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Introduction: Despite the significant progress in understanding cancer biology, the
deduction of metastasis is still a challenge in the clinic. Transcriptional regulation is one
of the critical mechanisms underlying cancer development. Even though mRNA,
microRNA, and DNA methylation mechanisms have a crucial impact on the metastatic
outcome, there are no comprehensive data mining models that combine all transcriptional
regulation aspects for metastasis prediction. This study focused on identifying the
regulatory impact of genetic biomarkers for monitoring metastatic molecular signatures
of melanoma by investigating the consolidated effect of miRNA, mRNA, and DNA
methylation.

Method:We developed multiple machine learning models to distinguish the metastasis by
integrating miRNA, mRNA, and DNA methylation markers. We used the TCGA melanoma
dataset to differentiate between metastatic melanoma samples by assessing a set of
predictive models. For this purpose, machine learning models using a support vector
machine with different kernels, artificial neural networks, random forests, AdaBoost, and
Naïve Bayes are compared. An iterative combination of differentially expressed miRNA,
mRNA, and methylation signatures is used as a candidate marker to reveal each new
biomarker category’s impact. In each iteration, the performances of the combined models
are calculated. During all comparisons, the choice of the feature selection method and
under and oversampling approaches are analyzed. Selected biomarkers of the highest
performing models are further analyzed for the biological interpretation of functional
enrichment.

Results: In the initial model, miRNA biomarkers can identify metastatic melanoma with an
81% F-score. The addition of mRNA markers upon miRNA increased the F-score to 92%.
In the final integrated model, the addition of the methylation data resulted in a similar
F-score of 92% but produced a stable model with low variance across multiple trials.

Conclusion: Our results support the role of miRNA regulation in metastatic melanoma as
miRNAmarkers model metastasis outcomes with high accuracy. Moreover, the integrated
evaluation of miRNA with mRNA and methylation biomarkers increases the model’s
power. It populates selected biomarkers on the metastasis-associated pathways of
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melanoma, such as the “osteoclast”, “Rap1 signaling”, and “chemokine signaling”
pathways.

Source Code: https://github.com/aysegul-kt/MelonomaMetastasisPrediction/

Keywords: machine learning, melanoma, metastasis, metastatic molecular signatures, miRNA, mRNA, DNA
methylation

INTRODUCTION

Melanoma, a cancer with a rapid increase in incidence and high
mortality, is a malignant tumor of skin pigmentation cells with a
highmortality rate. Melanoma can develop anywhere on the body
but is most commonly observed in areas exposed to the sun, such
as the back, legs, arms, and face. With nearly 300,000 cases,
melanoma is one of the most common cancer types worldwide
(World Cancer Research Fun, 2021).

According to CDC statistics, 85,000 new cases are reported
in the United States on a yearly basis, where 8,000 people die
annually (United States Cancer Stat, 2021). In the European
Union, on the other hand, melanoma cancer incidence reaches
14,000 annual cases. It is considered one of the fastest rising
forms of cancer, albeit with hot spots in Europe, those being
Scandinavian countries, Switzerland, and Austria (American
Cancer Society, 2016). In addition, 16,000 new melanoma
cases have been reported in the United Kingdom, which
corresponds to 4% of all cancer types, and it has had a
rising incidence rate of 135% over 30 years (Cancer
Research UK, 2017).

Both distant and regional metastases are possible in
melanomas. The most common metastasis sites in melanoma
cases are bone, the brain, the liver, the lung, and skin. The
presence of skin metastasis may be the first outward sign of
lymphatic or hematogenous spreading. So in melanoma, rather
than diagnosis, the prognosis is a critical concern. It is possible to
detect at least suspicious cases via visual examination or short
screening. Early diagnosis leads to high cure rates, but there is still
no effective treatment in later stages, where metastasis is observed
frequently (Damsky et al., 2010).

Signatures for Metastasis
When the balance between cell growth and death is disrupted as a
result of either “uncontrolled cell growth” or “loss of apoptosis
(programmed cell death)”, tumorigenesis starts (Ma and
Weinberg, 2008; Oppenheimer, 2006). At the initial stage, a
malignant tumor presents at the site of the initial conversion
of a normal cell to a tumor cell, called a primary tumor. This
primary tumor may stay stable in this originated tissue (benign)
or spread to the other parts of the body (malignant) by invasion
or metastasis (Carter, 1974; Oppenheimer, 1982; Tonini et al.,
2003; Shen et al., 2013). Understanding the molecular basis of
carcinogenesis is essential in preventing, diagnosing, and treating
cancer and its metastasis (Harris, 1991).

Many different markers have been proposed to describe the
molecular foundation of metastasis. DNA methylation, gene
expression profiles, and microRNAs are frequent biomarkers
for predicting metastasis for most cancer types.

MicroRNAs are noncoding RNAs and regulate proliferation,
cell cycle control, apoptosis, differentiation, migration, and
metabolism (Kasinski and Slack, 2011; Jansson and Lund,
2020; Stahlhut and Slack, 2013). So, it is not surprising that
microRNAs play a crucial role as suppressors or promoters of
carcinogenesis or metastasis by controlling their target mRNA
(Shalaby et al., 2014). Based on this understanding, microRNAs
became the main focus in cancer biology and were proven to be
crucial components of the normal and pathologic states of cells
(Stahlhut and Slack, 2013; Hayes et al., 2014).

