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Abstract

  Original Article

Introduction

Histology is the foundation of microscopic tissue evaluation 
and pathology diagnoses.[1,2] This cornerstone of medicine 
is an integral part of medical school curricula and serves 
as a pillar for pathology education.[2] Understanding 
the normal histologic architecture is key in building a 
microscopy‑based diagnostic competency, and subtle 
variations in tissue morphology are challenging to master 
for new learners. Unfortunately, teaching histology may 
require resources that are not always available in developing 
or underserved areas.

Many research groups are exploring new approaches to 
help make learning histology less challenging and more 
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entertaining, including the University of New Jersey Medical 
School’s use of an “audiovisual switching and projection 
system” to streamline the presentation of histology images 
in lectures;[3] the University of Granada’s efforts to analyze 
factors impacting the motivation of various students to learn 
histology;[4] and Newcastle University’s analysis of factors 
influencing the effectiveness of histology‑oriented e‑learning.[5]

Over the last decade, advancements in the field of information 
science and digital microscopy have started to reform the 
histology learning platform[6‑9] and other medical disciplines.[10] 
However, these improvements may bring challenging new 
requirements, such as reliable internet access; authentic 
source‑information; and easy accessibility. Hence, more 
advanced tools may be warranted to support the histology 
learning environment.

Fortunately, advancements in computational analysis, 
specifically machine learning  (ML) and artificial 
intelligence (AI),[11] have recently enhanced the histopathology 
arena.[12‑16] These advances are mostly credited to deep learning 
techniques using convolutional neural networks  (CNNs) in 
various image analysis studies.[17‑20]

Niazi et al. have shown that CNNs can be used to accurately 
assess the depth of bladder tumor penetration into the lamina 
propria, an important metric for treating and monitoring 
the progression of the disease.[19] Further, Coudray et  al. 
used CNNs to predict adenocarcinoma and squamous cell 
carcinoma from normal lung tissue samples with an AUC 
of 0.98, matching the diagnostic performance of a trained 
pathologist.[20]

In this study, we explored the application of CNNs to the 
histologic learning platform, aiming to create an app capable 
of distinguishing tissue subtypes and recognizing their 
look‑alikes. In addition, we studied the relationships between 
the number of images used for training, the number of 
different image sources used, and the ultimate generalizability 
of the resulting models. Ultimately, we identified the best 

performing model, based on generalizability, and deployed 
it to our histology ML app. Our app is now able to analyze 
an image of a histologic entity  (tissue), able to identify 
it, and ultimately generate a differential diagnosis  (list of 
look‑alikes) [Figure 1].

Methods

Two institutional datasets were provided by the University of 
California, Davis (UCD) and New York University (NYU). 
Institutional Review Board (IRB) approval was obtained at 
the UCD (IRB ID: 1286225‑1) and NYU (no IRB required) 
for the anonymized normal histology images used in this 
study. A third set of images was also obtained using several 
digital whole slide images from various public domain sites, 
hereafter referred to as external data  (EXT). Histologic 
images in 38 categories of equal proportion [Figure 2] were 
obtained from each data source (UCD, NYU, EXT). In each 
category, 10 low power magnification (×4) and 10 high power 
magnification (×10) images were obtained yielding 20 images 
per category and a total of 760 images from each data source. 
We included both square and rectangular images, ranging 
from 100 to 1600 pixels wide and 100–900 pixels high. These 
images were collected in portable network graphics (PNG) 
format and then reviewed and verified by two board certified 
pathologists.

The above images were then used to create training and 
validation testing datasets for our ML studies. Eighty percent 
of each dataset were randomly selected to train a model, 
and the remaining 20% was withheld for internal validation 
testing. We also randomly resampled, retrained, and retested 
each of the datasets mentioned above 10 times to achieve a 10 
k‑fold cross‑validation for the training‑testing approach. Each 
model was trained through a transfer learning approach on the 
ResNet‑50 CNN within Apple’s Turicreate open source library. 
The Turicreate image classifier function performed automatic 
feature rescaling to resize our images to 224 pixels wide by 224 
pixels high, per ResNet‑50’s input layer specifications.[21,22] We 

Figure 1: The above representative images are based on our best performing histology machine learning model that includes a combination of all 
sources and combines all images in each category. The top n (highest probability for the top 3 look a likes) are generated by this iOS app which 
highlights how such a histology differential diagnosis app can be used in practice
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used the image classifier’s default hyperparameters, as shown 
in the Turicreate documentation,[21] except for the maximum 
iterations parameter, which we set to 1000 iterations.

