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ABSTRACT: High-throughput biology has contributed a wealth of data on chemicals, including natural products (NPs).
Recently, attention was drawn to certain, predominantly synthetic, compounds that are responsible for disproportionate
percentages of hits but are false actives. Spurious bioassay interference led to their designation as pan-assay interference
compounds (PAINS). NPs lack comparable scrutiny, which this study aims to rectify. Systematic mining of 80+ years of the
phytochemistry and biology literature, using the NAPRALERT database, revealed that only 39 compounds represent the NPs
most reported by occurrence, activity, and distinct activity. Over 50% are not explained by phenomena known for synthetic
libraries, and all had manifold ascribed bioactivities, designating them as invalid metabolic panaceas (IMPs). Cumulative
distributions of ∼200,000 NPs uncovered that NP research follows power-law characteristics typical for behavioral phenomena.
Projection into occurrence−bioactivity−effort space produces the hyperbolic black hole of NPs, where IMPs populate the high-
effort base.

■ INTRODUCTION

The advent of high-throughput screening (HTS) and the
subsequent development of a plethora of compatible biological
assays have led to a staggering amount of bioactivity data.
Beyond the inherent difficulty of managing high volumes of
data, the validity of the hits and assays has to be questioned.
Some compounds, in commercial or privately assembled
chemical libraries, were shown to be responsible for a
disproportionate fraction of the hits in these screens.1

Moreover, many of these hits often appeared to be acting as
panaceas, i.e., they showed activity in several disparate assays
(frequent hitters), suggesting that they could be lead structures
for drug development for several different diseases. In most
cases, these were false positives, and extensive efforts have been
devoted to understand the mechanisms involved. The
designation of some of those compounds as PAINS (pan-
assay interference compounds)2 and, more broadly, as
promiscuous inhibitors3 adequately reflects how this select
group of chemicals has led, and may continue to lead, to wasted
effort and resources in futile development programs.
Evidence for Panacea Natural Products. A suspicion

that these nonspecific inhibition phenomena might not be
restricted to synthetic chemical libraries but might extend to
natural product (NP) programs is the driving force for the

present investigation. Evidence for panacea NPs came from
various aspects of our research programs. One source of
evidence relates to the widely observed challenges associated
with identifying highly selective bioactive principles in complex
NP extracts. Examples include our own efforts to advance
interdisciplinary drug discovery, e.g., the development of anti-
TB leads from NPs,4 as well as botanical dietary supplement
research programs, e.g., efforts to advance the rationalized
pharmacognosy of black cohosh (Actaea racemosa).5 Indeed,
insight is growing that the active principles in many crude NP
therapies are polyfactorial agents (multiagent, multitarget).6−8

This challenges the long-held paradigm of bioassay-guided
fractionation as the standard discovery process for NP
bioactives and instigates the development of new approaches
such as biochemometrics,9 databases and metabolic networks,10

or machine learning.11 An extensive list of unconventional
approaches can be found in a timely review compiled by
Wolfender et al.12

A second indication that panacea NPs exist came from the
observation of an inverse correlation between the purity and
anti-TB bioactivity of ursolic acid,13 leading to the establish-
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ment of (quantitative) purity−activity relationships ([q]PARs)
as a means of hit validation.13,14 A subsequent global literature
search of the biological profile of ursolic acid using the
NAPRALERT database (unpublished data) confirmed the
earlier notion13 that panacea-like properties have been ascribed
to this near-ubiquitous plant NP.
A third source of evidence for panacea NPs originated from

an extensive meta-analysis of the primary literature on bioactive
NPs, evaluating the status quo of methodology used in the
analysis and purification of natural products:15 the AnaPurNa
study uncovered a variety of analytical and conceptional
parameters that can impact the validity of a hit. Developed
further in the AnaPurNa study, the several factors that were
identified as impacting the NP valid lead discovery process
(e.g., purity, metabolomic sources, analytical methodology, and
bioassay specificity) are distinctly different from the mecha-
nisms of biological promiscuity discussed in the present
perspective. However, both the previous and present findings
ring true with the points raised by Cordell7 about
ecopharmacognosy and the multiple challenges of NPs as
treatments or tools for drug supply and discovery.
A fourth source of evidence involves a broader body of our

own work that led to the establishment of the concept of
residual complexity (RC) (see http://go.uic.edu/
residualcomplexity).15,16 RC refers to the convolution of
major and minor chemical species in NP preparations and
other materials that originate from (bio)synthetic reaction
mixtures, i.e., the designated actives, impurities, and biogenetic
congeners or side products. The RC concept is particularly
significant in instances where minor (residual) constituents
cannot be neglected and are actually key to the explanation of
biological outcomes achievable with NPs. This applies
regardless of whether the residual agent is already present
(static) or formed over time (dynamic), e.g., during the
biological evaluation.
Meta-Analysis with the NAPRALERT Database. The

above points provided ample rationale to propose that a holistic
analysis of the world literature on bioactive NPs was required to
detect additional key parameters and identify global principles
that are important to the success of the (drug) discovery
process. The primary resource for undertaking this otherwise
Herculean ab initio task was the natural products alert
(NAPRALERT) relational database. The ChEMBL17 and
PubChem18,19 databases were used as secondary sources for
structural and bioassay data.
Invalid Metabolic Panaceas. In its overall outcome, this

study recognized multiple factors driving NP-based discovery.
In particular, we observed that certain NPs, designated invalid
metabolic panaceas (IMPs), interfere with this process. IMPs
are familiar to most researchers in the field, but they are not
necessarily well-understood metabolites. Some of the identified

IMPs were recognized by the PAINS filters, others were proven
to be aggregators or to show the characteristics of both groups,
while still others fit neither of these categories.
IMPs extend the established principle of promiscuous

molecules such as PAINS rather than being a subset thereof.
This is supported by the outcome that for some of the IMPs no
known promiscuous characteristic, other than observed
promiscuity itself, could be found. Like PAINS, IMPs tend to
divert major research effort and scientific focus away from
potentially more promising molecules. The present perspective
both identifies IMPs and provides potential routes for avoiding
unproductive effort in NP-based research programs.

■ OPENING THE NAPRALERT WINDOW

Bioassay Interference with Natural Products. The
insight that certain compounds could “trick” bioassays (Figure
1, middle) became actively disseminated at the end of the
1990s with the description of the promiscuous effects of some
chemical substances in HTS assays.20,21 Systematic recognition
of aggregation as a major cause of artifacts in bioassays
commenced with the ground-breaking work of the Shoichet
group and their 2002 publication.3 The authors applied a
variety of orthogonal methods to demonstrate that certain
compounds could act as false positives in bioassays by forming
aggregates binding to protein targets in the aqueous media that
are predominantly used in bioassays.22 The definition of PAINS
entered the picture of bioassay artifacts in 2010: the Baell
group2 recognized PAINS as compounds that bear problematic
substructures that escape traditional substructures filters, while
still being identified as hits in assays that were specially crafted
to reduce aggregation artifacts as unveiled by the Shoichet
group.
Some PAINS possess substructures that were considered to

be characteristic of aggregating compounds, despite the adapted
bioassays.23 Moreover, new compounds that cannot be avoided
by PAINS removal strategies continue to be discovered,24

indicating that other forms of promiscuity exist in both natural
and synthetic molecules. Other mechanisms by which
compounds will act as promiscuous agents have been
summarized.25 The most common process of bioassay
interference is related to fluorescence, a frequent read-out in
HTS assays.26 Additional means of interference include
precipitation of an analyte as a cause for false negatives, light
scattering leading to false positives in UV/visible read-out
assays, and membrane disruption causing issues in whole-cell
assays.
All of these bioassay-related means of generating anomalous

results in compound libraries apply equally to NP-based drug
discovery. Compared to synthetic libraries, the NP approach to
drug discovery has a more prominent analytical dimension, at

Figure 1. Relationship among the source, the bioassay, and the interpretation of data from the NP discovery pathway is complex by nature.

Journal of Medicinal Chemistry Perspective

DOI: 10.1021/acs.jmedchem.5b01009
J. Med. Chem. 2016, 59, 1671−1690

1672

http://go.uic.edu/residualcomplexity
http://go.uic.edu/residualcomplexity
http://dx.doi.org/10.1021/acs.jmedchem.5b01009


least historically, due to the need for isolation, purification, and
identification. The increasing recognition of the impact of
multiple reaction products and purity in combinatorial
libraries27,28 has its parallel in the combinatorial biosynthesis
of NPs. In fact, as residual complexity (RC) is found almost
ubiquitously in NPs, there is a need for the careful analysis of at
least static RC, especially when considering the historically poor
attention to analyte purity and the inherent complexity of
biological matrices.15

In the case of NP lead discovery, the relationship between
the agent and the bioassay, consisting of the reporter and the
target, is rather complex (Figure 1). This is a result of three
main factors: (a) the RC (purity) of the NP sample, which
arises from its natural source and is the main energizer of the
discovery process (Figure 1, left); (b) a variety of known
potential interferences that can occur between the agent and
the reporter components of the bioassay (Figure 1, middle);
and (c) the nature and/or complexity of the actual biological
target (Figure 1, middle right). All three factors contribute to
the current status of NP-based discovery in terms of effort
spent, leads identified, and IMPs encountered during the
process.
Initial Observations. The present work began with two

basic enquiries regarding the long-term distribution of NPs in
the literature and the global effort expended on them.

(i) Which metabolites are the most reported in the
literature?

(ii) Which metabolites are the most reported as showing
biological activities?