DNA methylation is a chemical process in which DNA binds
with a methyl group. This process modifies the functionality of
the DNA itself. It is an important regulator that plays a crucial
role in genomic imprinting, X-chromosome inactivation,
repression of repetitive elements, and aging. DNA methylation
associates with many types of cancer (Zhang et al., 2011). Global
hypomethylation also implicates cancer development and
progression through different mechanisms (Craig and Wong,
2011). Typically, there is hypermethylation of tumor suppressor
genes and hypomethylation of oncogenes (Gonzalo, 2020;
Melchers et al., 2015).

Predictive Models for Metastasis for Other
Cancer Types
Although predictive machine learning models for melanoma
metastasis are limited, many studies propose predictive
biomarkers for different metastatic cancers. While most of the
studies target specific markers such as microRNA or protein
expression, recent studies (Souza et al., 2017) investigate the
integrated usage of miRNA and mRNA signatures.

Binary logistic regression, which uses miRNA-331 and
miRNA-195 as markers, is able to distinguish between
metastasis and local breast cancer (sensitivity � 0.95 and
specificity � 0.76) (McAnena et al., 2019). A study conducted
by Souza et al. (2017) developed an integrated model using the
expression levels of 27 miRNAs and 81 target mRNAs to classify
prostate cancer patients from controls with 67% sensitivity and
75% specificity. Another study reports a statistical model with
71.4% accuracy for forecasting lymph node metastasis with
independent test cases (Moriya et al., 2009). Besides, the SVM
(support vector machine) classifier, which uses gene expression
profiling with microarrays, predicts metastasis with 78% accuracy
for breast cancer (Burton et al., 2012). To predict the lymph node
metastasis of primary lung cancer tumors, computerized
tomography (CT) and mRNA expression profiling are
combined via statistical analysis (Chang et al., 2008). This
method increased the accuracy from 55% (CT) to 86% (CT
and mRNA). A statistical model built with ANOVA and
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hierarchical clustering predicts future metastasis in head and neck
squamous cell carcinoma (HNSCC) with an accuracy of 77%
(Rickman et al., 2008). The research conducted by Kan et al.
(2004) proposed a predictive model for “lymph node metastasis”
by using artificial neural networks based on gene expression
profiles of primary tumors with an accuracy of 77%.

Chen and colleagues (Chen et al., 2009) studied “cancer
metastasis networks”. In that study, a large set of patient data
and the prediction of progression patterns generated a system
network for the primary tumor and the sides of metastasis. By
using these networks (which are constructed by hierarchical
clustering), they have tried to predict the primary site of the
tumor after a sequence of metastasis multinomial logistic
regression with an overall accuracy of 51% (prostate, 84%;
colon, 80%; lung and bronchus, 69%; ovary, 64%; larynx, 61%;
and female breast, 56%).

Roessler et al. (2010) have generated a risk classifier tool to
predict hepatocellular tumors by using gene expression levels
with a combination of serumAFP levels or BCLC staging. Among
six different prediction algorithms—support vector machines
(SVMs), nearest centroid (NC), 3-nearest neighbor (3-NN), 1-
nearest neighbor (1-NN), linear discriminant analysis (LDA), or
compound covariate predictor (CCP)—CCP achieved the best
sensitivity and specificity (76 and 60%, respectively) on cases
from the “Liver Cancer Institute”. They also tested the model on
another case set from the “Laboratory of Experimental
Carcinogenesis”. The model predicts the risk with a sensitivity
of 84% and a specificity of 65%.

Another study (Watanabe et al., 2010) proposed a model to
predict liver metastasis with a primary colorectal tumor by using
gene expression profiles of DNA microarray samples with the
k-nearest neighbor (KNN) method and 10-fold cross-validation.
The model predicts metastasis with 86.2% accuracy. Zemmour
et al. (2015) developed three models (elastic net, LASSO, and
CoxBoost) to predict early breast cancer metastasis using DNA
microarray data. The study used a publicly available dataset as a
training set. Then they validated the results on two different
datasets (van de Vijver’s and Desmedt’s). The model predicts
metastasis with 66% accuracy on the previous and 59% accuracy
on the other dataset.

PredictiveModels forMelanomaMetastasis
Unlike other cancers, there are limited studies on modeling
melanoma metastasis. Recently, serum levels of the cytokines
IL-4, GM-CSF, and DCD and the Breslow thickness were
proposed as markers to predict melanoma metastasis, where a
linear regression achieved the best balance accuracy (80%) in the
test set (Mancuso et al., 2020). A deep convolutional neural
network (DCNN) study to predict BAP1 mutation also
identified decisive prognostic factors for predicting metastatic
risk via whole slide images with an area under the curve of 0.90
(Zhang et al., 2020). Additionally, mir-205-5p was found to be a
significant biomarker for metastatic melanoma by Valentini et al.
(2019). Also, Wei et al. (2019) indicated that TRIM44-tripartite
motif-containing protein-44, regulated by miR-26b-5p, was
identified as amplified on melanoma tissues. The same study
reported miR-26-5p as downregulated on melanoma. The study

conducted by Kinslechner et al. (2019) showed that scavenger
receptor class B type 1 (SR-BI) protein expression contributes to
metastatic melanoma. Wang et al. (2019) proposed long
noncoding RNA TUG1 as a prognostic biomarker of
metastatic melanoma. Besides, they have also indicated that
miR-29c-3p, which is the target for G-protein signaling 1
(RGS1), suppresses the expression of TUG1.