In addition to the above initial validation testing, we also 
performed an external validation step which tested each of 
the models generated from each data‑source against the other 
data‑sources’ images. The external validation tests are depicted 
in Figure 3. For all validation tests we evaluated the top‑n 
metrics (the top‑n values of 1, 3, and 5) by selecting the ‘n’ 
highest probability score (s) from each prediction (the target 
label and it’s top 1, top 3, and top 5 look‑alikes) [Figure 3].

Finally, we combined the data from all three sources to explore 
the impact of data diversity in each model’s true generalizability. 
To test the combination models’ true generalizability, a fourth 
dataset was acquired using Google image search to collect 
10 images from each of the above 38 categories from various 
online public domain sources. Notably, this “Google images” 
generalization dataset was not used in the training phase of any 
of the models tested and solely used for generalizability testing.

Two combination datasets were constructed: one with lower 
data quantity, and one with higher data quantity. To build the 
low quantity combination training set, 6 images were sampled 
from each tissue category from each data source, yielding 18 
total images per tissue category, which ultimately yielded 684 
total training images. Selecting 18 images per category in the 
combination study gives us the advantage of using fewer total 
data than in the individual study (684 training images vs. 760), 
so that we can explore the impact of data diversity without the 
confounding influence of increased data quantity. To further 
test the effect of both combined data diversity and data quantity, 
a high quantity combination study was also generated with the 
maximum data quantity from all three sources (UCD, NYU 
and EXT) using 20 images from each category from each data 
source which led to 60 images per category and ultimately 

yielded a total of 2280 training images. The “Google images” 
generalization dataset  (described above) was then used to 
compare the performance  (accuracies) of the low and high 
quantity combination models. Clopper‑Pearson confidence 
limits were calculated to analyze the reliability of the results.[23] 
The null accuracy for this balanced multi‑classification task 
was calculated as 1

number of classes

 to give context to the 
results.

Results

The null accuracy of these tests was calculated to be 1
38

 or 
2.63%.

Individual data sources (noncombined) [for brevity, only 
top‑5 results are shown here. Top‑1 and top‑3 results can 
be found in Appendix 2]
Per‑label internal validation
For the EXT internal validation, the highest top‑n of 5 
per‑label tissue (the top 5 look‑alikes/differential diagnosis) 
sensitivities were adipose (1.00), eye (1.00), and heart (1.00), 
while the lowest were pituitary (0.96), appendix (0.96), and 
small‑bowel (0.96), which were most frequently misclassified 
as liver, ovary, and kidney, respectively.

For the NYU internal validation, the highest top‑n of 5 per‑label 
tissue sensitivities were adipose  (1.00), skin  (1.00), and 
epididymis  (1.00), while the lowest were adrenal  (0.94), 
artery (0.96), and bronchiole (0.96), which were most frequently 
misclassified as uterus, adrenal, and breast, respectively.

For the UCD internal validation, the highest top‑n of 5 per‑label 
tissue sensitivities were kidney  (1.00), lung  (1.00), and 
adrenal (1.00), while the lowest were vein (0.90), appendix (0.94), 
and artery (0.95), which were most frequently misclassified as 
adipose, cervix, and appendix, respectively [Figure 4].

Figure 2: This figure alphabetically lists the 38 classes of histological tissue types used in this study
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Per label external validation
EXT was externally validated against NYU and UCD. For 
the EXT versus NYU test, the highest top‑n of 5 per‑label 
tissue sensitivities were adipose  (1.00), thyroid  (1.00), and 
bladder (0.98), while the lowest were blood (0.00), vein (0.02), 
and artery (0.04), which were most frequently misclassified as 
spleen, prostate, and nerve, respectively.

For the EXT vs UCD test, the highest top‑n of 5 per‑label 
tissue sensitivities were adipose  (1.00), blood  (1.00), and 
cerebellum  (1.00), while the lowest were vein  (0.08), 
lymphoid‑tissue  (0.08), and appendix  (0.10), which were 
most frequently misclassified as liver, stomach, and stomach, 
respectively [Figure 4].