The NAPRALERT database29 was used throughout this
project. Housed at the University of Illinois at Chicago for over
45 years, it covers more than 80 years of predominantly
phytochemical natural product research, including both
chemical and biological information. More importantly, it is
the most complete and comprehensive applicable database
available. It includes almost all phytochemicals reported for the
covered years as well as their biological activities and source
organisms. A preliminary study showed that the distribution of
both groups of highly reported compounds followed a rather
specific, but not mathematically uncommon, pattern. This
revealed, with the confidence of thousands of supporting
primary references collected in the database, that some
metabolites were heavily over-represented. The present meta-
analysis represents the logical extension of this initial result and
is aimed at learning more about these highly reported
compounds, often with similar structures, and the reasons for
their over-representation in the scientific literature.
The Origins of NAPRALERT Information. It is important

to understand the origin of the information deposited in the
database, in order to appreciate the significance of the meta-
analysis results. NP-based research programs are often driven
by interest in identifying bioactive metabolites. The organism
provides the library of metabolites that may be investigated.
The choice of organelle(s) or plant part(s) along with the
extraction method(s) provides the first level of metabolite
selection. In bioassay-guided fractionation schemes, the
researcher is interested only in identifying and isolating
metabolites that display bioactivity. A variation of bioassay-
guided fractionation seeks to identify and isolate novel
structures associated with selected bioactivities. Metabolites
with promising bioactivities may be reisolated from the sources,
or isolated from other sources, in order to continue bioactivity

investigations. Persistent bioactivity studies are desirable to
develop promising drug leads and are facilitated by databases
that report both chemical and biological activity data.
Some chemistry-driven research programs are specifically

interested in novel metabolites regardless of their bioactivity. In
addition, some metabolomic studies have been performed to
identify and isolate a large number of both known and
previously unknown compounds from natural sources. Chemo-
taxonomic and endophyte-targeted investigations provide other
motivations for metabolite identification and isolation.
Accordingly, the information available in NAPRALERT is
similar to, but not the same as, the HTS campaigns that led to
identification of panacea compounds.
Another influential aspect is that the limited bioassay

information, typically found in individual NP publications,
makes it difficult to perceive bigger patterns unless a very large
number of publications is studied. Even larger NP discovery
campaigns have had the inherent handicap of a relative paucity
of biological information, resulting in a limited ability to
recognize global trends. This limitation was one of the key
motivations for the founder of NAPRALERT and his colleagues
to embark on the long journey of creating this unique resource.
On the other hand, the curators of experimental HTS data

are faced with the treatment of thousands to millions of entries
for each campaign. Therefore, it is more likely that HTS-driven
initiatives can produce awareness of the existence of nuisance
compounds that show strong connections to producing
unexpected or undesired outcomes.

The Next Step beyond Identifying Metabolic Pan-
aceas. Recently, an increasing number of studies have aimed at
unravelling the mechanisms of panacea compounds. The most
prevalent manifestations of assay interference are aggregation,
precipitation, instability, chemical reactivity, optical opacity
(absorption, diffusion), oxidation/reduction, fluorescence
quenching, and RC (impurities). While some of these
phenomena can lead to false negatives, most possess substantial
disrupting potential by producing either false positives or
yielding results that appear to be incoherent when comparing
them with results from orthogonal (bio)assays. While some
studies have started to investigate these phenomena in NPs,30,31

it appears that the NP literature has not yet embraced these
concepts as being essential for a more targeted discovery
process and/or acknowledged the nuisance character of certain
hits. We felt that a study specifically designed to identify and
evaluate the suspicious characteristics of certain NPs was in
order. To this end, this Perspective also seeks to raise awareness
by summarizing recent work on nuisance mechanisms that are
also applicable to NPs.

■ THE CHALLENGES ASSOCIATED WITH BIOASSAYS
Several mechanisms are known to underlie unwanted
interferences between screened materials and bioassays. The
following section begins with a summary of NP-specific
parameters that can add another (undesired) dimension to
the interpretation of biological outcomes. The subsequent
survey of in vitro interference mechanisms also brings to mind
that the continued predominance of in vitro screening over in
vivo assessment does not come without its challenges. On the
basis of their over two decades of experience in the discovery of
chemopreventive agents, Kinghorn and co-workers32 pointed
out that the difficulty of finding promising NP leads may be
correlated with the trend of eliminating pharmacological in vivo
models, in favor of higher throughput in vitro assays. It is an
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intriguing question to ask, whether the early significant NP
discoveries that resulted from in vivo primary screening efforts
(e.g., the 1960s to early 1980s NCI campaign yielding taxol,
camptothecin, maytansine, dolastatins, bryostatins, etc.) would
also have been made in programs driven by in vitro assays.
Collectively, this may generate impulses for a future
comparative assessment of the overall effectiveness of the two
paradigmatic approaches, which could add a useful dimension
to the present discussion.
The Complexity of Natural Sources. As documented by

the highly comprehensive work of Newman, Cragg, and their
co-workers (refs 33 and 34 and references therein), NPs are a
vital source of drugs and/or molecular scaffolds for drugs. It can
be perceived as unfortunate, or the natural challenge, that this
enormous potential is confounded by complex issues of
sourcing, purification, and assay perturbation.15,31,35 The source
organism’s metabolic matrix is usually complex already,
containing compounds produced for, e.g., metabolic purposes,
defense, or interspecies communication. Metabolites are
typically products or substrates of enzymes that can have
homologues in target organisms. It should be no surprise if at
least some metabolites could actually have an effect on these
homologous enzymes, thus giving rise to interesting and even
unexpected activities. Similar considerations apply for primor-
dial molecules that might appear commonly across distant taxa;
as Sandor and Mehdi inferred in 1979, “steroids are very
ancient bioregulators, which evolved prior to the appearance of
eucaryotes or were even possibly synthesized abiotically”.36

This idea was later reinforced in 1993 by Agarwal in his review
of steroid hormones receptors in microbes and plants.37

Examples include mammalian steroid hormones that are
known to also be present in plants (e.g., progesterone in
walnut leaves)38 and 3-O-sulfation as a shared means of
steroidal metabolism in plants (e.g., Adonis aleppica) and
mammals.38

Purity and Residual Complexity. Whereas purity is
central to the definition of pharmaceutical quality, purity of
assayed metabolites or fractions is often overlooked or assessed
unreliably.39,40 For NPs in particular, many commercially
available metabolites are of moderate purity, typically in the
range of 90−95% declared purity, and only infrequently
assessed by independent methods.40 For metabolites obtained
by bioassay-guided fractionation, the problem of residual
complexity (RC) is inherent. In static RC, the residual
components are chemically stable and do not change over
time.13 In dynamic RC, not only does the concentration of the
metabolite change, but also new chemical entities appear in the
sample over time and as a function of environmental
conditions, e.g., the bioassay.41 While this concept originated
with NPs, it can apply to synthetic compounds as well, where
each sample carries its synthetic history rather than a biogenetic
heritage. Whereas the identified (often major) component may
be benign, an impurity that is part of either static or dynamic
RC may be the active component or the interfering
troublemaker. Fortunately, awareness of the role of purity
and the potential of quantitative 1H NMR (qHNMR) as a
versatile, orthogonal analytical method has recently increased in
the scientific community in general and in this journal in
particular.42

Aggregating Metabolites. Performing an extensive study
of the behavior of aggregating compounds,1,3,22,43−50 the
Shoichet group has gathered clear evidence that some
compounds have the ability to sequester proteins from the

assay, thus likely leading to false-positives. Conversely, as the
free concentration of the molecule of interest may be only
minute and possibly below the critical aggregating concen-
tration, the same basic mechanism can also lead to a reduction
of apparent activity or false negatives.51 Thus, any observed
puzzling bell-shaped concentration−activity relationships may
be related to aggregation phenomena.49 Notably, even some
commercial drugs have displayed aggregation potential.43,48,50

During an HTS campaign, Feng et al. found that 95% of the
actives were aggregators.52 A study of 14 selected compounds
that are present in abundance in traditional Chinese medicine
(TCM) preparations detected 10 with aggregating potential.
This indicates that caution is required when interpreting in
vitro assay results with both these compounds and their source
TCMs in general.50

PAINS. An acronym for pan-assay interference compounds,
PAINS are a collection of problematic substructures unveiled in
a 2010 groundbreaking paper by Baell and Holloway.2 The
authors compiled previously published20,53,54 and new guide-
lines in the form of a set of Sybil Line Notation filters. These
filters have been integrated in more generic tools such as the
FAF-Drug55 and the Eli Lilly set of rules.56 While the PAINS
substructures may not always be problematic and the kiss of
death for a compound containing them, it is important to be
aware of their existence. In any event, it is vital to verify that the
bioactivity of a compound is authentic before designating it as a
lead or, alternatively, removing it from consideration.

Optical and Fluorescence Effects. Fluorescence detec-
tion is one of the favorite reporter mechanisms in bioassays, as
it is usually highly sensitive. However, certain compounds are
fluorescent by themselves57 or have the ability to quench
fluorescence through diverse mechanisms.58 In fact, one of the
most widely used reporters, firefly luciferase, has been shown to
be inhibited by almost 60% of the compounds in cell-based
screening campaigns (see ref 25 and references therein). On
the other hand, other compounds may show intrinsic
fluorescence, which, if not taken into account, may compromise
the reading. Optical interferences that occur with colored
extracts and compounds that can impede optical detection of
activity can also create detection issues for fluorescence- or
absorbance-based assays.

