatory response [15–17]. The soluble receptor for advanced glycation end prod-

ucts (sRAGE) limits perpetuation of cellular inflammation and damage (including neuroin-

flammation), prompting its evaluation as a therapeutic target [18–20]. While existing studies

show alterations of IL-23, IL-18 and sRAGE in sepsis, with likely biological consequences and

potential applicability as diagnostic, prognostic and/or therapeutic targets, these markers have

not yet been evaluated in bacterial meningitis [16–18, 21].

These mediators are implicated at different stages of the inflammatory process, and there-

fore levels of these markers (individually or in combination) may be persistently altered over

the first several days of illness, suggesting diagnostic utility. We hypothesized that levels of IL-

23, IL-18 and sRAGE are significantly elevated in cerebrospinal fluid of infants with bacterial

meningitis as compared to uninfected infants.

Methods

Study setting: We performed a prospective cohort study of CSF cytokines in bacterial meningi-

tis in three large neonatal intensive care units (NICUs): the Children’s Hospital of Philadel-

phia, a quarternary center and a regional referral hub, and two inborn level III NICUs, the

Hospital of University of Pennsylvania and Pennsylvania Hospital between 2008 and 2012 [6].

Regulatory approval was obtained from the institutional review boards of all 3 participating

institutions prior to conduct of the study, and either written or verbal consent was obtained

from parents of all study participants.

Study population: Infants < 180 days old receiving a lumbar puncture (LP) or shunt tap for

evaluation for meningitis were eligible for inclusion in our study.

Study definitions: Subjects with CSF culture results positive for pathogens and whom clini-

cians treated with a prolonged course of antibiotics were defined as having culture proven men-
ingitis. Subjects whose CSF samples were obtained prior to antibiotic therapy and whose

culture results were negative were defined as negative controls. Subjects whose CSF culture

results were negative, but had received antibiotics prior to the LP, were deemed indeterminate,

as it was unclear to what extent antibiotic therapy may have affected culture results.
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Study procedures: We obtained an additional aliquot of CSF at the time of lumbar puncture

or shunt tap performed for clinical reasons. Following informed consent, CSF samples were

centrifuged to remove cellular debris, aliquoted to minimize multiple freeze-thaw cycles, and

stored in at -80˚C.

Data collection: We abstracted demographic, clinical and laboratory data including risk fac-

tors for infection, culture results and treatment details from the medical records of enrolled

patients. Data were maintained in a coded electronic database.

Sample analysis: Enzyme linked immunosorbent assays were performed for measurement

of IL-23, IL-18 and sRAGE levels, using commercially available kits previously validated and

utilized in other human studies (Human IL-23 Quantikine ELISA Kit, Human IL-18/IL-1F4 R

& D systems, Minneapolis, MN, USA, Human RAGE Quantikine ELISA Kit) [22–24].

Statistical analysis: We computed summary statistics for demographic variables, risk fac-

tors, laboratory parameters and therapies. Continuous variables were presented as medians

and interquartile ranges (as data were non-parametric), while categorical variables were pre-

sented as proportions and/or percentages. We used Wilcoxon rank sum and Kruskal Wallis

tests to assess for statistically significant differences between groups. Biomarker levels were

correlated with CSF parameters (CSF WBC, protein and glucose) and previously measured

CSF cytokine levels (TNF-alpha, IL-1, IL-6, IL-8, IL-10 and IL-12). Receiver Operating Char-

acteristic (ROC) curves were constructed to evaluate the accuracy of individual cytokines in

diagnosis of bacterial meningitis. For assessment of accuracy of combinations of cytokines, we

employed logistic regression followed by ROC analysis. Finally, we developed cut-off levels

based on the best performing individual and combinations markers, which we applied to the

indeterminate group, in order to identify subjects who demonstrated elevations of marker lev-

els similar to infants with meningitis. In secondary analyses, we also calculated summary statis-

tics, and performed non-parametric testing and ROC analyses as described above, using a

modified dataset. In this modification to the dataset, we utilized the reported lower sensitivity

thresholds of the IL-18, IL-23 and RAGE assays to re-classify values below the respective sensi-

tivity thresholds as equivalent to zero.