Overall, transcriptional regulation is one of the critical
mechanisms underlying cancer development. Even though
mRNA, microRNA, and DNA methylation mechanisms have a
critical impact on metastatic outcomes, there are no
comprehensive data mining models that combine all aspects of
transcriptional regulation for metastasis prediction. In this study,
we focused on identifying the regulatory impact of genetic
biomarkers for monitoring metastatic molecular signatures of
melanoma by investigating the consolidated effect of miRNA,
mRNA, and DNA methylation. We used differentially expressed
miRNA, mRNA, and methylation signatures on the TCGA
melanoma dataset to distinguish metastatic melanoma samples
by assessing a set of predictive models. The highest performing
model is selected, and its biomarkers are further analyzed for the
biological interpretation of functional enrichment and to
determine regulatory networks.

We used the TCGA Skin Cutaneous Melanoma (SKCM)
dataset, which has been analyzed in various studies on the
overall survival and identification of prognostic markers based
on genomics data. Xiong et al. (2019) used clinical data and
miRNA sequencing data to associate the observed survival rate.
Similarly, Chen et al. (2017), Yang et al. (2018), Ma et al. (2017),
and Xue et al. (2020) studied RNA sequencing data and proposed
noncoding RNAs for SKCM prognosis. Guo et al. (2015)
combined miRNA and mRNA sequencing data and proposed
15 miRNAs and 5 mRNAs for prognosis. Additionally, Jiang et al.
presented the integration of mutation, copy number variation,
methylation, and mRNA expression data for identifying
prognostic markers. Selitsky et al. (2019) used mRNA
sequencing data and applied machine learning models to
measure the relative similarity of gene expression profiles of
bulk tumor samples and different B cell phenotypes.

MATERIALS AND METHODS

In the study, opened data for Skin Melanoma (SKCM) (The
Cancer Genome Atlas N, 2015) of the TCGA (The Cancer
Genome Atlas) database are used, which is a part of the TCGA
dataset served on the Cancer Genomics Cloud (CGC). The
Cancer Genomics Cloud (CGC) (Institute, 2020) hosts a large
genomic dataset and provides tools for searching and
analyzing genomic data, serving as a computational
environment on the cloud. The data browser tool provided
by the CGC is used to search for TCGA cases and CCLE cell
lines. On TCGA, a melanoma dataset with 470 cases composed
of 352 metastatic and 97 primary tumor samples is used during
this study, with three experimental strategies in the dataset,
namely, miRNA expression, mRNA expression, and
methylation.
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We have collected the melanoma data for miRNA sequencing,
RNA sequencing, and methylation array for this study’s
systematical analysis. For 470 different cases with primary and
metastatic melanoma, tissue samples are compared to distinguish
the metastatic melanoma from the primary tumor. We finalized
the predictive model input preprocessing by applying data
cleaning, normalization, and scaling preprocessing steps for
the remaining 449 cases (Figure 1). Overall, 470 distinct cases
and 11,265 opened files have been found by using four filters:

1. Primary Site (Skin)
2. Project (TCGA-SKCM)
3. Experimental Strategy (miRNA-Seq; Methylation array;

RNA-Seq)
4. File Access (Open)

We generated a subset of cases, which contains all data for
“miRNA sequences”, “methylation array”, and “RNA sequences”.

In the current interface of the GDC Data Portal, the following
search query provides the data files in the repository:

Cases.primary_site in (“skin”) and
cases.project.program.name in (“TCGA”) and
cases.project.project_id in (“TCGA-SKCM”) and
files.access in (“open”) and files.experimental_strategy
in (“Methylation Array”, “RNA-Seq”, “miRNA-Seq”).

TCGA provides various attributes for “miRNA sequences”,
“methylation array”, and “RNA sequences”. For miRNA, we used
“miRNA Expression Quantification”, which are miRNA
expressions provided as a table that associate miRNA IDs with
a read count and a normalized count in reads per million miRNA
mapped. Raw read counts, the number of reads aligned to each
gene, calculated using the HT-Seq algorithm, are used for mRNA.
Ensemble gene ID represents these data and the number of read-
aligned mRNAs. For methylation analysis, TCGA provides beta-

FIGURE 1 | Experimental pool generation process: each method is evaluated using a sample experimental pool under the same circumstances. miRNA, mRNA,
and methylation data consumed through TCGA were processed separately and merged to generate the whole melanoma marker dataset. Then, through random
splinting, 10 individual sample datasets are constructed. Each random split is saved by applying both undersampling and oversampling (SMOTE) techniques.
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values, which approximate the percentage of methylation of the
gene (Figure 1).

The data analysis is started with data preprocessing and
variable selection. miRNA expression is used for the initial
cycle of the spiral analysis method. Then, 11,265 separate files
that contain miRNA and mRNA expressions for each case are
downloaded from TCGA with a manifest file that contains
metadata for the specific case. The manifest file is used to read
and combine case files to generate a data pool. The final data pool
contains 472 observations with 60,492 properties for mRNA, 450
observations with 1,904 properties for miRNA, and 483
observations with 34,014 variables for methylation. We only
chose the cases which have all three experiments, namely,
miRNA, mRNA, and methylation.