UCD was externally validated against EXT and NYU. 
For the UCD vs NYU test, the highest top‑n of 5 per‑label 
tissue sensitivities were adipose  (1.00), thyroid  (1.00), 
and spleen  (1.00), while the lowest were blood  (0.00), 
bronchiole (0.10), and vein (0.12), which were most frequently 
misclassified as vein, adipose, and esophagus, respectively.

For the UCD versus EXT test, the highest top‑n of 5 per‑label 
tissue sensitivities were adipose  (1.00), blood  (1.00), and 
heart (1.00), while the lowest were vein (0.08), tongue (0.16), 
and small‑bowel  (0.22), which were most frequently 
misclassified as eye, adipose, and stomach, respectively.

NYU was externally validated against EXT and UCD. For 
the NYU versus UCD test, the highest top‑n of 5 per‑label 
tissue sensitivities were bronchiole  (1.00), bone  (1.00), 
and muscle  (1.00), while the lowest were prostate  (0.02), 
liver (0.08), and cervix (0.12), which were most frequently 
misclassified as epididymis, pituitary, and artery, respectively.

For the NYU versus EXT test, the highest top‑n of 5 per‑label 
tissue sensitivities were bone  (1.00), pituitary  (1.00), and 
muscle (1.00), while the lowest were liver (0.00), ovary (0.16), 
and cervix (0.16), which were most frequently misclassified 
as pancreas, tongue, and pituitary, respectively.

Figure 5 shows the ranked  (high to low) class sensitivities 
averaged across every top‑5 external validation test. The highest 
sensitivity is observed for adipose (0.99), thyroid (0.95), and 
eye (0.89). Conversely, the lowest sensitivity is observed for 
vein (0.17), prostate (0.26), and artery (0.32), which were most 
frequently misidentified as eye, epididymis, and esophagus, 
respectively.

Figure  6 summarizes the internal and external per‑label 
validation tests.

Cumulative internal validation on withheld 20%
The internal validation results were relatively the same 
for each data source: the top‑n of 5 cumulative accuracy, 

Figure 3: This chart depicts the overall study design. First, each of the three datasets are individually used to create the training sets. Second, each 
model is tested internally against the aforementioned withheld randomly selected test set to assess the models’ internal validation accuracy with a 
10 k‑fold random sampling cross validation approach. Third, each model is tested externally against both of the other datasets to assess each model’s 
performance, and the results are averaged across the ten models (another 10 k‑fold cross validation). Then, each test is repeated with a “top n” correct 
criteria of one, three, and five which represents how each model performs in identifying the top 1, 3 or 5 differential diagnosis (top look‑alikes) within 
each histologic category. Additionally, two combined datasets are generated from the three individual data sources (University of California, Davis, 
New York University, external data), one with restricted data quantity, and one with full data quantity. Once again, these datasets are resampled to train 
combination models along with 10 k‑fold cross validation. Finally, all of the models, including both combination sets and all three individual datasets, 
were tested against a generalization test set (google images) obtained from online public domain images
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cumulative sensitivity, cumulative positive predictive value, 
cumulative sensitivity, and cumulative f1‑score were all 
0.99. For each top‑n of 3 global metric UCD and EXT both 
scored 0.99, while NYU scored 0.98. For the top‑n of 1 global 
metrics UCD and EXT both scored 0.97, while NYU scored 
0.95 [Figure 7].

Cumulative external validation (generalization results)
Figure 7 shows the results of the external validation tests, for 
top‑n of 1, 3, and 5. For top‑n of 5, the EXT versus UCD was 
the highest performing test. This test showed accuracy of 0.69, 
F1‑score of 0.66, and sensitivity of 0.69. The remaining tests 
can be found in Figure 7.

