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The brain-computer interface (BCI) of steady-state visual evoked potential (SSVEP) is

one of the fundamental ways of human-computer communication. The main challenge

is that there may be a nonlinear relationship between different SSVEP in other states.

For improving the performance of SSVEP BCI, a novel CNN algorithm model is

proposed in this study. Based on the discrete Fourier transform to calculate the signal’s

power spectral density (PSD), we perform zero-padding in the signal’s time domain

to improve its performance on the PSD and make it more refined. In this way, the

frequency point interval in the PSD of the SSVEP is consistent with the minimum gap

between the stimulation frequency. Combining the nonlinear transformation capabilities

of CNN in deep learning, a zero-padding frequency domain convolutional neural network

(ZPFDCNN) model is proposed. Extensive experiments based on the SSVEP dataset

validate the effectiveness of our method. The study verifies that the proposed ZPFDCNN

method can improve the effectiveness of the SSVEP-based high-speed BCI ITR. It has

massive potential in the application of BCI.

Keywords: electroencephalogram, zero-padding frequency domain, steady-state visual evoked potential, steady-

state motor visual evoked potential, convolutional neural network

1. INTRODUCTION

Brain-Computer Interface (BCI) is a kind of communication system which converts the “ideas” in
the brain into instructions. It can directly communicate with the machine to express intentions and
ideas without language or actions. In the past few decades, among various modes of BCI, the BCI
of SSVEP realized by EEG has been widely concerned and studied because of its high ITR, high
signal-to-noise ratio, less training time, and reliability (Bin et al., 2009). It has been widely used
in many fields such as medical diagnosis, rehabilitation for the disabled (Lebedev and Nicolelis,
2017), entertainment experience, and other fields, and it has made a considerable contribution to
improving the quality of life of the disabled (Gao et al., 2003). Although BCI based on SSVEP has
demonstrated high application value in various fields, its design and application still need to be
studied, and it is still facing enormous challenges.

Traditional algorithms for detecting SSVEP signals can be roughly divided into four
categories. (1) Spectrum analysis method based on Fourier transform, such as the fast Fourier
transform (FFT) and power spectral density analysis (PSDA). (2) Methods based on signal
decomposition analysis, such as the Hilbert-Huang transform (HHT) algorithm (Huang et al.,
1998). (3) Algorithms based on canonical correlation analysis (Lin et al., 2006; Bin et al.,
2009), such as multi-way canonical correlation analysis (MwayCCA) (Yu et al., 2011), filter
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bank canonical correlation analysis (FBCCA) algorithm (Chen
et al., 2015), individual template-based canonical correlation
analysis (IT-CCA) (Bin et al., 2011), L1 regularized multi-
channel canonical correlation analysis (L1-MCCA) (Zhang et al.,
2013). (4) Algorithms based on spatial filter and template
matching, such as correlated component analysis (CORCA)
(Zhang et al., 2018), task-related component analysis (TRCA)
(Nakanishi et al., 2018), sum of squared correlations (SSCOR)
(Kiran Kumar and Ramasubba Reddy, 2019), multi-stimulus
task-related component analysis (msTRCA) (Chi et al., 2020).
The first type of algorithm is relatively simple, has a short
computation time, and is suitable for single channels. However,
the calculation requires long enough signal data, and it is
necessary to assume that the signal is linear and steady. This
type of algorithm cannot handle highly complex EEG signals with
nonlinear and non-stationary features (Cheng et al., 2002; Wang
et al., 2006; Chen et al., 2017). The second type of algorithm
analyzes the signal in the time-frequency domain; it has better
versatility in processing nonlinear and non-stationary signals
than FFT. However, in the face of highly complex SSVEP signals,
its performance is still unsatisfactory (Huang et al., 2008). The
third algorithm detects the SSVEP signal by calculating the
correlation between the EEG and reference signals. But, this
kind of algorithm cannot well deal with nonlinear relations
in real signals (Bin et al., 2009), and there is a certain gap
in accuracy and information transmission rate compared with
methods in supervised training (Nakanishi et al., 2018). Although
the fourth type of algorithm is a supervised training method
dependent on subjects, it cannot extract specific subject and task-
related information from individual calibration data in many
application scenarios of SSVEP-based BCI. It is not conducive
to the application and popularization of SSVEP-based BCI. At
the same time, visual fatigue, inattention, and other factors that
are not independent of individual subjects will also affect the
performance of the algorithm independent of the subjects.