The sample type property is used for the class variable, which
is a categorical variable with four levels, namely, “Primary
Tumor”, “Solid Tissue Normal”, “Metastatic”, and “Additional
Metastatic”. Only the samples with “Primary Tumor” and
“Metastatic” are selected for further analysis.

There were variables for miRNA and mRNA expressions
with a constant (1 or 0) value for all samples. These attributes
have been removed from the dataset. The remaining samples
are subject to a significance test concerning class variables;
log normalization and Z-score normalization used for
relevant markers. Markers are scaled in the 0–1 range. The
t-test has been used as a significance test (p-value is defined as
0.001). As a result of the test, 425 miRNAs, 2061 mRNAs, and
8,698 methylation variables were significantly expressed
between the two groups (“Primary Tumor” and
“Metastatic”).

For a detailed analysis of the results, all possible miRNA
patterns and their target mRNA and gene methylation are
calculated. Then, depending on the significance level, different
patterns are defined via evaluation with each other.

Random selection is applied for each class with a 20% ratio to
separate unseen data for testing during the analysis. We repeated
this randomization process to create 10 different splits, which are
used as a separate trial. By generating more than one split, we aim
to decrease the bias due to random splitting and test the
repeatability. So, as an experiment environment, we created an
experiment pool constructed by 10 random partitions for the test
set and the training set generated by applying both
undersampling and oversampling (SMOTE) (Fernández et al.,
2018) techniques for addressing class imbalance issues. So, 80% of
the data are used for training and validation (Figure 2). In each
trial, both dimensional reduction and feature selection techniques
were applied separately to solve the curse of the dimensionality
problem for both undersampling and oversampling
methodologies, and different machine learning techniques
were evaluated with 10-fold cross-validation. Final models are
tested against the unseen data separated at the beginning. All
these processes were repeated 10 times for each data set in the
experimental pool. Finally, the mean values of prediction
parameters are calculated for the results reported in this study.

Each test/training subset listed in the experiment pool was
trained and tested for different models by adding miRNA
expressions, mRNA expressions, and methylation beta-values
iteratively. Besides, to address the curse of dimensionality, we
tried both dimensional reduction and feature selection
techniques. Seven methods, namely, SVMs with linear, radial,

FIGURE 2 | Training validation and unseen test data generation in each trial; for this purpose, the following steps are followed for both undersampling and
oversampling. 1) The significant variables listed in the given category are selected from the dataset. 2) A set selected randomly fromwhole data with an 80% ratio of each
class is kept for unseen data. 3) A technique is applied to solve the curse of the dimensionality problem (for dimensional reduction, principal component analysis is
applied, and for oversampling runs, the SMOTE algorithm is used with K � 3). 4) Steps 1–3 are repeated for each data split in the experiment pool.
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and polynomial kernels, neural networks, random forests,
AdaBoost, and Naive Bayes, have been applied to generate and
test the predictive model (Figure 3). Neural networks and

support vector machines are frequent models that have been
applied to similar classification models. But as we search the
literature, we did not see any research which applied bagging,

FIGURE 3 | Model training and testing process: experiment flow initiated by applying alternative dimensionality solutions, namely, PCA and feature selection.
Through each experiment flow, models are trained with seven (SVMs with linear, radial, and polynomial kernels, neural networks, random forests, AdaBoost, and Naive
Bayes) machine learning algorithms and tested with the same unseen data. Overall flow is repeated for each data subset in the experiment pool.
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boosting, and probabilistic methods. So, we chose at least one
representative of various classification algorithm categories,
namely, artificial neural networks, bagging methods, boosting
methods, and probabilistic models, one or more. Apart from
support vector machines and neural networks, we included
adaptive boosting, an ensemble method that composes a
robust classifier from various weak classifiers, and random
forest, which relies on bagging techniques to increase
classification performance more than one decision tree.
Apart from all these, Naïve Bayes also chooses an
alternative since it is a fundamental model based on
probabilistic techniques. The mean F-score and the mean
p-value are evaluated as performance indicators for
validation and test dataset classifications. Box plot
distribution of classification scores is investigated for each
dataset in the experimental pool. The best model for each
category is made by comparing mean F-scores and mean
p-values. If these results are the same for two or more best
model candidates, we have reviewed the box plot of
significance and sensitivity distributes.

This study follows the following codingmechanism tomap the
alternative scenarios of class imbalance and dimensionality
solution techniques for each category. This annotation is used
as the naming convention of the given result set in the following
sections:

• a1: miRNA biomarkers modeled with feature selection and
undersampling

• b1: miRNA biomarkers modeled with feature selection and
SMOTE

• c1: miRNA biomarkers modeled with PCA and
undersampling

• d1: miRNA biomarkers modeled with PCA and SMOTE
• a2: miRNA and mRNA biomarkers modeled with feature
selection and undersampling

• b2: miRNA and mRNA biomarkers modeled with feature
selection and SMOTE

• c2: miRNA and mRNA biomarkers modeled with PCA and
undersampling

• d2: miRNA and mRNA biomarkers modeled with PCA and
SMOTE

• a3: miRNA, mRNA, and methylation biomarkers modeled
with feature selection and undersampling

• b3: miRNA, mRNA, and methylation biomarkers modeled
with feature selection and SMOTE

• c3: miRNA, mRNA, and methylation biomarkers modeled
with PCA and undersampling

• d3: miRNA, mRNA, and methylation biomarkers modeled
with PCA and SMOTE

All preprocessing, training, validation, and testing are done
using R studio using various R packages.