Figure 4: This image depicts the sensitivity graphs for each label in a given test and top‑n value (top 1, 3, or 5 differential diagnosis predictions). In 
addition, the outside column indicates the most frequent incorrect label for a given target class. Note that the internal validation results appear similar 
amongst the different categories while the true discriminators are the model’s external validation performances

Figure 5: This chart depicts the average sensitivities across every external validation test, showing trends in the overall performance of each label 
(far left side, “Target Label”). Highest sensitivities were noted in adipose, thyroid and eye while the lowest sensitivities were noted in vein, prostate 
and artery. The most frequent mislabel for each entity is also listed on the far right side of each histologic entity
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Combination model generalizability
The individual data sources, UCD, NYU, and EXT, accurately 
classified 58.77%, 51.57%, and 58.40% of public domain 
Google images, respectively. The per-label results from 
these tests are provided in appendix 1. The low quantity 
combination dataset of 684 images accurately classified 
61.16% of images, achieving a 4.05% improvement over UCD, 
18.59% improvement over NYU, and 4.73% improvement 
over EXT. The high quantity combination dataset of 2280 
images accurately classified 68.48% of public domain 
images, achieving a 16.51% improvement over UCD, 51.57% 
improvement over NYU, and 17.27% improvement over 
EXT [Table 1].

Discussion

Our combination analysis demonstrated that training with a 
more diverse dataset could outperform a less diverse dataset 

in a generalization test, even when the more diverse dataset 
had fewer total images. Furthermore, we demonstrated that a 
dataset which is more diverse and has higher quantity could 
outperform both datasets: high diversity with low quantity, 
and low diversity with low quantity. Most importantly, in 
addition to having increased quantity, these results highlight 
the importance of data diversity in training a generalizable 
ML model. Further, the results of our tests are high relative to 
the null accuracy of a naïve 38‑class multiclassifier, though 
improvements should be explored in future studies.

Our analysis also showed a positive association between 
the performance  (accuracy, sensitivity) and the level of 
top‑n differential diagnosis being used. This suggests that 
the differential diagnoses are picking up on architectural 
similarities in tissues. This feature is useful for teaching new 
histology learners to recognize similarities and common 
look‑alikes among different tissues. This look‑alike clustering 

Figure 6: This chart depicts the correlation for each label and each validation pairing. The outer left Y axis is the training dataset and the outer bottom 
X axis is the testing dataset. True positives appear along the diagonal of each chart, and false positives appear outside of the diagonal. The strongest 
correlations are depicted in red  (as expected each individual entity from a given training source when tested against its own individual entity’s 
testing source (e.g., University of California, Davis Adipose tested against University of California, Davis adipose) will show the highest correlation 
(i.e., depicted as red). Thus, a stronger collection of positives along the diagonal indicates higher sensitivity (depicted as red) while the lower correlation 
for each entity will be less red (highest correlation = red, lowest correlation = blue). Additionally, the large number of light blue dots present off the 
diagonal are indicative of each individual entity’s mislabeled correlate with their respective look‑alike histologic entity
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may be an appropriate complement to other histology learning 
modalities – lectures, textbooks, videos, etc.

In addition, our combination study tested models against 
images obtained from online Google public domain images, 
which ultimately were the most difficult to classify across every 
dataset. Reviewing these images showed that they are highly 
irregular, inconsistent, and often contaminated with text and 
graphics. Because the models were trained on clean images, 
they may struggle to classify the less polished images in the 
Google search dataset. A study by Jones et al., demonstrated 
that JPEG images and PNG images can be used to train 
similarly accurate ML models.[14] However, because these 
ML models were trained on relatively “lossless” PNG images, 

they may struggle to classify the comparatively “lossy” JPEG 
images in the Google search dataset.[24,25] Future studies may 
be useful to explore employing the less polished data and a 
variety of image file formats into the training data.

In our study, the highest performance predictions were on 
adipose and thyroid tissue types. The simplicity of their 
architectures, and the lack of other background tissues, 
compared to other tissue images, may make these tissue 
types easy to distinguish. Despite adipose tissue’s high 
accuracy, it was occasionally misidentified as bronchiole 
tissue. Adipose‑bronchiole confusion may be caused by the 
presence of lung tissue in the background of bronchiole, which 
resembles adipose tissue [Table 2].