Recently, deep learning has been successfully applied in many
fields and has achieved remarkable results in the classification
task of SSVEP signals. Zhang et al. proposed an external
convolutional neural network (CNN) to detect the intentional
control (IC) state and unintentional control (NC) state in EEG.
The results clearly show that the proposed shallow CNN method
can distinguish between IC and NC states in EEG (Zhang
et al., 2019b). In addition, the steady-state motion visual evoked
potential (SSMVEP) BCI system detectsmultiple sub-states in the
IC state. Some researchers have proposed a novel convolutional
neural network (FFT-CNN-CCA) to see the NC state and
multiple IC sub-states in the SSMVEP-BCI system (Zhang et al.,
2019a). Gao et al. introduced the deep learning (DL) method
in a cart control system designed based on SSMVEP signals.
The results show that the constructed deep learning model of a
convolutional neural network with long and short-term memory
(CNN-LSTM) is not only suitable for “EEG illiterate” people but
can significantly improve the performance of “EEG illiterate”
people (Gao et al., 2020). The deep learning method has been
widely used in EEG, EMG, and other signals (Waytowich et al.,
2018; Ravi et al., 2020; Zhang et al., 2021). Nevertheless, in
the classification task of SSVEP signals with a large number

of categories, few articles mention that the performance of the
deep learning algorithm model exceeds some existing spatial
filter algorithms, such as the TRCA (Nakanishi et al., 2018) or
msTRCA (Chi et al., 2020) algorithm. The performance and
ITR of SSVEP-based BCI applications largely depend on the
classification accuracy of SSVEP signals under more stimulus
targets and shorter time windows. However, these deep learning
methods have not been studied on many stimulus targets or
validated on standard public datasets. Moreover, how to improve
the classification accuracy of SSVEP’s BCI through deep learning
methods is still to be studied.

Therefore, this article proposes a zero-padding frequency
domain convolutional neural network (ZPFDCNN) model to
solve the above problems. Because the spectrum calculated
by discrete Fourier transform (DFT) has Picket Fence Effect,
padding zeros at the end of the signal can increase the point
density and reduce the sampling error of the spectrum calculated
by DFT. At the same time, the zero-padding method does not
introduce any frequency component into the intercepted signal
but can improve the observed value of the movement in the
spectrum. So, inspired by it, we use the zero-padding method
to calculate the PSD of the signal and then combined with the
nonlinear transformation ability of CNN, the ZPFDCNNmethod
is proposed. This study aims to use the deep learning method
to classify SSVEP signals and SSMVEP signals with multiple
stimulation target frequencies to prove the effectiveness of the
ZPFDCNNmethod based on deep learning training SSVEP-BCI.

The main contributions of this article are as follows: (1) In
the feature extraction of SSVEP and SSMVEP signals caused
by cycle visual stimuli, a feature extraction method is proposed
for calculating the PSD of a signal with zero-padding in the
time domain. This method can effectively extract frequency
information in the SSVEP and SSMVEP signals. (2) Considering
the impact of visual delay on classification accuracy, studying
different harmonic numbers on the impact of the proposed
classification model, by selecting the corresponding harmonic
number and fusion multi-channel information, the different
categories SSVEP and SSMVEP signals of nonlinear transform
capability are combined. (3) On the public BETA: SSVEP
dataset and the SSMVEP training dataset of the 2020 World
Robot Contest-BCI Controlled Robot Contest, offline experiment
results show that the method is better than existing TRCA and
msTRCA methods.

2. METHOD

2.1. Method Overview
This article proposes a zero-padding frequency domain
convolutional neural network model method to identify different
types of SSVEP signals or SSMVEP signals. The structure flow
chart of this method is shown in Figure 1. It can be seen from
the figure that the process consists of three parts. First, The
EEG signal is intercepted and padded with zeros in the time
domain to improve the observed value of the signal’s PSD in
the frequency domain. Then, the fundamental frequency band
and the second harmonic frequency band from the PSD of the
nine-channel SSVEP signal or SSMVEP signal are extracted and
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FIGURE 1 | Flowchart of zero-padding frequency domain convolutional neural network algorithm for SSVEP recognition.

combined into a feature matrix, which retains useful information
while removing unnecessary information interference. Finally,
the feature matrix is used as the input of the algorithm model to
identify different types of SSVEP signals or SSMVEP signals by
nonlinear transformation.