Chelation, Metals, and Redox (Re-)Activity. Chelation
of metals has also proven to be a source of spurious inhibition.2

Some commonly used bioassays are sensitive to certain
chelators.59 In the case of cell-based assays, chelation can
sequester vital ions, thus reducing cell viability. When working
with enzymes that contain a metal cofactor, chelating
compounds can also impede the assay. On the other hand,
some metals themselves can lead to the formation of reactive
species or production of hydrogen peroxide, and/or they can
elicit other unexpected inhibition.60

Another form of assay interference is observed with
compounds that can covalently bind to or otherwise modify
the target. Some compounds may oxidize susceptible enzymes
or intermediaries used in the bioassays. While this phenomenon
is a known in vivo mechanism to regulate enzyme activity,61 it is
usually unwanted in a controlled bioassay environment. In
other cases, the interfering compounds may be involved in the
generation of hydrogen peroxide when reducing agents are
used.62 Phenolic compounds are abundant redox-active
metabolites and should be held under scrutiny. For example,
catechol moieties in polyphenols have been shown to form
quinones and/or radicals through redox cycling, even without
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enzymatic catalysis.63 While this mechanism potentially applies
to a large number of compounds, a generalized conclusion
about bioassay interference or even lack of drug lead potential
cannot be made, as is evident from the large number of drugs
with the catechol motif.
Surfactants and Membrane Perturbation. Several

prominent groups of NPs, such as saponins and certain fatty
acids and their derivatives, have surfactant-like properties.
Regarding fatty acids, Balunas et al. studied the effects of 11
fatty acids on enzymatic and cell-based bioassays.64 While the
reported effect on cell-based assays is low, the effect on
enzymatic assays is significant. Linoleic acid has shown in vitro
estrogenic activity65 and in vitro binding to human δ opioid
receptors.66 However, as noticed by the authors of the last
paper, the same compound was identified as a noncompetitive
inhibitor for three independent targets, making conformational
changes a more plausible explanation of the observed effect.67

As aggregator compounds are sensitive to detergent concen-
tration, it is possible that some NPs trigger the destabilization
of aggregates. This could restore an activity that had
disappeared as a result of the introduction of the aggregating
compound in the assay, i.e., acting as antiaggregators and
producing double false positives. Such a case would, of course,
make the assay even harder to interpret, especially if the
aggregating and destabilizing agents and/or characteristics are
unknown, as is often the case in early stage NP programs
working with multicomponent mixtures. Moreover, in assays
involving cells or reconstituted membranes, compounds
showing surfactant properties may show disturbing results if
their effect on membranes is not assessed or is not the subject
of the assay itself.68,69

All of the above effects, alone and/or in combination, have
proven to be major issues impacting biological screening. A
study by Jadhav et al. showed that 93% of the hits were
nonspecific due to a combination of these kinds of effects.1

Comprehensive reviews of some of these interferences have
been compiled by Thorne et al.25 and Sink et al.23 The
principles of affinity, efficacy, potency, and mass action are not
discussed here, as they have been covered by Borgert et al. in
their review on endocrine active substances.70

■ MATERIAL AND METHODS
NAPRALERT. The detailed description of the design of this

relational database used to collect NP research data has been
published71 and was followed-up by a more recent summary of its
capabilities.29 The database is accessible via STN and a web interface
at https://www.napralert.org, which has been redesigned as of
October 2015. While NAPRALERT continues to be run on its
original MSSQL/.NET platform, it is currently being rewritten using
modern technologies that will provide easier access to data and
complex requests. Meanwhile, the data used for this study has been
exported from MSSQL format to a series of CSV files, which were
used as raw data for the analyses.
Data Analysis. While many tools are able to cope with moderate

amounts of data (up to millions of entries), Python (https://www.
python.org) was chosen for its ease of use, status as Free software,
optimized data-analysis libraries, and the ease of incremental
development and interactive data-mining. Pandas (http://pandas.
pydata.org) and Scipy (https://www.scipy.org) libraries were used for
data-analysis. Bokeh (http://bokeh.pydata.org) provided interactive
graphics during the data exploration phase. Matplotlib (https://www.
matplotlib.org) was used to generate the static graphics that were
further processed with Inkscape (https://www.inkscape.org). Blender
(http://www.blender.org) was used for 3D artwork. The incremental
development and interactive mining of NAPRALERT’s raw data was

made possible by using the Jupyter Notebook (https://www.jupyter.
org) software, allowing for work in a web-browser with remote access.
The Jupyter environment was running in a Docker instance (https://
www.docker.com) using the scipyserver container (https://github.
com/ipython/docker-notebook). Long-tail fitting utilized the power-
law Python package.72

Research on PubChem data was performed manually using the Web
site: https://pubchem.ncbi.nlm.nih.gov/. Search data was downloaded
as CSV files and treated using shell scripts and the Python
infrastructure described above. The ratio of actives over total reported
in the confirmatory assays was then calculated. Data was grouped by
targets to avoid inflation of the scores by assay repetitions/duplication.

A local PostgreSQL instance of the ChEMBL database (version 20)
was used to automatically gather the structures of the compounds.

■ DEFINING THE BOTTOM OF THE BLACK HOLE OF
NATURAL PRODUCTS

Beginning with NAPRALERT data, this study focused on a
merged set of top-scoring NPs in three categories. (i)
Occurrence: the top-20 metabolites according to their
described occurrence in organisms, i.e., frequency of a report
as a constituent of any organism. (ii) Activities: the top-20
metabolites tested for bioactivity and/or designated as
bioactive, including those reported as a bioactive principle
and/or marker. (iii) Distinct activity: the top-20 metabolites
regarding their assigned unique biological activities, determined
as a measure of the number of distinct targets they have been
assayed for.

Occurrences (O). In order to determine the number of
organisms for which a metabolite has been reported, a relatively
large set of search criteria was used (see Table S1, Supporting
Information). These criteria were modeled to accommodate the
ways by which the presence of a metabolite is usually reported
in publications. Presently, NAPRALERT contains organism-
specific information on 189,740 metabolites from 43,578
organisms. The database contains additional information on
metabolites that, by nature of the study material or as a result of
the style of the report, were not attributable precisely to a single
organism. On average, NAPRALERT has 11 metabolites per
organism, with a maximum of 795 NPs reported for a single
organism (Nicotiana tabacum; see Table S2, Supporting
Information). The Tables S3 and S4 in the Supporting
Information contain data on the top-20 organisms and families,
respectively, in terms of distinct metabolites. For the purpose of
assessing occurrence, the names of the organisms were used as
reported by the authors. NAPRALERT contains a synonym
dereplication system that is currently being reworked to cope
with recent nomenclature updates and to link it to taxonomy
databases.
The distribution of metabolites across all investigated

organisms documented in Table S2 in the Supporting
Information reveals that, on average, a NP is described in 37
organisms. Considering that, at the same time, more than 50%
of the NPs are described only once, this already shows the
relatively strong tendencies toward the two extremes in the
occurrence reporting of NPs.

Activities (A). In the PubChem database (accessed April 18,
2015), of the 68,280,771 compounds described, 2,082,979 have
been tested for activity. Thus, only 3% of the reported
compounds have associated bioactivity results. By comparison,
of the 189,740 metabolites entered into NAPRALERT
(accessed on the same date), 50,379 have been evaluated
biologically. This activity coverage of 27% is almost 10 times
that for PubChem, demonstrating NAPRALERT’s information
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richness for bioactive NPs. The aim of PubChem is not to
provide activity data, and many of the compounds it covers
were not synthesized with drug discovery in mind. However,
recently, the effort to acquire more data has become a very
active process, with support of other databases and private
entities sharing their own data. This represents an advantage
over NAPRALERT bioassay data in the coverage of non-NP-
related sources.
One of the characteristics of NP research is the dominant

role of bioassay-guided fractionation, which, if followed
rigorously, would lead exclusively to bioactive compounds, at
least in theory. However, another significant characteristic of

NP research is the quest for new molecular entities, particularly
new structural types. Moreover, NP science also includes
metabolomics investigations and chemotaxonomy studies that
are not necessarily bioactivity driven, hence yielding the
occurrence of a reasonable proportion of compounds with no
reported bioactivity. It is noteworthy that >75% of the
compounds with assigned bioactivity in NAPRALERT have
been reported to occur in only one or two organisms (see
Table S5, Supporting Information).
Table 1 shows that the extent of the biological evaluation of

96% of all NPs recorded in NAPRALERT is limited, to no
more than 10 reported activities per metabolite. Whereas

Table 1. Number of Activity Tests Reported for NPs Included in NAPRALERT in Five Categories of Frequency of Evaluation

no. of reported activities 0 1−10 11−100 101−1000 >1000

compounds (%) 139,361 (73) 44,219 (23) 5798 (3.0) 355 (<1.0) 7 (<0.01)

Table 2. Top Reported Compounds for Each of the Three Categories: Occurrences (O), Activities (A), and Distinct Activities
(D)a

no. compound O rank A rank D rank Agg PAINS % actives

1 quercetin 4115 2 3004 1 686 1 * * 52.4
2 gossypol 495 112 2642 2 433 3 * * 41.3
3 β-sitosterol 7640 1 805 14 201 29 ± 5.6b

4 genistein 431 139 1630 3 468 2 * 18.6
5 rutin 2889 4 1025 6 355 5 * 14.3
6 kaempferol 2531 6 939 9 313 9 * 25.1
7 berberine 1365 33 1258 5 319 8 5.5
8 curcumin 106 657 1347 4 371 4 * 18.0
9 apigenin 1533 27 937 10 325 7 * 30.4
10 (+)-catechin 910 50 998 8 341 6 * 8.6
11 luteolin 1903 13 758 18 246 14 * * 35.8
12 caffeic acid 1581 25 770 17 238 16 ± * 15.9
13 (−)-epicatechin 764 67 772 16 271 12 * 9.3
14 resveratrol 209 306 874 11 296 10 23.9
15 glycyrrhizin 189 352 809 13 294 11 ± 4.9
16 gallic acid 1154 39 790 15 198 30 * 34.6
17 EGCG 141 494 813 12 248 13 * 35.4
18 ursolic acid 1623 18 563 30 172 38 ± 13.5
19 taxol 555 100 1009 7 158 47 18.5
20 eugenol 723 72 720 20 191 32 2.8
21 (+)-tetrandrine 72 1009 734 19 245 15 * 6.2
22 myricetin 666 84 581 28 223 20 * * 40.4
23 stigmasterol 2857 5 272 109 81 148 ± 0
24 α-pinene 3007 3 224 135 78 156 0
25 capsaicin 63 1137 636 23 235 17 ± 6.5
26 ginsenoside Rb-1 454 130 504 39 228 18 0
27 ginsenoside Rg-1 470 123 463 44 228 19 N/Ab

28 limonene 2313 8 295 95 98 99 6.7b

29 isoquercitrin 2128 10 258 118 117 80 * 17.3
30 daucosterol 1995 11 281 102 103 92 50b