Table 1: Generalization accuracy comparisons (single data source vs. combined sources)

Data 
source

Single image source (UCD or NYU or EXT) 
Accuracy: 760 images

Combined image source (UCD + NYU + EXT) 
Accuracy: 684 images

Percentage improvement 
of combined image source

UCD 0.5877 (0.5693-0.6330) 0.6116 (0.5649-0.6584) +4.05% (−0.78-4.00)
NYU 0.5157 (0.4899-0.5549) 0.6116 (0.5649-0.6584) +18.59% (15.31-18.66)
EXT 0.5840 (0.5413-0.6057) 0.6116 (0.5649-0.6584) +4.73% (4.35-8.70)

Data 
source

Single image source (UCD or NYU or EXT) 
Accuracy: 760 images

Combined image source (UCD + NYU + EXT) 
Accuracy: 2280 images

Percentage improvement 
of combined image source

UCD 0.5877 (0.5693-0.6330) 0.6848 (0.6554-0.7123) +16.51% (12.53-15.11
NYU 0.5157 (0.4899-0.5549) 0.6848 (0.6554-0.7123) +32.79% (28.38-33.78)
EXT 0.5840 (0.5413-0.6057) 0.6848 (0.6554-0.7123) +17.27% (17.61-21.07)
“Single accuracy” depicts the mean accuracy (with 95% CI) of a single data source (e.g., UCD). “Combined accuracy” depicts the corresponding mean 
accuracy and interval of the respective combination dataset (684 or 2280). Percent improvement indicates by what percentage accuracy was improved by the 
combination dataset, over the individual data source. The single source models were generated on datasets that contained 760 images while the combined 
dataset noted above (UCD + NYU + EXT) includes 684 Images (18 images/category). The full quantity combined models contained - 2280 images (60 
images/category). UCD: University of California Davis; NYU: New York University; EXT: External dataset; CI: Confidence interval

Figure 7: Correlation of the accuracy, f1 score, positive predictive value, and sensitivity of internal and external test results for each top‑n correct value 
are shown. As expected the n = 5 (top 5 look‑alikes) has the best performance parameters (compared to n = 1 or n = 3)
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One frequently misidentified tissue was artery, which was 
most misidentified as nerve. This could be explained by the 
circular cross section of the nerve with neural fibers appearing 
like elements in the arteries such as red blood cells. Table 3 
illustrates the similarities between arterial and nervous tissues 
across institutions. Moreover, the striking similarities between 
arterial and neural tissue, and the incidences of confusion 
with one another, are evidence that the model is learning 
tissue architectures to a level where it can make intelligent 

mistakes, or mistakes that a human would be likely to 
encounter. Incorporating more examples of these tissues into 
training may prove beneficial in distinguishing them from one 
another [Table 3].

Incorporating multiple data sources may also be beneficial for 
improving model flexibility. In our study, we found that the 
UCD and EXT datasets used a blood‑smear technique,[26] while 
the NYU dataset used a cross‑sectional technique to gather 
blood images. Not surprisingly, UCD and EXT struggled to 
classify blood images from NYU, and vice versa. Interestingly, 
both combination studies showed improvement in classifying 
blood images, suggesting that incorporating both techniques 
improved model flexibility and generalizability [Table 4].

A limitation of our study is the relatively small number 
of images available  (760 images per dataset) compared to 
traditional CNNs, which include thousands to millions of 
images.[27] In order to compensate for the small data size, this 
study employed a transfer learning technique. In this technique, 
a large CNN is pretrained on millions of images. Next, the 
model’s layers are frozen, and a small number of new layers are 
added. Finally, the new model is trained on a smaller dataset, 
only adjusting the new layers. This technique can produce 
highly generalizable, large CNNs, with relatively small 
training sets.[12,13,27,28] Many examples of this strategy exist in 
various CNN classification tasks in which low quantity data 
are a challenge.[29,30] This study utilizes the ResNet‑50 transfer 
learning architecture,[14,31] though many other architectures 
exist, such as AlexNet, VGG, Inception, and DenseNet.[14,27] 
Since some studies suggest that Inception V3 may slightly 
outperform ResNet‑50 for some classification tasks,[32] it may 

Table 2: Comparison of selected tissue types
Eye Adipose

Bronchiole Vein

The differences and similarities between four tissue types with some 
overlapping features (e.g., noted similarities between adipose and 
bronchiole or similarities between the eye and vein histology)

Table 3: Comparison of various artery and nerve tissues

Artery

UCD NYU EXT

Nerve

UCD NYU EXT

Nerve and arterial tissues bear striking resemblances, which may explain their classification confusion. Further, the confusion between these tissues shows 
evidence that the learning algorithm is intelligent enough to formulate smart, or insightful, mistakes. UCD: University of California Davis; NYU: New York 
University; EXT: External dataset
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be worthwhile for a future study to repeat this on the Inception 
V3 transfer learning architecture.