2.2. Introduction to the Dataset
2.2.1. Introduction to the BETA:SSVEP Dataset
The BETA:SSVEP dataset (Liu et al., 2020) comes from 70 healthy
subjects, including 28 women, 42 men, age range 9–64 years,
average age: 25.14 years, standard deviation: 7.97 years. The user
interface of the BCI speller in the experiment corresponding to
this dataset is a 5*8 stimulus matrix containing 40 characters. Use
linearly increasing frequency and phase to encode 40 characters.
The frequency range is 8–15.8Hzwith 0.2Hz intervals. The phase
value starts from 0, and the interval is 0.5π . The dataset has been
bandpass filtered between 3 and 100 Hz to remove ambient noise
and then epoch extraction. Starting from each block, they include
0.5 s before stimulation, 2 s of stimulation (for S1–S15) or 3 s of
stimulation (for S16–S70), and 0.5 s after stimulation. After that,
the data of all periods are downsampled to 250 Hz.

2.2.2. Introduction to SSMVEP Dataset
The SSMVEP dataset comes from the SSVEP training dataset of
the 2020 World Robot Contest-BCI Controlled Robot Contest
with a sampling frequency of 1,000 Hz, including a reference
dataset and a training dataset. The training dataset includes the A
list dataset and the B list dataset. The reference dataset contains
a total of 20 subjects’ experimental data. A total of three EEG
data collections were performed for each subject. Each EEG data
collection contains 35 stimulation targets. Both the A list training
dataset and the B list training dataset include the experimental
data of six subjects; Each subject has collected the EEG data

twice. Each EEG data collection is also a stimulus containing 35
stimulus targets. The stimulus target appears randomly in each
experiment, and each stimulus target appears once.

The experimental paradigm of the SSMVEP dataset uses a
circular checkerboard of periodic radial contraction-expansion
movement as the paradigm of visual stimulation. The stimulation
paradigm of this dataset contains a total of 35 stimulation
targets. The stimulation frequency of the stimulation targets is
3–20 Hz with an interval of 0.5 Hz. The initial phase of each
stimulation target is 0.5π . The experimental data in the SSMVEP
dataset is based on a block, and each block contains continuously
collected EEG data. The individual trials in the experimental
data lasted 5 s, including 3 s visual stimulation phase and 2
s rest phase. In the process of experimental visual stimulation,
35 targets were presented simultaneously. The presentation of
each stimulus target changes sinusoidally according to its preset
frequency. Subjects were asked to watch the prompted target
strictly to evoke a steady-state visual evoked potential in their
brain electrical signals.

2.3. EEG Signal Preprocessing
2.3.1. BETA:SSVEP Dataset Preprocessing
In the BETA: SSVEP dataset, Liu et al. (2020) have organized each
subject’s data into a separate mat file. So we do not need to start
with the original EEG signals. Each subject’s mat file contains
a four-dimensional double type matrix with a variable name of
EEG and a structure called suppl_info that includes the subject’s
practical information. The size of thematrix is 64*750/1000*4*40.
Each dimension represents the number of channel indexes, the
number of data points, the number of blocks, and the number of
stimulation sequences. The suppl_info structure contains some
practical information about the subjects.
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In the process of evaluating the algorithm model, EEG data
was selected from nine electrodes (Pz, PO5, PO3, POz, PO4, PO6,
O1, Oz, O2), and it is filtered out unnecessary noise in the filter
function by a 5–100 Hz IIR bandpass filter designed inMATLAB.
Considering the influence of visual latency mentioned by Liu
et al. (2020), a latency of 130 ms was applied to suppress the effect
of visual latency on model classification.

2.3.2. SSMVEP Dataset Preprocessing

2.3.2.1. Filtering
The data of the SSMVEP dataset is the original EEG signal data
without any processing. Each subject is stored in a mat file,
consisting of a two-dimensional array. The two dimensions of
the array represent the number of channels and the number
of sampling points, respectively. Among them, the last channel
saves the tags and synchronously records the event information
in the experiment; It contains the label at the start time and
the end time, the label at the start time and the end time of
the stimulus.

In the process of evaluating the model, EEG data was selected
from nine electrodes (Pz, PO5, PO3, POz, PO4, PO6, O1, Oz,
O2), and it is filtered out unnecessary noise in the filter function
by a 2–102 Hz IIR bandpass filter designed in MATLAB.

2.3.2.2. Data Collation
The filtered SSMVEP data is trimmed and sorted by retrieving
the 65th channel label. Each subject’s data is saved as a four-
dimensional matrix. Each matrix dimension represents the
number of channel indexes, the number of data points collected,
the number of blocks, the number of stimuli ordinal. Among
them, the collected data points include 1000 sampling points one
second before the start of stimulation, in visual stimulation, and
one second after the end of visual stimulation. Organize the data
in this way to facilitate post-processing.