31 1,8-cineol 1931 12 344 69 92 118 1.3
32 lupeol 1827 15 310 85 104 90 * 100b

33 palmitic acid 2145 9 129 277 76 159 20.4
34 linalool 1849 14 282 101 61 214 0
35 β-pinene 2351 7 132 273 46 318 0
36 linoleic acid 1608 20 203 154 82 139 ± 18.8
37 oleic acid 1617 19 149 228 75 162 ± 8.9
38 p-cymene 1734 16 113 327 34 472 0
39 myrcene 1665 17 95 377 41 376 1.7

aThe Agg column denotes if the metabolite itself (*) or a close analogue (±) has been reported as aggregating. The PAINS column indicates if the
metabolite is recognized by the PAINS filters. The % actives column shows the percentage of confirmatory assays from PubChem, in which the NP
has been reported as active. EGCG means epigallocatechin gallate. bDenotes metabolites with less than 50 assays reported in PubChem.
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NAPRALERT includes the entire breadth of (mostly plant
related) NP publications, and despite linkage with pharmaco-
logical data being one of its mainstays, this resource still cannot
be expected to completely cover the biological activities of all
included metabolites. In order to compensate for this
limitation, the present study utilized other available bioassay
databases. These can be readily accessed through public
application programming interfaces (APIs) and/or linked
together with cross-referencing systems such as UniChem.73

Factors Affecting (Reported) Activities. Under certain
instances, over the course of their investigation, metabolites and
their activity data can fade or even disappear from the
NAPRALERT radar. To date and by design, the database relies
on editorial work involving systematic but manual selection of
articles for inclusion and encoding their content. There are
three main reasons for the fading or disappearance of a
metabolite from the inclusion efforts:

(i) The compound becomes commercially available or is
synthesized successfully. As a result, it is no longer being
related to an organism. However, such compounds will
still remain visible if these publications occur in the
surveyed NP journals.

(ii) Compounds that are transferred between laboratories,
e.g., as a gift or inside collaborative teams, are frequently
used for biological purposes without being linked to their
origin.

(iii) The compounds are used in studies that are published in
non-NP-related journals, which are too numerous to be
part of the NAPRALERT encoding efforts.

The first point highlights the multiple effects that obscure the
precise origin of a compound, especially if it comes (originally)
from natural sources or is semisynthetic. Collectively, the
frequency of occurrence of all three instances, (i)−(iii),
combined can be estimated to be in the 20−30% range.
While being limited in journal coverage relative to NAPRA-
LERT, our previous AnaPurNa study15 was designed to
distinguish isolated from synthesized compounds, purchased
materials, and gifts from colleagues. The breadth of the
AnaPurNa study is sufficient to conclude that a significant
proportion of NPs escapes the systematic NAPRALERT survey
by mechanisms (i)−(iii). This affects up to one-third of NPs
(unpublished data from the analysis of raw AnaPurNa data15).
Another important general trend that we have observed as

part of our NAPRALERT work, as well as during the
AnaPurNa project, is that publications with a strong focus on
biological effects tend to omit chemical quality/grade, lot
number, or manufacturer/source information on the inves-
tigated NPs. This appears to be counterintuitive when
considering the parallel trend toward increasingly stringent
editorial and documentation guidelines (e.g., Good Laboratory
Practices). However, three factors are of considerable
importance for a better understanding of reported NP activities:
the limitations posed by the relatively frequent lack of
information on (a) positive identification of the NP, (b) its
purity, and (c) possible variations in the RC of the investigated
material.16

Upon closer inspection, despite being related to minor
components, the RC issue can be of major importance. First,
even in instances where purity is assessed (≪1% of all NP
studies;15 more common for commercial compounds), there is
usually no information about what exactly constitutes the
missing few (X) percent of the “100 − X% pure” materials.

Moreover, the historically predominant (UV-)HPLC assays
exhibit an acknowledged limitation regarding their universality
and selectivity. More importantly, while the typical range of 2−
5% can seem a low value for an impurity, this value should be
put in relation to the actual amount that gets into the assay. For
example, a molar impurity of 2% of a sample applied at 10 μM
is still present at 200 nM, clearly a concentration of potential
pharmacological relevance. This quantitative side of the purity
coin also has its qualitative counterpart: as isolation procedures,
source organisms, synthetic routes, or suppliers change, the RC
profile is likely to change as well, even if the NP shows the same
labeled purity value. Instances falling under the umbrella of
both static and dynamic RC were also discussed by Baell et al.
in the PAINS context,24 demonstrating that these issues are not
limited to the NP world.

Distinct Activities (D). This set is derived from the
activities set (A) by filtering out the duplicate bioassay targets.
These duplicates are usually not replicates, as it is difficult to
correlate different activity levels when the assay is not
normalized or when the purity of the NP is not assessed.
Comparison of the sets of distinct activities (D) vs tested
activities (A) exhibits an average duplicate ratio of 3.2, with a
maximum of 6.0.

Overlapping the Three Sets: Occurrences, Activities,
and Distinct Activities. Merging the three top-20 sets of
metabolites that are most occurring (O), most tested for
activity (A), and with the most distinct (D) activities yielded 39
metabolites (Table 2). A Venn diagram of this overlap is
displayed in Figure 2. While the activity (A) and distinct

activity (D) sets are similar (12 overlapping metabolites,
equivalent to 60% similarity), the occurrence (O) set is clearly
separated from both other sets. This implies that the (chemical)
occurrences and number of (biological) activities tested in the
entire group of 39 metabolites (39/60 = 65% total overlap)
may not be highly correlated.

Figure 2. Venn diagram of the three considered sets of the top 39
metabolites: most occurring (O), most reported as tested for activity
(A), and most distinct (D) activities. The activities/distinct activities
set are highly overlapping, whereas the occurrence set tends to be
isolated from these.
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At first glance, 39 metabolites may seem to be a vanishingly
small number compared to the almost 200,000 NPs contained
in NAPRALERT. However, Table 3 shows that, while these

metabolites represent <0.002% of the database, they account
for 5−8% (2500- to 4000-fold; depending on group O vs A vs
D) of the total reports in the database.
Possibly, the most important insight from recognizing these

39 metabolites through NAPRALERT data mining is that this
group of metabolites likely contains the most prominent IMPs
produced by nature. Evidence that some are indeed IMPs will
be presented in the following discussion. Notably, all three
cumulative distributions (O/A/D) follow power-law functions

rather than showing the Gaussian behavior of statistical chance.
This is an additional preliminary indicator that discovery
serendipity or chance arise from non-Gaussian events.
As fully explained in the next section, the 39 metabolites of

the merged set are located at the very bottom of a hyperbolic
body, designated as the black hole of NPs: this shape is formed
when plotting the cumulative 2D power-law distribution of all
NPs in 3D bioactivity and occurrence distribution space. Thus,
the distribution analysis of the NP literature reveals a
characteristic behavior of NP research in which a significant
amount of effort is expended on a tiny fraction of chemical
diversity and with little production of valuable drug leads.

■ THE BIG PICTURE: THE HOLISTIC DISTRIBUTION
OF NATURAL PRODUCTS

Scattered Distributions and Cumulative Sums. The
scatter plot of the distribution of occurrences (O) and activities
(A) displayed in Figure 3 shows that no visible correlation
exists between these two parameters for these merged sets. This
confirms the implication from the Venn diagram (Figure 2)
that something other than occurrence is driving the reporting of
activities. Comparing the two complete O and A distributions
through their Spearman rank correlation gives a positive score
<0.3 (p < 0.01) on the scale −1 to 1, whereas the activity (A)
and distinct activity (D) sets are more correlated, with a score
of 0.994 (p < 0.01). Contrary to the Pearson correlation, the
Spearman rank correlation reacts not only to a linear
correlation between ranks but also a monotonic relationship.

Table 3. Percentage of the Top-20 Metabolites of Each Set
(O/A/D) Relative to the Total NAPRALERT Databasea

occurrences
(O)

activities
(A)

distinct activities
(D)

top-20 occurrencesb 7.1% 3.0% 1.9%
top-20 activitiesb 4.2% 6.7% 3.9%
top-20 distinct activitiesb 3.0% 6.4% 4.0%
merged groupc 8.8% 8.4% 5.3%
common to all three
setsd

0.2% 0.7% 0.6%

aMerged group refers to the consolidated set of 39 metabolites relative
to all the NPs; common to all three sets refers only to the four
metabolites present in each set simultaneously (see also Figure 3).
bBase number is n = 189,740. cn = 39. dn = 4.

Figure 3. Scatter plot for the merged sets of the 39 metabolites that are highly occurring (O) and have the most reported activities (A) of all nearly
200,000 NPs included in NAPRALERT with annotations matching the metabolite numbers in Table 2. While not showing a clear correlation
between these two sets (A vs O), some metabolites are clearly outliers (1, 2, 3), and two major groups emerge for metabolites highly occurring and
metabolites with a high number of activities reported.
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Thus, by giving an indication of the similarity of the ordering, it
also has the advantage of being valid when it is performed on
data sets that are not normally distributed (non-Gaussian).
While the occurrence of a given metabolite in an organism by
default cannot predict the number of its bioactivities, the
observed non-null correlation between O and A may indicate
that this relationship is still (perceived as) a factor that has
some influence. However, the interpretation of correlation
values must be done with caution, as the distribution of the
underlying data points is clearly asymmetrical, with most of the
data points being in the tail of low citations per metabolite.
Moreover, the high number of points involved in the present
study artificially decreases the p value, thus rendering these
numbers to be interpreted with caution rather than designating
them as directly representing tendencies and/or indications of
similarities.
Upon examination of the cumulative sum plots of each

individual distribution (O vs A vs D), shown in Figure 4, two
striking conclusions are apparent. First, a major portion of the
compounds is present only once, or a handful of times, in each
data set. Second, only a very limited number of metabolites
represents a large number of citations. These features imply
that, when all three sets are considered concurrently, they are
likely to be long-tail-distributed. These types of distributions
are characterized by having a non-negligible part of their
populations outside of the range that would otherwise be
expected to fall within a Gaussian-type distribution. The A/O/
D distributions have apparent long-tail characteristics. This has
two major consequences: first, data sets of this nature make it

nearly impossible to predict the behavior or the importance of
new or known elements. This results from the fact that an
unexpected single element can have an influence that
overwhelms all of the already known elements. Second, most
of the classical statistical tools cannot be applied to these types
of distributions.74−76 This also means that the statistical models
most widely used in pharmaceutical research, and engrained into
the general modes of scientif ic questioning, do not apply for long-tail
distributions, including those of bioactive NPs.