Overall, this study has illuminated the pathway toward a fully 
functional histopathology AI learning tool. Moreover, this 
study has yielded some valuable insights which will aid our 
understanding of histological multi‑classification tasks, though 
future larger studies are required to support our findings and 
further enhance our understanding within this exciting new 
field.
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Appendix 1: Classification per-label accuracy against public domain images

Label Accuracy (mean [95% CI])

Combo (684) Combo (2280) UCD NYU EXT
Adipose 0.52 (0.34-0.69) 0.68 (0.51-0.81) 0.33 (0.23-0.44) 0.50 (0.36-0.64) 0.43 (0.31-0.56)
Adrenal 0.33 (0.10-0.65) 0.52 (0.37-0.68) 0.41 (0.26-0.58) 0.60 (0.36-0.81) 0.59 (0.36-0.79)
Appendix 0.86 (0.57-0.98) 0.79 (0.59-0.92) 0.61 (0.42-0.77) 0.73 (0.52-0.88) 0.58 (0.37-0.77)
Artery 0.70 (0.35-0.93) 0.50 (0.35-0.65) 0.31 (0.18-0.45) 0.62 (0.42-0.79) 0.38 (0.21-0.58)
Bladder 0.45 (0.17-0.77) 0.48 (0.26-0.70) 0.60 (0.26-0.88) 0.14 (0.03-0.35) 0.35 (0.22-0.51)
Blood 1.00 (0.54-1.00) 0.91 (0.76-0.98) 1.00 (0.85-1.00) 0.50 (0.12-0.88) 0.88 (0.69-0.97)
Bone 0.80 (0.28-0.99) 0.67 (0.52-0.80) 0.76 (0.50-0.93) 0.57 (0.41-0.72) 0.60 (0.44-0.75)
Breast 0.36 (0.13-0.65) 0.95 (0.74-1.00) 0.73 (0.45-0.92) 0.65 (0.41-0.85) 0.29 (0.18-0.43)
Bronchiole 0.58 (0.28-0.85) 0.42 (0.26-0.59) 0.54 (0.25-0.81) 0.49 (0.35-0.63) 0.65 (0.38-0.86)
Cartilage 0.82 (0.48-0.98) 0.74 (0.58-0.86) 1.00 (0.81-1.00) 0.33 (0.22-0.46) 0.75 (0.51-0.91)
Cerebellum 0.73 (0.45-0.92) 1.00 (0.79-1.00) 0.61 (0.36-0.83) 0.85 (0.62-0.97) 1.00 (0.72-1.00)
Cervix 0.25 (0.05-0.57) 0.62 (0.42-0.79) 0.38 (0.25-0.53) 0.58 (0.33-0.80) 0.62 (0.38-0.82)
Colon-rectum 0.76 (0.50-0.93) 0.66 (0.47-0.81) 0.54 (0.37-0.70) 0.42 (0.28-0.57) 0.72 (0.51-0.88)
Epididymis 1.00 (0.48-1.00) 0.82 (0.63-0.94) 0.61 (0.39-0.80) 0.29 (0.08-0.58) 0.39 (0.22-0.58)
Esophagus 0.27 (0.06-0.61) 0.58 (0.33-0.80) 0.49 (0.32-0.65) 0.36 (0.11-0.69) 0.50 (0.28-0.72)
Eye 1.00 (0.48-1.00) 0.77 (0.59-0.90) 0.75 (0.53-0.90) 0.56 (0.35-0.76) 0.94 (0.71-1.00)
Gallbladder 0.50 (0.16-0.84) 0.56 (0.30-0.80) 0.82 (0.48-0.98) 0.45 (0.23-0.68) 0.39 (0.23-0.58)
Heart 0.00 (0.00-0.97) 0.38 (0.09-0.76) 0.50 (0.19-0.81) 0.54 (0.25-0.81) 0.57 (0.29-0.82)
Kidney 0.50 (0.01-0.99) 0.64 (0.43-0.82) 1.00 (0.79-1.00) 0.67 (0.22-0.96) 0.57 (0.18-0.90)