• Neural Network (package: nnet) (Ripley, 2002; Ripley and
Venables, 2021)

• AdaBoost (package: adabag) (Alfaro et al., 2013; Alfaro
et al., 2018)

• Random Forest (package: ranger) (Wright and Ziegler,
2017; (Wright et al., 2021)

• Naïve Bayes (package: naivebayes) (Majka andMajka, 2020)
• Support Vector Machine (package: kernlab) (Karatzoglou
et al., 2004; Karatzoglou et al., 2016)

• Smote (smotefamily) (Siriseriwan, 2019a; Siriseriwan,
2019b)

During the collection and evaluation of the results, we
followed a systematic cross-comparison technique. First, we
collected the prediction scores for different classification
models to find the best algorithm. Evaluation of the successors
within each feature category identified the winner. Finally, model
progress and the contributions of adding new feature categories
are assessed based on these collected results. The illustration of
this process is summarized in Figure 4.

The experiment is repeated for each subset in the data pool to
find the prediction scores, and mean values were calculated. We
have assessed the predictive algorithm using seven different
machine learning models, including representatives of various
classification algorithm categories, namely, artificial neural
networks, bagging methods, boosting methods, and
probabilistic models. We applied 10-fold cross-validation for
each subset and calculated the mean F-score; the mean p-value
was used to evaluate each category’s best model. If the results are
the same for two or more model candidates, we have reviewed the
box plot of significance and sensitivity distributes to choose the
one with low variance.

F Score � 2p
(PrecisionpRecall)
Precision + Recall

(1)

As a final step, we performed functional and pathway
enrichment analysis by using DAVID (Huang et al., 2007;
Dennis et al., 2003). The KEGG, Reactome, EC Number, and
Biocarta Pathways of selected biomarkers are compared for sets of
“miRNA”, “miRNA and mRNA”, and “miRNA, mRNA, and
methylation” to better understand the contributing factors
behind the higher precision and consistency after including
methylation data in the models.

RESULTS

In this study, we have evaluated the potential genetic biomarkers
of melanoma metastasis. In addition, we developed multiple
predictive models to predict the metastatic outcome by
integrating miRNA, mRNA, and DNA methylation markers
by using the TCGA melanoma dataset. This study’s
experimental strategy is composed of a 3-cycle evaluation,
each of which targets different feature categories. In each
cycle, the evaluation of different techniques to solve
dimensionality and the class imbalance problem is applied.
Figure 5 summarizes the results of all evaluation techniques
for each cycle.

At the first step of the initial cycle, we have implemented a
predictive model (a1) with a microRNA biomarker model using
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feature selection through importance (the hybrid model) and
the class imbalance solution through undersampling. The
predictive model with adaptive boosting (AdaBoost)
demonstrates the best results among all the trials with the
highest F-score and accuracy. Besides, the variance of the
results for the different datasets in the experiment was also
low compared to other models. Similarly, the random forest has
the second-best results among all trials (an F-score of 80%). In
the second scenario (b1), when we replace the class imbalance
solution with SMOTE, the random forest demonstrates similar
results, with an F-score of 79%. In parallel, adaptive boosting
(AdaBoost) presents a comparable performance (an F-score of

80%) to that of the random forest model with a slightly higher
score. In the third trial (c1), we have used undersampling and
dimensional reduction with PCA. According to our results,
adaptive boosting (AdaBoost) showed better scores (an
F-score of 80%), but for this time, the SVM with the linear
kernel (an F-score of 78%) was better than the random forest (an
F-score of 72%), demonstrating the second-best results. Finally,
we applied SMOTE to address the class imbalance issues (d1).
The results were similar to those of the first trial; adaptive
boosting showed the best results (F-score: 80%), and the random
forest also had better results (F-score: 79%) than other models
(Figure 6).

FIGURE 4 | Illustration for category-based analysis with techniques applied: each evaluation criterion is represented with a code. For example, (a1) represents the
predictive models by using miRNA signatures with the hybrid method, that is, the random forest, to calculate feature importance undersampling for the class imbalance
solution. Similarly, (d3) represents the outcomes of models applied to predict metastasis using significant miRNA, mRNA, and methylation biomarkers using PCA as a
dimensional solution and SMOTE as a class imbalance solution.

FIGURE 5 | Illustration for results of category-based analysis with techniques applied to solve significant issues: as a result of the evaluation process, (c1) is selected
as the successor model for miRNA markers. When two markers, miRNA and mRNA, are combined, the winner is identified as (d2). In the final cycle, the merge of all
biomarkers resulted in (d3) as the successor. Among all, (d3) was the winner to predict the metastatic outcome.
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As a result of the initial cycle, microRNA biomarkers predict
the primary tumor’s metastatic outcome with an F-score of
almost 80%. In predictive models, by using miRNA markers,
all workflows showed similar classification power. We selected
(c1) the adaptive boosting with the PCA and undersampling as it
results in the highest F-score. Both the random forest and
adaptive boosting (AdaBoost) demonstrated better results in
each workflow (Figure 6).