Natural Product Research Follows Power-Laws.
Looking more closely at the distributions of the number of
citations in each of the three sets (O/A/D), it became evident
that the distributions follow a power-law rule (Table 4 and
Figure 5). Comparing the different distributions proposed by
the power-law package (log-normal, power-law, truncated
power-law, exponential, stretched_exponential), the truncated
power-law was always the one with the best fit. Such a
distribution is characterized by truncated power-law equation
(eq 1)

>α− −Λx x x.e forx
min (1)

where xmin is the truncation value, Λ is the scaling factor, and α
is the exponent.
Figure 5 displays the fit of a truncated power-law distribution

for the three sets considered (Figure 4). While the fit is good
for most of the distribution, the high-citation part of the
distribution is noisier. The same applies to the low end, which
is hidden due to truncation, which is a consequence of the

Figure 4. Cumulative sums of the distributions of the three top-20 sets of NPs: occurrences (O) in blue, activities (A) in red, and distinct activities
(D) in brown. The arrows show the percentage of citations at each given point, as well as the number of citations (in parentheses) that represent the
top-20 NPs (bottom left), as well as the top 10% (lower left), top 50% (middle), and top 90% (upper right) of all NPs. The stars indicated the
beginning of the single citation per compound zone, which continues on the right, ending at 100%.
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greater sampling errors of the number of citations for low-
ranking compounds vs those of the rest of the distribution. The
different fitting parameters for eq 1 are described in Table 4.
Many power-law-type distributions could fit this data, as they all
share similar characteristics. However, the fact that compounds
with a small citation number could be hampered by data entry
errors, unresolved synonyms, or wrong structural elucidation
makes this part of the distribution more prone to error. On the

other hand, the high-citation side of the distribution could also
hide undescribed metabolites because the criteria used for
identification and the completeness of the identification
processes may not be sufficient to discern them with sufficient
certainty from analogues.77

Power-law distributions, truncated or not, are found in many
natural or human behavioral phenomena including linguistics,
astronomy, demography, and, remarkably, citation analysis.75

These kinds of distributions are usually seen in resource-limited
events, as exemplified by the finite number of words in the
vocabulary of all languages. In the case of NP-based research,
financial resources, human effort, popularity, comfort factor,
and sampling of biological sources are likely the main finite
factors contributing to the power-law nature of the discovery
process. This popularity factor was hypothesized as being
responsible for the low level of new kinase targets and poor
selectivity of assayed drugs by Fedorov et al.78 Zipf came up
with a similar power-law regarding the distribution of words in
written language. In his 1949 book, Human Behavior and the
Principle of Least Ef fort,79 he hypothesized that the tendency of
choosing the path of least resistance may be one of the main
causes for such a distribution. Compared with other
distributions and intrinsic characteristics of statistical correla-
tions, the mathematics behind the accurate fitting of power-law
distributions is still highly debated.72,75,76 This includes the
question of whether accurate fitting is possible at all in these
cases. From a statistical perspective, some of the mathematical
properties normally applied to the commonly used distributions
are considered to be difficult to describe for power-law
functions. For example, for α < 3, their variance is not finite,
nor is their mean for α < 2.
The importance of power-law distribution is also discussed in

domains for which prediction tools based on standard statistical
distributions fail to be resilient to extreme events. This
resilience explains why power-law distributions are often
perceived as causing frustration: their ability to cope with
extreme values or events is paired with their characteristic to be
of minimal use as predictive tools, which is the actual intent of
most fitting applications. In other words, and from a global
perspective, this exemplifies how generalization and prediction
often show counterintuitive and/or counterproductive behav-
ior.

The Most-Studied Natural Products Are a Subset of
All Metabolites. When NAPRALERT was initially compiled,
compounds widely designated as primary metabolites were
(intentionally) excluded. This reflects the general notion that
these housekeeping metabolites are neither reported nor
studied by most NP chemists. This gap between biochemistry
and NP research has been recognized and discussed in detail by
Firn and Jones.80−82 These authors collected evidence for an
array of hypotheses including how the primary vs secondary
metabolites dichotomy makes little sense, and how metabolic
pathways, and not just metabolites or enzymes, could have been
chosen by means of natural selection. While experimental
evidence in support of their plausible hypotheses may be

Figure 5. Truncated power-law fitting of the distributions (blue) and
cumulative sums (red) of the three sets: occurrences (O), activities
(A), and distinct activities (D). These graphics represent the
cumulative complementary density functions, representing the
probabilities (y-axis) of obtaining a given value (x-axis). They clearly
show that low-citation compounds (left) are more likely to happen
than high-citations ones (right). Dotted green lines are the truncated
power-law fitting according to eq 1.

Table 4. Parameters of the Power-Law Distributions
Function in Equation 1 of the Three Sets of NPs

α Λ xmin

occurrences (O) 1.96 2.58 × 10−4 6
activities (A) 2.28 2.14 × 10−4 11
distinct activities (D) 2.10 2.87 × 10−3 10
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difficult to obtain, Firn and Jones’ evolutionary rationales, the
outcomes of the present study, and the general experience of
NP discovery research point in the same direction. The
borderline between those NPs that can be considered to be
potential or verified leads vs those NPs that should be ignored
for this purpose is likely an infinitely thin membrane or simply
nonexistent.
This generates the thought-provoking question: What is the

best way to qualify ubiquitous NPs such as two of the top-four
IMPs (Table 2), β-sitosterol and quercetin? As Firn and Jones
deduced, quercetin-type flavonoids or carotenoids are often put
into the secondary metabolite category, but when their
biological pathways are knocked-out, the producing organisms
are no longer viable. This happens either because these
compounds were involved in direct support of the organism or
the impacted pathways were a crucial step leading to a vital
metabolite.81,82 Evidently, from the perspective of a target
system or organism, the ignored primary or household
metabolites may well play a role beyond their basic integration
into metabolism.82 One such link could relate to the solubility
of the metabolite(s) considered to be the active principle, as
proposed by Choi et al. with the natural deep-eutectic solvents
(NADES) concept,83 in which some naturally occurring
compound mixtures may help to solubilize other constituents
of the organism.
A relatively unmapped territory in the field of HTS is data

that compares hits from synthetic libraries with those from
libraries containing (only) NPs or NP-like compounds. As the
theoretical chemical space of 30 or fewer heavy atoms is more
than 50 orders of magnitude bigger than the number of actually
reported compounds, NP or not, Hert et al. have questioned
why hits are seen at all.84 The authors suggest that libraries fit
for screening should contain many more biological-like
scaffolds than is usually the case. Their suggestion followed
the rationale that the biogenic bias of using molecules already
known to play a biological role, i.e., being bioactives, is more
likely to lead to success, even if the actual bioactivity is
unknown. This explanation seems even more plausible when
considering that biologically evolved small molecules, which are
mostly made by proteins, have already successfully passed the
same set of evolutionary filters that affect living organisms.
Considering the problematic nature of certain metabolites in

HTS campaigns, the flipside of the coin is the final soul-
searching question of the present study: How do organisms
cope with promiscuous and over-represented molecules such as
the IMPs? This question extends beyond the producing
organisms, considering that several of the IMPs identified
from the three merged sets of most reported NPs (Figure 2 and
Table 2) are likely consumed by living organisms on a daily
basis.

■ WHY ARE THE IMPS SO PREVALENT?

Addressing this question reverts back to the Introduction and
the discussion of aggregation as a recently recognized
phenomenon with huge potential impact on bioassays.
Currently published data on the aggregation properties of the
39 metabolites identified via merging of the three top-20 sets
(Table 2 and Figure 2) reveal two things: first, many of these
metabolites are, in fact, problematic as potential aggregators;
second, another important group has little to no reported
activity. Of the top-39 metabolites, 10 are aggregators, 11 are
PAINS, and four are both. Of the top-20 compounds of just the
activity (A) set, eight (including all of the top-4 that show
aggregating behavior) plus two more might be potential
aggregators according to Aggregator Advisor. Moreover, nine
of the top-20 most active NPs exhibit PAINS substructures, of
which three are also aggregators. This means that 14 out of 20
(70%) may be problematic metabolites and true IMPs that
require more scrutiny in any program involving biological
assessment. This figure could be even higher as, to our best
knowledge, some of these metabolites have not been
investigated for aggregation. Of the four all-intersecting
metabolites (Figure 2) and, thus, most prominent IMPs, rutin
(5) is the only compound that has not been reported as an
aggregator.
For metabolites with distinct activities (set D), the situation

is similar, also producing a striking fit for what could be
expected of promiscuous compounds. Of these 20 metabolites,
nine show aggregating behavior, two more may well be
aggregators due to similarities with known aggregators, and
nine are PAINS (of which four are also aggregators). This
means that, again, 14 of 20 compounds (70%) in set D are
identified as problematic when applying only these two criteria.