Liver 0.90 (0.55-1.00) 0.83 (0.63-0.95) 0.73 (0.45-0.92) 0.00 (0.00-0.71) 0.43 (0.24-0.63)
Lung 0.67 (0.38-0.88) 0.70 (0.51-0.85) 0.80 (0.56-0.94) 0.72 (0.51-0.88) 0.75 (0.59-0.87)
Lymphoid 0.64 (0.31-0.89) 0.89 (0.72-0.98) 1.00 (0.72-1.00) 0.59 (0.36-0.79) 0.93 (0.66-1.00)
Muscle 0.72 (0.47-0.90) 0.54 (0.37-0.71) 0.86 (0.65-0.97) 0.72 (0.53-0.86) 0.93 (0.76-0.99)
Nerve 0.41 (0.18-0.67) 0.68 (0.51-0.81) 0.57 (0.39-0.74) 0.30 (0.19-0.43) 0.52 (0.31-0.72)
Ovary 0.50 (0.23-0.77) 0.53 (0.35-0.71) 0.71 (0.51-0.87) 0.80 (0.52-0.96) 0.54 (0.33-0.74)
Pancreas 0.67 (0.09-0.99) 0.75 (0.35-0.97) 1.00 (0.54-1.00) 0.19 (0.06-0.38) 0.71 (0.42-0.92)
Parotid 0.89 (0.52-1.00) 1.00 (0.80-1.00) 0.70 (0.47-0.87) 0.88 (0.47-1.00) 0.92 (0.62-1.00)
Pituitary 0.75 (0.19-0.99) 0.67 (0.35-0.90) 0.88 (0.64-0.99) 0.56 (0.31-0.78) 1.00 (0.16-1.00)
Prostate 0.79 (0.54-0.94) 0.73 (0.54-0.88) 0.83 (0.59-0.96) 0.67 (0.38-0.88) 0.31 (0.09-0.61)
Skin 0.31 (0.09-0.61) 0.90 (0.68-0.99) 0.54 (0.37-0.71) 0.68 (0.45-0.86) 0.76 (0.55-0.91)
Small-bowel 0.71 (0.44-0.90) 0.68 (0.48-0.84) 0.74 (0.49-0.91) 0.64 (0.43-0.82) 0.67 (0.45-0.84)
Spleen 0.75 (0.35-0.97) 0.88 (0.72-0.97) 0.74 (0.49-0.91) 0.69 (0.39-0.91) 0.75 (0.53-0.90)
Stomach 0.62 (0.24-0.91) 0.33 (0.13-0.59) 0.60 (0.41-0.77) 0.64 (0.35-0.87) 0.29 (0.16-0.45)
Testes 0.57 (0.18-0.90) 0.55 (0.32-0.77) 1.00 (0.75-1.00) 0.30 (0.15-0.49) 0.45 (0.17-0.77)
Thyroid 1.00 (0.72-1.00) 0.91 (0.71-0.99) 0.68 (0.48-0.84) 1.00 (0.77-1.00) 0.83 (0.63-0.95)
Tongue 0.54 (0.25-0.81) 0.76 (0.60-0.89) 0.54 (0.33-0.73) 0.59 (0.41-0.75) 0.67 (0.43-0.85)
Uterus 0.47 (0.21-0.73) 0.59 (0.36-0.79) 1.00 (0.63-1.00) 0.50 (0.21-0.79) 0.54 (0.33-0.74)
Vein 0.45 (0.23-0.68) 0.62 (0.44-0.78) 0.19 (0.07-0.37) 0.53 (0.34-0.72) 0.64 (0.31-0.89)
The accuracy (with 95% CI) for both combination models (684 and 2280) and each of the three individual institutions when tested against public domain 
images. UCD: University of California Davis; NYU: New York University; EXT: External dataset; CI: Confidence interval
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Appendix 2: Per-label sensitivity graphs for each UCD, NYU, and EXT testing permutation. The right column of each 
graph indicates the most frequent mislabel for the target label indicated by the left y-axis

Differential criteria

Top 1 Top 3 Top 5
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