In the second cycle, we utilized both miRNA and mRNA as
biomarkers. Like in the previous cycle, we first used (a2) feature
selection through importance (the hybrid model) and the class
imbalance solution through undersampling. When we compare
the predictive models, the results were quite similar, with varying
F-scores between 81% and 83%. However, the random forest
produces the best results with regard to the mean F-score (83%)
and the mean p-value (8.26 × 10−05). The SVMwith a polynomial
kernel was the second-best model to predict the metastatic
outcome, with the same F-score but a lower p-value (9.34 ×
10−05). As a second trial (b2), we have replaced the class
imbalance solution with SMOTE. The results for each model,
which vary in the range of 80–84% for the F-score, were quite
similar. The neural network showed the best F-score (84%) and
p-value (2.41 × 10−05). The SVM with linear and polynomial
kernels also had the same F-score (84%), and the neural network
showed a higher significance. Adaptive boosting and the random
forest demonstrate better results for the miRNA–mRNA cycle
and predict the metastatic outcome with equal mean F-scores of
81%. In the third trial (c2), undersampling for class imbalance
and dimensional reduction with PCA are applied. The SVM with
the linear kernel was the best model with the highest F-score
(90%). The neural network was the second-best model to predict

metastasis with an F-score of 89%. Nevertheless, this time,
adaptive boosting (F-score: 82%) and the random forest
(F-score: 75%) are left behind. As the final trial (d2), we have
applied SMOTE and dimensional reduction with PCA (d2). The
neural network and the SVM with the linear kernel produced the
best results compared to the rest with F-scores of 91 and 92%,
respectively. On the other hand, adaptive boosting and the
random forest showed high variance across different trials
(Figure 7).

At the end of the second cycle, we saw that models using
miRNA and mRNA marker winner models had F-scores ranging
between 83 and 92%. The prediction scores for both boosting and
bagging techniques were not as good as they were in the first
cycle. Since the F-score for (d2), the SVM using PCA and
SMOTE, has the highest scores, it is selected.

In the third cycle, we combined all miRNA, mRNA, and
methylation biomarkers. Similar to previous cycles, we applied
a combination of each class imbalance and dimensionality
solution techniques. We decided on neural networks since
model significance demonstrated improvement in our results.
Firstly, all Neural network, SVM with linear and polynomial
kernel predicts metastasis with an F-score of 83% by using under-
sampling and feature selection through importance techniques
(a3). Both SVMwith radial kernel and random forest predict with
similar F-scores (83%). So, the results of the prediction model
were close to each other for this trial. However, the lowest
variance across different trials was observed with SVM (linear
kernel). In the second trial (b3), we have replaced the class
imbalance solution technique with SMOTE. Both SVM with
linear kernel and the polynomial kernel were the two best
performing models with F-scores of 84% and 85%. In the

FIGURE 6 |Model comparison of techniques used for miRNA biomarkers (red, sensitivity; green, predictivity; blue, accuracy; purple, F-score): Category 1, which
uses a hybrid model of feature selection and an AdaBoost classifier, has the best results among all scenarios.
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third trial (b4), sampling and dimensional reduction with PCA
are applied. SVM was the best model regardless of the selected
kernel (F-score; 88%). Finally, when we applied SMOTE instead
of under-sampling (d3), SVM with linear kernel demonstrated
slightly higher scores (F-score 92%). In contrast, SVM with
polynomial kernel and Neural network had an F-score of 91%
and 90%. The best predictive model was SVM, trained by using
dimensional reduction with PCA and SMOTE (d3). Like the
second cycle, both SVM and Neural Network models resulted in
better results in all trials. In addition, both under-sampling and
oversampling techniques produced similar results (Figure 8).

As a result of all evaluations (see Supplementary Material),
we came up with successors for each biomarker category (Table 1;
Figure 9). First of all, the random forest with (a1) feature
selection and undersampling achieved best results for miRNA
markers (F-score � 81%, sensitivity � 75%, specificity � 90%,
accuracy � 82%, and p � 1.7 × 10−4). In addition, the SVM (d2)
with PCA and SMOTE was the most successful technique for a

combination of miRNA and mRNA markers (F-score � 92%,
sensitivity � 92%, specificity � 93.5%, accuracy � 93%, and p � 1.0
× 10−7). Finally, by using all miRNA, mRNA, and methylation
markers (d3), the SVM reached the same results as the previous
one, with higher consistency across different trials (F-score �
92%, sensitivity � 92%, specificity � 93%, accuracy � 92%, and p �
1.05 × 10−7) (Figure 9).

In the third model, 10 miRNA biomarkers, namely, hsa-mir-142,
hsa-mir-29c, hsa-mir-3124, hsa-mir-3130, hsa-mir-326, hsa-mir-
331, hsa-mir-4419b, hsa-mir-4444, hsa-mir-4474, hsa-mir-4491,
hsa-mir-4523, hsa-of mir-625, and hsa-mir-766, are found to be
upregulated and 1 miRNA, hsa-mir-203a, was found to be
downregulated. Hence, 11 miRNA markers have been used as a
biomarkers in our successormodel to predict metastasis. In addition,
163 methylation and 1770 mRNA markers are selected in the final
triple-biomarker model. All miRNA biomarkers and their target
miRNA and methylation information in their target genes are
presented in Supplementary Tables S2, S3.

FIGURE 7 | Model comparison of techniques used for miRNA and mRNA biomarkers (red, sensitivity; green, predictivity; blue, accuracy; purple, F-score): the
model listed in 4, which applies (d2), is selected as the successor model for the second cycle.

TABLE 1 | Summary for iterative progress on model precision scores.