Bioassay Interference of Prominent IMPs. A compila-
tion of PubChem confirmatory assay data85−92 on the four
most prominent IMPs is presented in Table 5. It shows that
they were all tested as being active in a series of experiments
that can be classified as highly specific.
Whereas the two antioxidant activities are not surprising, the

high hit rate for the neuraminidase activities can be perceived as
being suspicious. Upon close inspection, quercetin (1) is
known to interfere with the 2′-O-(4-methylumbelliferyl)-N-
acetylneuraminic acid (MUN-ANA) used in these assays.58

This established interference and the close structural similarity
of the four top IMPs raise concerns about the validity of the
lead character of these NPs for the reported targets.
The broader relevance of this interference mechanism is

documented in several publications on fluorescence-based
assays. One study showed quenching of BSA auto fluorescence
as being an underlying mechanism.93 Another showed that 1
exhibits fluorescence when internalized into cells,94 and the

Table 5. PubChem-Based Review of Eight High-Specificity Assays in Which the Four Most Prominent IMPs Identified in This
Study Showed Activity

PubChem ID assay active (out of 4)

AID_399341 Antioxidant activity assessed as superoxide-scavenging activity by the nitrite method 4
AID_455702 Inhibition of Clostridium perfringens neuraminidase 4
AID_455703 Noncompetitive inhibition of recombinant influenza A virus rvH1N1 A/Bervig_Mission/1/18 neuraminidase 4
AID_399340 Inhibition of xanthine oxidase assessed as decrease in uric acid production by spectrophotometry 3
AID_293298 Antioxidant activity assessed as inhibition of superoxide production by xanthine/xanthine oxidase method 3
AID_366284 Inhibition of Influenza A Jinan/15/90 H3N2 virus neuraminidase activity by MUN-ANA substrate based fluorometric assay 2
AID_366285 Inhibition of Influenza A PR/8/34 H1N1 virus neuraminidase activity by MUN-ANA substrate based fluorometric assay 1
AID_366286 Inhibition of Influenza A Jiangsu/10/2003 virus neuraminidase activity by MUN-ANA substrate based fluorometric assay 1
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authors hypothesized that noncovalent binding to some
proteins was involved. A study of two very commonly
investigated NPs, curcumin (8) and 1, demonstrated that
these IMPs were capable of quenching the thioflavine T
reported in β-amyloid aggregation inhibition assays.95 Finally,
small-molecule aggregates were shown to inhibit amyloid
aggregation in vitro, thus probably impacting the validity of
conclusions drawn from these assays.47 These documented
interferences exemplify the highly counterproductive twists that
can occur in the logical chain between the agent and the
reporter component(s) of the bioassay (Figure 1, middle).
Regarding NPs that could impede the reporter of the assay,

probably the most striking example relates to luciferase
activators/inhibitors. While none of the metabolites of the
three sets have been tested on this target yet, common IMPs
are showing activities in three different counterscreens (Table
6).96−98

Another broader conclusion from the recognition of many
flavonoids as IMPs is that, in general, this class of NPs should
be studied carefully because they tend to form aggregates and/
or disrupt assays.49 Their observed activities on several nuclear
receptors99 may alternatively be viewed as a sign of suspicion.
Moreover, quercetin (1), genistein (4), rutin (5), kaempferol
(6), apigenin (9), luteolin (11), and myricetin (22) are also
recognized as membrane disruptors, being able to increase or
decrease membrane fluidity depending on the individual
structure and compound concentration.100,101 Some of these
NPs are known for effects on MDR mechanisms, lipid
membrane permeability and structure, as well as fluorophore
distribution in certain assays.100 Moreover, it has been shown
that some of these NPs have the ability to produce false
positives in MTT-based cell-viability assays and that adequate
washing may reduce the interferences.102,103 Additional details
and references about issues related to MTT-based assays can be
found in the comprehensive review by Fallarero et al.104 The
need to overcome some of the issues associated with
tetrazolium salt-based assays is reflected by the NCIs’ efforts
to develop alternative cell-viability screening assays.105

Finally, fatty acids such as linoleic (36) and oleic acid (37)
are another group of prominent IMPs, known for their
noncompetitive inhibitor characteristics on three of the
receptors, as evaluated by Ingkaninan et al.67 A typical warning
flag alerting to a more in-depth (literature) analysis is the effect
of unsaturated fatty acids on cellular assays vs noncellular
assays.64 Palmitic acid (33) did not influence the tested targets,
but still exhibited a high rate of activity in PubChem
confirmatory assays.
As exemplified for both the flavonoid and fatty acid portion

of the IMPs, it is important that all known interference factors
are taken into account prior to making conclusions about the
validity of a hit and/or claims about their activity. It should also
be kept in mind that, even in the absence of interferences,
positive in vitro bioassay outcomes of the IMPs identified here
may or may not be predictive of an in vivo effect. This is

supported by NAPRALERT. One means of avoiding such
pitfalls in the long run is thorough literature searches and the
use of publicly accessible databases. This allows for activities
related to potential interaction with one of the assay’s
ingredients to be examined, or for other physicochemical
properties that may interfere in an assay.

■ NAVIGATING THE BLACK HOLE AND
RECOGNIZING TRAPS

Several strategies have been proposed to address the key
challenges of NP drug discovery presented in the Introduction
that lead to invalid hits. One takes into account the
responsibility of a small number of (sub)structures for a
disproportionately large fraction of the hits.25 Another
considers the disruptive properties of promiscuous compounds
that are aggregators and/or PAINS, as recognized by the groups
of Shoichet23 and Baell,2 respectively.
The disruptive factors that characterize IMPs include both of

these concepts, as well as two additional phenomena described
in the present study. The first phenomenon is the power-law
behavior of the cumulative distribution of bioactive NPs. The
second is the hyperbolic shape that results from mapping these
cumulative distributions in 3D occurrence−bioactivity−effort
space, resembling the black hole of NPs (see The Big Picture:
The Holistic Distribution of Natural Products).
Now that the traps and the topology of the terrain have been

defined, the following discussion seeks to outline potential
strategies for enhancing navigation in and around the black
hole.

Searching for PAINS. One important tactic for addressing
the challenges posed by compound promiscuity and PAINS is
the use of orthogonal assays,25 which are based on different
reporters and/or different detection mechanisms.

Detecting and Avoiding Aggregation. Assays capable of
detecting aggregating behavior have been developed through
the use of NMR,106 dynamic light scattering, transmission
electronic microscopy, or detergents.22,107 The addition of
small amounts of certain detergents in assays has been shown
to reduce effectively or even eliminate aggregation in most
cases.108 For detergent-intolerant assays, centrifugation or
addition of serum proteins may help to reduce protein−
aggregate interactions,108,109 with the caveat that the final
concentration of the assayed compound may be more difficult
to determine precisely. An online tool compiled by the
Shoichet group, Aggregator Advisor (http://advisor.bkslab.
org/search), is capable of predicting the likelihood of a given
structure belonging to this class of nuisance compounds.
Shoichet’s group disseminates their considerable experience in
this area on their Web site at http://www.bkslab.org/take-away.
php. This resource was built from testing >70,000 compounds
for detergent-mediated activity in an AmpC β-lactamase assay.

Fluorescence Issues. While quenching issues can usually
be solved only by changing the detection method, a
compound’s fluorescence impact can be lowered by the use
of red-shifted fluorophores,110 which are rare among NPs, or by
using ratiometric or time-resolved fluorescence approaches.111

Further references regarding these effects can be found in the
review by Thorne et al.25

Redox Issues. The redox related issues are diverse, and
several assays have been developed to help with their
identification. One must keep in mind that these activities
may be wanted in some assays. Electrochemical methods can be
applied as described by Liu et al.112 While more classical

Table 6. NPs Active on the Luciferin/Luciferase
Counterscreening Assays in PubChem

compound luciferase perturbing assay

resveratrol (14) AID_411
genistein (4) AID_624030
genistein (4), luteolin (11), resveratrol (14) AID_588342
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colorimetric assays detecting formation of hydrogen peroxide
have been developed,61,62 special care must be taken, as some
compounds may interfere either through their color or through
unexpected reactions with the intermediates.
Reactivity Issues. A knowledge base for compounds

reacting with thiols was assembled by Dahlin et al., who
recognized the critical impact of these reactive agents during
their quest for inhibitors of histone acetyltransferase Rtt109:
only three out of 1500 active hits could be confirmed as actual
leads.113 Extrapolating from this experience, it is likely that
other target- or assay-specific HTS studies might also pinpoint
unexpected promiscuous compounds that bear a high risk of
being pursued as leads. Involving the meta-analysis of published
data, another predictive strategy to address promiscuity by
reactivity has been developed recently by Hu et al. using
PubChem confirmatory bioassay data.114 Interestingly, these
authors have shown distribution curves that closely resemble

the power-law characteristics uncovered in the present study. In
a similar meta-approach, Nissink et al. chose data mining and
binomial experiments as tools to map frequent-hitter behavior
in published data sets.115

Bioassay Issues. Using another strategy geared toward
identifying components of bioassays as the root of erroneous
bioactivity recognition, the groups of Fallarero and Agarwal
have compiled advisory evidence and references that provide an
invaluable resource for the development of NP HTS
campaigns.104,116 The former group also advocated the routine
assessment of all test compounds by fluorescence and UV/vis
spectroscopy, dynamic light scattering (DLS), and label-free
detection methods such as electrochemical approaches in case
they exhibit UV/vis absorbing, diffusing, or fluorescent
properties.