Results

A total of 189 subjects were included in this study. Eight subjects had culture proven bacterial

meningitis. Thirty infants had negative CSF cultures in the absence of antibiotic pre-treatment

and were deemed negative controls; the remaining 151 infants had negative CSF cultures, but

received antibiotic pre-treatment and were therefore called indeterminate. Pathogens identi-

fied in culture proven meningitis included Staphylococcus aureus (n = 4), Staphylococcus war-
neri (n = 1), Staphylococcus epidermidis (n = 1), Enterococcus faecalis (n = 1) and Enterobacter
cloacae (n = 1). Infants with culture proven meningitis were more premature, but of greater

postnatal age at the time of diagnosis of the infection (Table 1). Fifty-six infants had blood-

stream infections at the time of the LP, but the proportion did not differ significantly between

subgroups. CSF WBC and CSF protein were significantly elevated and CSF glucose signifi-

cantly decreased in infants with culture proven meningitis compared with the other groups

(Table 1).

Among the infants with bacterial meningitis, 2 had concurrent bloodstream infections and

1 preterm infant with S. aureus meningitis died. Six infants had prior neurosurgical interven-

tions, (VP shunt placement (n = 4), ventriculostomy (n = 1) and s/p myelomeningocele repair

(n = 1)) (S1 and S5 Tables). Of note, the two infants with coagulase-negative staphylococcal

isolates were deemed infected by the medical teams caring for them after infectious disease

consultation and received a full course of treatment.
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IL-23, IL-18 and sRAGE levels were significantly elevated in infants with culture proven

meningitis as compared with the other groups (Fig 1 and S2 Table). All three markers showed

significant positive correlation with CSF WBC and protein values, while IL-18 and IL-23

showed negative correlation with CSF glucose levels (Table 2). Though IL-23, IL-18 and

sRAGE were significantly correlated with each other, the strength of the correlation coeffi-

cients was low. All of these findings remained consistent on secondary analyses using re-classi-

fied values based on assay sensitivity thresholds (S6 and S7 Tables).

When infants with culture proven meningitis were compared to negative controls, IL-23

possessed the greatest accuracy for the diagnosis of bacterial meningitis (AUC 0.9698) (Fig 2A,

2B and 2C); the AUC for IL-23 was better than the results of ROC testing of CSF WBC, protein

and glucose (S3 Table), and also better than values obtained for a panel of cytokines in a prior

study (S4 Table) [6]. Among combinations of two markers, the use of IL-23 and sRAGE had

an AUC of 0.9750, while the use of IL-23 and IL-18 had an AUC of 0.9911 (Fig 3A, 3B and

3C). When all three markers were included as a combined diagnostic strategy, the AUC was 1

(Fig 3D). When these ROC analyses were performed with the modified dataset using re-classi-

fied values based on assay sensitivity thresholds, the AUC for IL-23 decreased slightly to

0.9224, but the combinations noted to have high values of AUC on the original analyses con-

tinued to demonstrate extremely high accuracy (S8 Table).

In order to better categorize infants with indeterminate CSF culture results due to antibiotic

pretreatment prior to CSF sampling, we utilized cut-off levels identified from the ROC

Table 1. Demographic details and CSF laboratory values.

Variable Overall cohort (189) Culture proven meningitis

(8)

Negative controls (30) Indeterminate (151) P value�

Gestational age (weeks),

Median (IQR)

33 (28–39) 30 (24–37) 37 (30–40) 33 (28–39) 0.0683

Birthweight (grams),

Median (IQR)

1970 (1060–3160) 1368 (680–2288) 2830 (1531–3176) 1845 (1013–3140) 0.1477

Postnatal age (days), median

(IQR)

12 (2–35) 37 (21–50) 16 (2–34) 9 (2–33) 0.0416

Preterma, n (%) 119 (63%) 6 (75%) 14 (47%) 99 (66%) 0.114

Neonatesb, n (%) 132 (70%) 3 (38%) 20 (67%) 109 (72%) 0.105

Male gender, n (%) 122 (65%) 5 (63%) 19 (63%) 98 (65%) 0.979

Racec, n (%) B: 78 (41%); W: 77 (41%);

Other: 33 (18%)

B: 1 (12%); W: 5 (63%);

Other: 2 (25%)

B: 9 (30%); W: 17 (57%);

Other: 4 (13%)

B: 68 (45%); W: 55 (36%);

Other: 28 (19%)

0.427

Hispanic ethnicity, n (%) 8 (4%) 0 (0%) 2 (7%) 6 (4%) 0.053

Concurrent culture proven

BSI, n (%)

56 (30%) 2 (25%) 4 (13%) 50 (33%) 0.092

Antibiotics prior to LP, n

(%)

157 (83%) 7 (88%) 0 (0%) 151 (100%) <0.0001

CSF WBC (cells/mm3),

median (IQR)