Best method Tuning grid Best tune hyperparameters Validation Test

miRNA PCA and undersample Max depth: [2:8] Max depth: 6 Accuracy: 86% Accuracy: 81%
AdaBoost # of trees: [1:16] Number of trees: 12 F-score: 86% F-score: 82%

Co-efficiency of learning: Breiman
miRNA and mRNA PCA SMOTE Cost: 10(−4) × (20:150)) Cost: 0.0025 Accuracy: 81% Accuracy: 93%

SVM (linear kernel) F-score: 0.82% F-score: 92%
miRNA, mRNA, and methylation PCA SMOTE Cost: 10(−4) × (20:150)) Cost: 0.0027 Accuracy: 82% Accuracy: 93%

SVM (linear kernel) F-score: 83% F-score: 92%

The miRNA model applied by feature selection through importance (the hybrid model) and the class imbalance solution through undersampling is the method to be applied for prediction.
For both “miRNA–mRNA” and the “miRNA–mRNA–methylation” triple model, principal component analysis for dimensionality and SMOTE for the class imbalance solution was the best
method to increase predictive power and stability of the model.
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Evaluation of the overall results at the functional level is
completed with an enrichment analysis. We used DAVID
[(Huang et al., 2007; Dennis et al., 2003)] tools for biological
interpretation of selected features used in the selected “miRNA
and mRNA” classification and “miRNA, mRNA, and
methylation” classification.

Using the functional enrichment analysis, the KEGG,
Reactome, EC Number, and Biocarta Pathways of selected
biomarkers are compared for “miRNA and mRNA” with
“miRNA, mRNA, and methylation” to examine the reason for
higher precision and consistency of addition of methylation. In
the model with methylation markers, the significance of the
osteoclast, Rap1 signaling pathway, and chemokine signaling

pathways increased (Figure 10). Osteoclast differentiation also
appealed within the top 15 pathways when all 3 biomarker
categories are combined. In addition, the Rap1 signaling
pathway and chemokine signaling were listed in the top 3
among the most significant pathways (Table 2).

DISCUSSIONS

Melanoma can be distinguished with visual assessment or
through a short screening. Although there is an opportunity
for a cure when detected in the early stages, treatment is
challenging in later stages. Likewise, metastasis is an undesired

FIGURE 8 | Model comparison of techniques used for miRNA, mRNA, and methylation biomarkers (red, sensitivity; green, predictivity; blue, accuracy; purple,
F-score). The model listed in 4, which applies (d3), is selected as the successor model for the final cycle.

FIGURE 9 | Comparison of best models for each biomarker set (red, sensitivity; green, predictivity; blue, accuracy; purple, F-score): 1) the performance of the
predictive model by using miRNA, 2) the performance of the predictive model by using miRNA and mRNA markers, and 3) the performance of the predictive model by
using miRNA, mRNA, and methylation markers.
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outcome in such cases, and differential diagnosis is crucial for the
treatment decision. So, the opportunity for the diagnosis of
metastatic melanomas in earlier stages may support

therapeutic decisions and advice for more frequent and in-
depth screening, providing a higher chance for cure or
prevention of further metastatic progress.

FIGURE 10 | Significant pathways functionally enriched in all three feature sets. As the new biomarker set is added, the significance of the pathways is evaluated.
Osteoclast, Rap1 signaling pathway, and chemokine signaling pathways showed a significant increase in the third model.

TABLE 2 | Comparison of the top 15 pathways of different biomarker sets.