Prevention by Prediction. Another line of defense against
being waylaid by promiscuity, PAINS, and IMPs is the use of

Figure 6. Cumulative abundances of the reporting of the occurrences, activities, and distinct activities all follow the same principal power-law
distribution. A typical curve is shown in A, indicating the two major regions of overattention to a few and lack of effort on many NPs. Distributing
this NP−abundance−bioactivity space, which was built on the base of NAPRALERT’s nearly 200,000 compounds, into the third dimension (B)
generates a hyperbolic structure that resembles a well-known corpus in astrophysics and is, therefore, termed the black hole of NPs. Panel C shows
its various zones that categorize all NPs by their attached biological knowledge and abundance of the test parameter (O/A/D; see main text). Similar
to a stellar black hole, density (representing research effort) increases dramatically toward the bottom (with infinite effort not being a scientific
option). In distinction to its true counterpart, the black hole of NPs has a (virtual) outlet toward the bottom (C), which release either precious hits
or IMPs.
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databases and molecular substructure filters capable of putting
warnings on assayed compounds. However, this approach
requires structural information, which is typically unavailable
during bioguided fractionation procedures in NP programs.
This once more emphasizes the value of rapid dereplication,12

especially when it is performed as early as possible in the
fractionation process and with a focus on known problematic
compounds. At the same time, it should not be overlooked that
available dereplication schemes are less rigorous than full
structure elucidation protocols. It is known that elucidation
procedures fail more than occasionally, mostly due to the
insufficient use of analytical orthogonality (see ref 77 for a
comprehensive overview of failed NP leads) and/or as a result
of inadequate reporting of 1H NMR spectroscopic data (see ref
117 and references therein).
As far as predictive tools are concerned, the free FAF-Drugs3

(http://fafdrugs3.mti.univ-paris-diderot.fr) is a very useful tool
that can calculate important molecular characteristics and
immediately includes useful filters such as for PAINS,
aggregation data (the Shoichet laboratory Web site provides
very comprehensive coverage), and the Eli Lilly MedChem
rules.56 Mixtures remain difficult to resolve, as they can show
enhanced, reduced, or nulled effects compared to those of the
individual components. These effects can be due to synergistic
or antagonistic action on the target,118−120 solubility effects,83

or impact on aggregation.46 Evidently, NP-driven programs are
notoriously plagued with the mixture problem, as discussed
above with regard to RC.
Whether in the form of filters, rules, or predictions, the NPs

chemist should always be aware of how and for what specific
purpose these controls have been defined. This awareness is
critical, as it enables the researcher to recognize when
control(s) mask positive events in the data (i.e., the one-off,
true hits) and/or obscure their negative counterparts (a
potential role for true IMPs, PAINS, and other promiscuous
compounds). The ability to avoid wasting a positive event, e.g.,
by letting it be collected into the solvent waste during final LC
purification, while spending endless efforts on chasing a
negative event with its spurious activities, requires awareness
of this unresolved dichotomy.
By lack of devoted efforts, the majority of compounds are not

studied much more beyond their initial discovery. Bringing
friends to help search for the keys under the street light is
unlikely to increase the discovery rate, and we are convinced
that this analogy applies to NPs as well. However, in order for
serendipitous discoveries to occur, one must be receptive,
prepared, and accept the occurrence of unexpected events.

■ CONCLUSIONS AND OUTLOOK
At the risk of oversimplifying a complex matter, “yes” is still a
reasonable simplistic answer to the title question. The present
study provided clear evidence for the existence of IMPs and for
their ability to interfere with the NP-based drug discovery
process, using various meanings of the term interference when
it is applied to bioassay-driven approaches. Located in the same
region of the black hole of NPs, where the density of effort is
very high, IMPs are direct neighbors of true leads. Taleb
described these sought-after marvels of drug discovery as
positive black swans.74 By following a power-law distribution,
true leads are like black swans: they are neither predictable nor
readily distinguished from IMPs at the early discovery stage.
The recognition of IMPs presented in this work builds on the
large body of NP literature encoded into NAPRALERT. From

a holistic perspective, this also leads to the conclusion that
orthogonality applied to both biology and chemistry is essential
to both IMP recognition and avoidance.

Reflections on IMPs and the Black Hole of Natural
Products. While the evidence collected so far is insufficient to
assign IMPs the role of consistently negative black swans, the
analogy is at least thought provoking. The special role of the
top-39 compounds identified in this study and their potential
IMP status beg two immediate questions: Shall the compounds
be completely eliminated from the list of potential lead
compounds, or (in the Boolean sense) is the IMPs character of
any given compound actually a signature of its unique, yet
unrecognized, role in nature?
Figure 6 summarizes the key findings of the present study

and provides a visual impression about the ambivalence of the
compound−abundance−bioactivity space of NPs. One key
conclusion is that a relatively small group of molecules can
indeed be defined that are invalid metabolic panaceas, IMPs.
Located at the bottom of the 3D hyperbolic space, i.e., the black
hole of NPs (Figure 6C), the IMPs are neighbors but antonyms
of true lead compounds. The shape of the black hole is
essentially identical for all three investigated parameters (O/A/
D; see Defining the Bottom of the Black Hole of Natural
Products). Moreover, the black hole provides the sense of the
extremely high effort (density) expended on relatively few NPs,
whereas the majority of NPs remain vastly underexplored, both
chemically and biologically.
As detailed in the above section, The Big Picture: The

Holistic Distribution of Natural Products, the hyperbolic shape
follows power-law functions, which are principles found to
govern a breadth of natural and social phenomena. The authors
interpret this analogy as a hint by nature that a common and
possibly invariable law drives human ability, curiosity, and
discovery equally.
Considering the undeniable abundance of success stories of

NP-based drug discovery,33 there clearly are diamonds (true
hits) to be discovered. One interesting instance is that of taxol
(19), which is contained in the top-39 compounds in Table 2.
This is mainly the result of 19 generating massive and broad
interest in the research community, which led to a large number
of reports (high count in the A category; see Table 2) within a
rather focused window of biological activity. While clearly
representing a valid drug (lead), the placement of 19 on the list
of potential IMPs may furthermore imply that the compound
also has interference qualities, which were uncovered while
performing random searches for alternative uses of the
compound. Continuing this interpretation would even generate
the scenario that a valid hit receives a false-positive promiscuity
label if it is tested only in a sufficient number of invalid assays
before being assayed in the (otherwise decisive) test.
Conversely, the designation of a compound as an IMP has a
dynamic component that results from the potentially volatile,
power-law driven scientific interest in it, which, in turn, reflects
the behavior of IMPs as proverbial imps. Again, it remains to be
shown whether true hits can emerge from unpredictable events
or as the direct result of a systematic and truly targeted
approach.
Nevertheless, caution even applies when using such

compounds as positive controls in bioassays. Their ability to
interfere with many reporters (e.g., fluorophores, oxidation
dependent chromophores) as well as with the targets
(aggregation, nonspecific binding) increases the likelihood of
their activity scores not being comparable to those of their real

Journal of Medicinal Chemistry Perspective

DOI: 10.1021/acs.jmedchem.5b01009
J. Med. Chem. 2016, 59, 1671−1690

1684

http://fafdrugs3.mti.univ-paris-diderot.fr
http://dx.doi.org/10.1021/acs.jmedchem.5b01009


targets. Moreover, assays that suffer from sensitivity to these
interferences will likely only enrich compounds or fractions that
bear the same issues.
The Bigger Data Approach. The recognition of IMPs,

PAINS, and other promiscuous molecules requires bigger
picture approaches, looking at relatively large amounts of data
including experimental, HTS, and the broader literature.
Relational databases, in particular those collecting and some-
times editing (published) meta-information, are the prime tools
for the meta-analysis part of such undertakings. NAPRALERT
was uniquely positioned to serve the present study due to its
comprehensiveness and design. This was evident from the long-
term involvement of one of the authors (J.G.) with
NAPRALERT and copious personal communications of several
of the authors with its founder, the late Dr. Norman
Farnsworth. Collectively, there are clear indications that, from
its early days, NAPRALERT was designed to encode published
information about bioactive NPs in a unique comprehensive
fashion: with very broad coverage (high journal diversity), using
a multidisciplinary approach (aimed at collaborative pharma-
ceutical research), with linkage to the original primary articles
(physical collection), and such that its ultimate utility increases
over time beyond projected linear growth of information
content/value. Hence, NAPRALERT inherently can address
more general questions that otherwise would be beyond the
capacity even of large academic research programs.
The linkage of NAPRALERT output with other databases,

while representing an important tool during the present study,
also illustrates the importance of the availability and
accessibility (public licensing) of comprehensive software
solutions for data analysis. Ideally, such tools are backed by
dedicated, global user communities and documentation, as is
the case for PubChem and ChEMBL used here. When coupled
with public databases, which are becoming increasingly
available, the mining of bigger data becomes feasible even for
the less computer-initiated researcher and, thereby, can provide
new means of answering important scientific questions related
to drug discovery.
However, it is equally important to realize that the treatment

of huge amounts of data always presents the risk of being
subject to sourcing bias, noncurated data artifacts, or simple
misunderstanding of parameters. One reason is that the manual
curation of the breadth and depth of published results can
quickly produce demands beyond human capacity. For both the
producers and the consumers of such data, the importance of
awareness for the inherent risks of invalid data or analyses
cannot be overemphasized. The key role of data quality and
compilation practices also explains why efforts for finding the
most advanced forms of the description of metadata (e.g.,
biological profiles), chemical structures,121,122 spectra (e.g.,
access to raw data), and interpreted analytical data (e.g., NMR
tables117) are more critical than ever.
More manageable, interface-ready, and reproducible forms of

dissemination are essential for the ability of future researchers
to cope with the tremendous amount of research data produced
every day. A new generation of bioinformatic tools is required
to enable recognition of global patterns behind research
outcomes. Such tools will also be needed to confirm (or
reject) the present outcomes of power-law principles that
produce the black hole of NPs and/or the identification of
IMPs as a new class of compounds that produce red flags in NP
drug discovery programs.