4 (2–11) 104 (29–852) 3 (1–9) 4 (2–9) 0.0001

CSF protein (gm/dL),

median (IQR)

101 (71–140) 385 (108–783) 96 (59–122) 101 (71–139) 0.0221

CSF glucose (mg/dL),

median (IQR)

49 (40–58) 26 (20–46) 52 (42–64) 48 (41–57) 0.0071

aPreterm: Infants born at <37 weeks gestation
bNeonates: Infants in the first 28 days of life
cB: Black, W: White

�p values based on Kruskal Wallis testing (for continuous variables) and chi squared test (for categorical variables) comparing infants with culture proven meningitis,

negative controls and indeterminate subjects

https://doi.org/10.1371/journal.pone.0181449.t001
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analysis. At a cut off value of 8 pg/ml (the lowest level among the culture proven meningitis

group) for IL-23, we identified 40 of 151 patients as suspicious for bacterial meningitis. Upon

applying a cut-off score generated by weighting all three markers (based on the logistic regres-

sion model of the combination of markers), 32 indeterminate individuals were identified as

possessing scores similar to infants with culture proven meningitis.

Discussion

This study provides preliminary evidence of the value of novel biomarkers in the diagnosis of

bacterial meningitis in infants. IL-23 demonstrated excellent accuracy in diagnosing meningi-

tis, while the combination of IL-23, IL-18 and sRAGE provides a diagnostic algorithm that

identified bacterial meningitis with 100% sensitivity and specificity in this cohort. Following

validation, these markers could aid clinicians in decisions surrounding the need for a pro-

longed course of parenteral antibiotic therapy.

The diagnosis of bacterial meningitis is fraught with uncertainty in infants [9, 25–27]. Limi-

tations in current diagnostic tools include the low yield of CSF culture, which is exacerbated in

the setting of antibiotic pre-treatment that occurs frequently in the NICU population[10].

Other parameters such as CSF WBC, protein, or glucose do not possess acceptable sensitivity

Fig 1. Values of IL-23, RAGE and IL-18 in infants with culture proven meningitis, negative controls and

indeterminate subjects. P values based on Kruskal Wallis testing. One outlier value for IL-18 in the infants with

culture proven meningitis is represented at the upper bound of the graph as its value greatly exceeded the bounds of

the graph (S1 Table provides ranges of values for each marker in each category).

https://doi.org/10.1371/journal.pone.0181449.g001

Table 2. Correlation of markers with CSF parameters�.

Marker CSF WBC CSF protein CSF glucose

IL-18 0.5307 (<0.0001) 0.6308 (<0.0001) -0.2439 (0.0013)

IL-23 0.2986 (0.0001) 0.4393 (<0.0001) -0.2265 (0.0033)

RAGE 0.1520 (0.0485) 0.2062 (0.0075) -0.0140 (0.8573)

�Values represent correlation coefficients of pairwise correlation (significance values in parentheses

https://doi.org/10.1371/journal.pone.0181449.t002
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or specificity with values often overlapping between infected and uninfected infants[5]. This

likely causes clinicians to administer prolonged courses of broad-spectrum antibiotics to a pro-

portion of infants with negative CSF cultures, due to concern regarding the adverse conse-

quences of untreated or partially treated meningitis[1, 4, 5, 12]. As such, an ideal adjunctive

diagnostic marker should possess optimal sensitivity, to allow clinicians to discontinue antibi-

otics with confidence, if the test were to return negative, or below the pre-determined cut-off

value[10, 28, 29]. We chose to measure IL-23, IL-18 and sRAGE as potential markers with bio-

logical plausibility and some evidence suggesting utility in diagnosis of infection.

Fig 2. 2a: ROC analysis for IL-23; 2b: ROC analysis for IL-18; 2c: ROC analysis for sRAGE.

https://doi.org/10.1371/journal.pone.0181449.g002

Fig 3. 3a: ROC analysis for combination of IL-23 and RAGE; 3b: ROC analysis for combination of IL-23 and IL-18;

3c: ROC analysis for combination of IL-18 and RAGE; 3d: ROC analysis for combination of IL-23, RAGE and IL-18.

https://doi.org/10.1371/journal.pone.0181449.g003
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IL-23 is a pro-inflammatory cytokine with a prominent role early in inflammation [15]. It

functions as a mediator of cytokine and chemokine production and recruitment of neutrophils

to the site of infection [30, 31]. In prior studies of IL-23 in sepsis, exposure to pathogens was

found to lead to increased expression of IL-23 by antigen presenting cells[21, 32, 33]. Our

study revealed low levels of IL-23 in uninfected infants; however we identified marked eleva-

tions in CSF levels in infants with culture proven meningitis, demonstrating that infants are

able to upregulate production of IL-23 in response to infectious and inflammatory stimuli.