p-value

miRNA miRNA–mRNA miRNA–mRNA–methylation

6.3.2.- — 1.60 × 10−02 —

cAMP signaling pathway 7.40 × 10−04 — —

Chemokine signaling pathway (*) — 2.40 × 10−07 1.60 10−10

Cytokine–cytokine receptor interaction — — 1.90 10−04

Endocytosis 4.30 × 10−04 6.30 × 10−11 1.40 10−04

Focal adhesion 6.10 × 10−09 1.40 10−06 2.80 10−07

Hepatitis B 4.40 × 10−09 — —

HTLV-I infection 5.10 × 10−07 3.60 × 10−13 2.00 × 10−09

MAPK signaling pathway 1.60 × 10−03 6.70 × 10−11 4.90 × 10−04

Osteoclast differentiation (*) — — 2.90 × 10−14

Pathways in cancer 4.60 × 10−13 3.10 × 10−16 1.20 × 10−12

PI3K-Akt signaling pathway 7.00 × 10−05 8.00 × 10−06 1.90 × 10−05

Proteoglycans in cancer 2.00 × 10−10 5.70 × 10−10 2.70 × 10−08

R-HSA-212436 3.40 × 10−05 6.00 × 10−03 —

R-HSA-983168 3.60 × 10−03 3.80 × 10−05 7.30 × 10−03

Rap1 signaling pathway (*) 4.80 × 10−07 4.30 × 10−06 3.70 × 10−10

Ras signaling pathway 3.80 × 10−06 1.50 × 10−07 3.00 × 10−08

Regulation of actin cytoskeleton 1.80 × 10−03 1.70 × 10−05 1.50 × 10−04

Viral carcinogenesis 9.70 × 10−06 5.10 × 10−04 3.80 × 10−04

*p-values of the osteoclast, Rap one signaling pathway, and chemokine signaling pathways gradually increased after adding a new biomarker set. In addition, the Rap1 signaling pathway
and chemokine signaling were listed among the top three pathways with increasing significance with osteoclast differentiation. Other pathways with increasing significance, such as
cytokine–cytokine receptor interaction and the Ras signaling pathway, are also observed.
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This study shows that miRNA plays an essential role in the
metastatic progression of primary melanoma and predicts
metastasis outcomes with high accuracy. miRNA biomarkers
anticipated metastatic results with an F-score of 82%.
Expansion of mRNA markers upon miRNA reached an
F-score of 92%. The ultimate model, which includes DNA
methylation, results in a comparative F-score of 92% but
delivered a steady model with low variation over different
trials. Moreover, the integrated evaluation of miRNA with
mRNA and methylation biomarkers increases the model’s
predictive power. Another remarkable finding in this study is
that the boosting and bagging model’s performance was better for
miRNA signatures. However, when we added new mRNA and
DNA methylation, we got higher prediction scores for neural
networks and support vector machine classifiers.

One limitation of the study was the data imbalance and small
sample size. We validated and tested our models in a restricted
data size since we could not access additional datasets on the GEO
or CGC, combining all three markers at the time of the study.
We utilized oversampling techniques and ran the overall
process multiple times to reduce the bias to address this
limitation. Additionally, we were able to compare various
machine learning models as they were appropriate for the
data size in the study. However, we realize that deep learning
methods would be competitive with these techniques.
Therefore, repetition of the study with a balanced or more
extensive dataset in the future can further validate the
biomarkers reported here.

In machine learning studies, undersampling techniques are
also used to deal with class imbalance issues. So we performed
oversampling and undersampling methods and evaluated their
outcomes. The SMOTE, a synthetic minority oversampling
method based on the k-nearest neighbors, has been tested with
different k values between 3 and 6, and the final k was chosen as 3.
We used the 1:2 ratio for oversampling of the minority class.
Under the given circumstances, we generated similar results for
both undersampling and oversampling. Overall, our results
present satisfactory evidence that the synthetic minority
oversampling technique can also be applicable for prediction
studies for genomics data.

As our model is based on the differences between primary and
metastatic melanomas, the markers identified here can be used
for differential diagnosis. We believe that it will become possible
to predict melanomas with metastatic potential (prediction of
prognosis). In those cases, several actions can be taken in the
clinic, such as intensive scanning for metastasis or frequent
follow-ups with patients. In the future, patients with higher
risk can be offered prevention from metastasis with gene
therapies based on emerging technologies like miRNA
therapies or gene editing.

In this study, we focused on identifying the regulatory impact
of genetic biomarkers for monitoring metastatic molecular
signatures of melanoma by investigating the consolidated
effect of miRNA, mRNA, and DNA methylation. We used the
TCGA melanoma dataset to predict metastatic melanoma
samples by assessing a set of predictive models. Differentially
expressed miRNA, mRNA, and methylation signatures are used

as biomarkers throughout the study. The highest performing
models’ selected biomarkers are further analyzed for the
biological interpretation of functional enrichment and
determining regulatory networks. So we focused on gradually
including new feature sets. To reveal our evaluation pattern for
including new biomarker sets, we performed functional
enrichment analysis. The functional enrichment of the KEGG,
Reactome, EC Number, and Biocarta Pathways of selected
biomarkers are compared for sets of “miRNA”, “miRNA and
mRNA”, and “miRNA, mRNA, and methylation”, and we tried to
search for the reason behind the higher precision and consistency
achieved after addition of methylation. The osteoclast, Rap1
signaling pathway, and chemokine signaling pathways
significantly increased and listed the top 15 pathways when all
3 biomarker sets are used for modeling. So the combined model
populates selected biomarkers on the metastasis-associated
pathways of melanoma.

Osteoclasts are multinucleated cells responsible for bone
resorption. Molecular pathways involved in osteoclast
proliferation, differentiation, and survival are essential players
in bone metastasis. Osteoclast differentiation is a systemic
pathway that controls bone renovation. Since the main
metastasis sites for melanoma cancer include bone, the liver,
the lung, and skin/muscle (Wright et al., 2021), functional
enrichment of osteoclast-related pathways within top-level
pathways is a supporting finding for our study design.

Ras-associated protein-1 (Rap1) is an important regulator for
basic cell functions such as cellular migration and polarization.
This pathway is an important factor for tumor metastasis, so such
an increase in the significance level is also critical for the
metastatic outcome (Zhang et al., 2017).

Chemokines are involved in controlling the migration of
cells during normal processes of tissue maintenance or
development. The chemokine-receptor system plays critical
roles in various physiological processes, including immune
homeostasis, inflammatory responses, and cancer
progression. Chemokines have essential roles in tumor
progression and are involved in the growth of many cancers
and metastasis (Sarvaiya et al., 2013).

Since the initial discovery of the relationship between cancer
and miRNA signatures, many studies have shown that miRNA
has a critical role in the regulation of genes, and thus, has a critical
role in tumorigenesis. Today, many techniques for the early
detection of and diagnosis of tumors are available. Still, when
invasive procedures are required for diagnosis or treatment, it is
vital to know the tumor’s metastatic potential to estimate the risks
vs. the benefits of the procedure. Also, in the later stages of tumor
development, any information about the metastatic status of late-
stage tumors is required for deciding between therapy choices.
Hence, the miRNAs reported in this study can be candidates for
therapeutic targets of melanoma metastasis.
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