Nature’s Dichotomy of Prioritization. The (drug)
discovery process is filled with decision making. While it is
frequently termed prioritization, emphasizing its analogue
nature, decisions are inevitably binary, especially from the
perspective of a single element (e.g., candidate molecule, NP
extract, or fraction). Materials are studied because their
bioactivity levels can achieve a certain threshold. Biological
profiles receive favorable evaluation, or they do not; serendipity
strikes, or it does not; etc. Despite wide awareness of these
relationships, this reflection serves as a reminder that
dichotomous paths bear the same risks as binary decisions:
single-point errors can lead to total disorientation, like in a
maze.
The same is true for virtual software filters or real filters used

in the discovery process, such as bioassay-guided fractionation
and HTS of pure compounds: the results are indicators rather
than definitive answers. However, dichotomy trumps in another
way: the complementary nature of two existing, but radically
different, approaches to NP-based drug discovery. One follows
the rational prioritization of crude NP extracts, e.g., via bioassay
guidance or by other means. The contrasting approach involves
the systematic mining of single chemical entities (pure NPs),
which can result from various forms of purification campaigns
and often are not (perceived as being) very targeted. Both
approaches can actually benefit from each other: the former, for
example, by allowing more efficient prioritization using
information available from pure compounds, and the latter,
by inspiring a search for chemical novelty in materials with
interesting biological profiles. This provides rationale for
consideration of another dimension of the meaning of
“targeted” in (NP) drug discovery programs.
The findings of the present study indicate that harnessing the

uninterrupted power and potential of NPs31,33,35 will not only
benefit from both approaches, but also gain from, or even
require, the advancement of experimental approaches. This
includes the following three exemplary avenues: (i) the
development of more integrated approaches to the prioritiza-
tion of actives; (ii) a more in-depth biological assessment and
interpretation of bioassay data; and/or (iii) an early stage
validation of compounds designated as being bioactive,
especially when involving broader terms such as antifungal,
antimicrobial, or the like.123 Collectively, quality control of
early hits and leads would enhance the validity and
prioritization of true leads.
Finally, the identification of IMPs as a group of ubiquitous

nuisance compounds that attract an overproportional amount
of experimental attention has the potential to spark further
thoughts that may eventually lead to a paradigmatic shift in NP-
based drug discovery and related fields of research. While IMPs
do not necessarily represent futile compounds, their true role in
nature is likely understood poorly or not at all. The present
study makes it a plausible hypothesis that IMPs are actually part
of the power-law functionality that continues to be responsible
for the generation of confusion across a breadth of sciences,
including the pharmaceutical disciplines. This hypothesis is
visualized by the NP black hole, a 3D space model of
occurrence, bioactivity, and research effort, in which IMPs
populate the high-density bottom. To this end, the recognition
of the existence of both IMPs and the NP black hole, gleaned
from 80+ years of reported NPs research, may inspire future
progress in the field.
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Glodny, B. Occurrence of progesterone and related animal steroids in
two higher plants. J. Nat. Prod. 2010, 73 (3), 338−345.
(39) Lemoff, A.; Yan, B. Dual detection approach to a more accurate
measure of relative purity in high-throughput characterization of
compound collections. J. Comb. Chem. 2008, 10 (5), 746−751.
(40) Popa-Burke, I.; Novick, S.; Lane, C. A.; Hogan, R.; Torres-
Saavedra, P.; Hardy, B.; Ray, B.; Lindsay, M.; Paulus, I.; Miller, L. The
effect of initial purity on the stability of solutions in storage. J. Biomol.
Screening 2014, 19 (2), 308−316.
(41) Simmler, C.; Hajirahimkhan, A.; Lankin, D. C.; Bolton, J.; Jones,
T.; Soejarto, D. D.; Chen, S.-N.; Pauli, G. F. Dynamic residual
complexity of the isoliquiritigenin-liquiritigenin interconversion during
bioassays. J. Agric. Food Chem. 2013, 61 (9), 2146−2157.
(42) Pauli, G. F.; Chen, S.-N.; Simmler, C.; Lankin, D. C.; Gödecke,
T.; Jaki, B. U.; Friesen, J. B.; McAlpine, J. B.; Napolitano, J. G.
Importance of purity evaluation and the potential of quantitative 1H
NMR as a purity assay. J. Med. Chem. 2014, 57 (22), 9220−9231.
(43) Seidler, J.; McGovern, S. L.; Doman, T. N.; Shoichet, B. K.
Identification and prediction of promiscuous aggregating inhibitors
among known drugs. J. Med. Chem. 2003, 46 (21), 4477−4486.
(44) Feng, B. Y.; Shelat, A.; Doman, T. N.; Guy, R. K.; Shoichet, B.
K. High-throughput assays for promiscuous inhibitors. Nat. Chem. Biol.
2005, 1 (3), 146−148.
(45) Shoichet, B. K. Screening in a spirit haunted world. Drug
Discovery Today 2006, 11 (13−14), 607−615.
(46) Feng, B. Y.; Shoichet, B. K. Synergy and antagonism of
promiscuous inhibition in multiple-compound mixtures. J. Med. Chem.
2006, 49 (7), 2151−2154.
(47) Feng, B. Y.; Toyama, B. H.; Wille, H.; Colby, D. W.; Collins, S.
R.; May, B. C. H.; Prusiner, S. B.; Weissman, J.; Shoichet, B. K. Small-
molecule aggregates inhibit amyloid polymerization. Nat. Chem. Biol.
2008, 4 (3), 197−199.
(48) Owen, S. C.; Doak, A. K.; Wassam, P.; Shoichet, M. S.; Shoichet,
B. K. Colloidal aggregation affects the efficacy of anticancer drugs in
cell culture. ACS Chem. Biol. 2012, 7 (8), 1429−1435.
(49) Owen, S. C.; Doak, A. K.; Ganesh, A. N.; Nedyalkova, L.;
McLaughlin, C. K.; Shoichet, B. K.; Shoichet, M. S. Colloidal drug
formulations can explain “bell-shaped” concentration−response curves.
ACS Chem. Biol. 2014, 9 (3), 777−784.
(50) Duan, D.; Doak, A. K.; Nedyalkova, L.; Shoichet, B. K. Colloidal
aggregation and the in vitro activity of traditional chinese medicines.
ACS Chem. Biol. 2015, 10 (4), 978−988.
(51) Pohjala, L.; Tammela, P. Aggregating behavior of phenolic
compounds  a source of false bioassay results? Molecules 2012, 17
(9), 10774−10790.
(52) Feng, B. Y.; Simeonov, A.; Jadhav, A.; Babaoglu, K.; Inglese, J.;
Shoichet, B. K.; Austin, C. P. A high-throughput screen for
aggregation-based inhibition in a large compound library. J. Med.
Chem. 2007, 50 (10), 2385−2390.
(53) Walters, W. P.; Murcko, M. A. Prediction of “drug-likeness. Adv.
Drug Delivery Rev. 2002, 54 (3), 255−271.
(54) Verheij, H. J. Leadlikeness and structural diversity of synthetic
screening libraries. Mol. Diversity 2006, 10 (3), 377−388.
(55) Lagorce, D.; Sperandio, O.; Galons, H.; Miteva, M. A.;
Villoutreix, B. O. FAF-Drugs2: free ADME/Tox filtering tool to assist
drug discovery and chemical biology projects. BMC Bioinf. 2008, 9 (1),
396.

(56) Bruns, R. F.; Watson, I. A. Rules for identifying potentially
reactive or promiscuous compounds. J. Med. Chem. 2012, 55 (22),
9763−9772.
(57) Simeonov, A.; Jadhav, A.; Thomas, C. J.; Wang, Y.; Huang, R.;
Southall, N. T.; Shinn, P.; Smith, J.; Austin, C. P.; Auld, D. S.; Inglese,
J. Fluorescence spectroscopic profiling of compound libraries. J. Med.
Chem. 2008, 51 (8), 2363−2371.
(58) Kongkamnerd, J.; Milani, A.; Cattoli, G.; Terregino, C.; Capua,
I.; Beneduce, L.; Gallotta, A.; Pengo, P.; Fassina, G.; Monthakantirat,
O.; Umehara, K.; De-Eknamkul, W.; Miertus, S. The quenching effect
of flavonoids on 4-methylumbelliferone, a potential pitfall in
fluorimetric neuraminidase inhibition assays. J. Biomol. Screening
2011, 16 (7), 755−764.
(59) Schorpp, K.; Rothenaigner, I.; Salmina, E.; Reinshagen, J.; Low,
T.; Brenke, J. K.; Gopalakrishnan, J.; Tetko, I. V.; Gul, S.; Hadian, K.
Identification of small-molecule frequent hitters from AlphaScreen
high-throughput screens. J. Biomol. Screening 2014, 19 (5), 715−726.
(60) Hermann, J. C.; Chen, Y.; Wartchow, C.; Menke, J.; Gao, L.;
Gleason, S. K.; Haynes, N.-E.; Scott, N.; Petersen, A.; Gabriel, S.; Vu,
B.; George, K. M.; Narayanan, A.; Li, S. H.; Qian, H.; Beatini, N.; Niu,
L.; Gan, Q.-F. Metal impurities cause false positives in high-throughput
screening campaigns. ACS Med. Chem. Lett. 2013, 4 (2), 197−200.
(61) Lor, L. A.; Schneck, J.; Mcnulty, D. E.; Diaz, E.; Brandt, M.;
Thrall, S. H.; Schwartz, B. A simple assay for detection of small-
molecule redox activity. J. Biomol. Screening 2007, 12 (6), 881−890.
(62) Johnston, P. A.; Soares, K. M.; Shinde, S. N.; Foster, C. A.;
Shun, T. Y.; Takyi, H. K.; Wipf, P.; Lazo, J. S. Development of a 384-
well colorimetric assay to quantify hydrogen peroxide generated by the
redox cycling of compounds in the presence of reducing agents. Assay
Drug Dev. Technol. 2008, 6 (4), 505−518.
(63) Kim, E.; Gordonov, T.; Liu, Y.; Bentley, W. E.; Payne, G. F.
Reverse engineering to suggest biologically relevant redox activities of
phenolic materials. ACS Chem. Biol. 2013, 8 (4), 716−724.
(64) Balunas, M. J.; Su, B.; Landini, S.; Brueggemeier, R. W.;
Kinghorn, A. D. Interference by naturally occurring fatty acids in a
noncellular enzyme-based aromatase bioassay. J. Nat. Prod. 2006, 69
(4), 700−703.
(65) Liu, J.; Burdette, J. E.; Sun, Y.; Deng, S.; Schlecht, S. M.; Zheng,
W.; Nikolic, D.; Mahady, G.; van Breemen, R. B.; Fong, H. H. S.;
Pezzuto, J. M.; Bolton, J. L.; Farnsworth, N. R. Isolation of linoleic acid
as an estrogenic compound from the fruits of Vitex agnus-castus l.
(chaste-berry). Phytomedicine 2004, 11 (1), 18−23.
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