CSF IL-23 levels correlated with CSF WBC values, and possessed a greater discriminatory abil-

ity than CSF WBC in diagnosis of infections, as evidenced by the higher AUC value for IL-23.

IL-18 has also been viewed as a potential therapeutic target in sepsis. IL-18 is most well

known for its ability to induce interferon gamma production but also stimulates production of

TNF-alpha, IL-1beta, IL-8 and GM-CSF, as well as Th2 cell responses in the appropriate con-

text, thus potentiating and perpetuating the inflammatory response [34–36]. In our study, IL-

18 levels were significantly elevated when compared to uninfected infants, although these dif-

ferences were not as marked as results for the other two cytokines studied. Similarly, the results

of its ROC analysis as an individual marker were not as powerful as IL-23. However, the com-

bination of IL-18 with IL-23 and sRAGE showed excellent discrimination for the diagnosis of

meningitis.

The receptor for advanced glycation end products (RAGE) functions as a pattern recogni-

tion receptor (PRR) that binds to damage associated molecular patterns (DAMPs) and upregu-

lates RAGE expression[37]. sRAGE, the product of proteolytic cleavage of RAGE in response

to inflammation, functions as a decoy receptor and binds circulating DAMPs, thus limiting

propagation of inflammation [38]. Its levels have been shown to correlate with severity of ill-

ness [18, 19, 23]. sRAGE has therefore evoked interest as a potential therapeutic target in SIRS

and sepsis [19, 20]. Studies of experimental sepsis and inflammation have shown that RAGE

mediated NFkB activation leads to neuro-inflammation, microglial activation, injury to the

blood brain barrier and neuronal impairment [39, 40]. In our study, CSF sRAGE levels were

found to be elevated in infants with culture proven meningitis compared to controls, thus

potentially identifying one mechanism for the adverse neurological consequences of

meningitis.

Many of the infants in our study received antibiotics prior to LP, making CSF cultures diffi-

cult to interpret. On applying the results of our ROC analysis of both individual and combina-

tion markers to the indeterminate group, we were able to further delineate the population who

might be at risk of meningitis to about 32–40 subjects. Using this approach, the proportion of

infants identified to be at heightened risk in the indeterminate population was similar to the

ratio of culture proven meningitis to negative subjects, providing a preliminary measure of

face validity to this approach. While these numbers may be an over-estimate of truly infected

infants, the use of these combinations of markers could provide utility in defining infants at

greatest risk of true meningitic infection and inflammation, and suggest a mechanism for lim-

iting antibiotic exposure in more than two thirds of the indeterminate antibiotic pre-treated

subjects.

Our study possesses several strengths. We tested the utility of novel inflammatory markers

in the diagnosis of bacterial meningitis, and demonstrated powerful accuracy in ROC analyses,

that warrants validation with additional cohorts of subjects. Our study also suggests that the

panel of cytokines measured provides excellent diagnostic accuracy when compared with rou-

tinely tested CSF parameters, as well as a panel of cytokines previously tested. Secondary analy-

ses applying sensitivity thresholds reported for the assays produced results very similar to the

original analysis, demonstrating that these results remain significant and worthy of replication

efforts. Furthermore, there is biologic plausibility for the elevations of these markers as they
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represent successive phases in the initiation and perpetuation of the inflammatory response.

Studies of neonatal meningitis are challenging, as this is a rare condition, necessitating enroll-

ment of large cohorts of subjects to achieve a critical number of positive samples. Further,

obtaining adequate CSF sample volumes to test multiple markers and replicate findings is

often not practicable in this population. Our study faced similar limitations: we acknowledge

that our small sample precluded replication of our analyses. Also, our sample size of infants

with culture proven meningitis is small, but provides a fair representation of the common

pathogens that cause meningitis in tertiary NICUs, especially in populations that have under-

gone neurosurgical intervention.

In conclusion, we have demonstrated that elevations of IL-23, sRAGE and IL-18 are useful

adjunctive markers in diagnosis of bacterial meningitis in infants. These markers could be of

especial utility in aiding decision making around discontinuation of antibiotics, thereby poten-

tially decreasing antibiotic use in ‘presumed culture negative meningitis’. These findings

require external validation in additional prospective cohorts of infants evaluated for

meningitis.
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