2.3.2.3. Consideration of Visual Latency
Due to the impact of visual latency on the classification of EEG
signals, we have considered the visual latency of the EEG data
in the SSMVEP dataset. First, all EEG data was filtered and
processed before. Then the EEG signals of all subjects under
nine electrodes (Pz, PO5, PO3, POz, PO4, PO6, O1, Oz, O2)
and 35 different stimulation frequencies were superimposed and
averaged. After sorting, the average time-domain waveforms
of nine electrode channels of all subjects under 10 Hz visual
stimulation frequency are shown in Figure 2A. The two red
dashed lines are the artificially estimated start time of the
stimulation target and the end time of the stimulation target.

The time-domain waveform and PSD of the Oz electrode
channel EEG signal at 10 Hz visual stimulation frequency are
shown in Figure 2B. The two red dotted lines in the time-
domain waveform are the artificially estimated stimulus target
start time and the stimulus target end time. Figure 2C’s PSD
shows that the SSMVEP signal has a very significant amplitude
performance at the fundamental frequency of the stimulation
target, and it has almost no corresponding amplitude response
at the multiple of the stimulation frequency. Therefore, this may
be why the stimulus paradigm for data collection in this dataset

does not consider the influence of the doubling frequency of the
stimulus frequency.

The visual latency of all subjects in the SSMVEP dataset was
estimated manually. The method is to superimpose and average
the EEG data of 35 stimulation frequencies under the nine
electrodes (Pz, PO5, PO3, POz, PO4, PO6, O1, Oz, O2) of each
subject. Then we analyzed and estimated the visual latency in the
EEG collected by them and estimated the average visual latency
and standard deviation in the system as shown in Figure 3. The
average value of the artificially estimated visual latency is 107.61
ms, and the standard deviation is 16.63 ms.

2.4. Time Domain Zero-Padding Feature
Extraction
2.4.1. Features of SSVEP and SSMVEP Signals
Both SSVEP signal and SSMVEP signal are weak evoked EEG
signals. It is susceptible to the influence of other brain electricity
and noise interference. At the same time, factors such as the
participant’s status and the participant’s attention strategy will
also affect the detection of the SSVEP signal. This makes the
SSVEP signal have a big difference between different subjects.
Age and gender have a certain degree of influence on SSVEP.
Therefore, it is difficult to distinguish other SSVEP signals purely
from the perspective of time-domain waveforms.

Because both SSVEP signal and SSMVEP signal are EEG
signals induced by periodic visual stimulation, they have
apparent characteristics in the frequency domain. For the
SSVEP, one of the most prominent features is relatively strong
amplitude performance at the fundamental frequency point
of the corresponding stimulation frequency and the harmonic
frequency point of the doubling frequency in the frequency
domain. The SSMVEP signal has a less harmonic amplitude
than the SSVEP signal. It can hardly see the second harmonic,
and it cannot see the higher-order harmonics at all (Han et al.,
2018). One of its most prominent features is its relatively strong
amplitude performance at the fundamental frequency point
corresponding to the stimulation frequency on the frequency
domain spectrum.

Therefore, the signal detection difficulties for SSVEP and
SSMVEP mainly have the following three aspects. (1) The
spectrum diagram in the frequency domain makes it easy to
distinguish different SSVEP signals or SSMVEP signals. However,
in frequency domain spectrum analysis, the signal needs to reach
a certain data length which makes it easy to distinguish SSVEP
signals or SSMVEP signals with different stimulation frequencies
(Cheng et al., 2002; Wang et al., 2006; Chen et al., 2017).
(2) The induced SSVEP signal and SSMVEP signal frequency
bands are relatively wide. But, the amplitude of EEG induced by
different stimulation frequencies is different. Moreover, SSVEP
will be affected by harmonics. This leads to the fact that the
stimulation frequency band and the corresponding response
frequency band used in the BCI are relatively narrow. (3) To
increase the ITR of BCI, more visual stimulation frequencies
are selected in the SSVEP signal or the SSMVEP signal with a
narrower stimulation response frequency band. This makes the
frequency interval between the different SSVEP and SSMVEP
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FIGURE 2 | (A) The superposition average of time domain waveforms of nine electrode channels at 10 Hz visual stimulation frequency for all subjects. (B)

Superposition average of time domain waveform of Oz electrode channel at 10 Hz visual stimulation frequency for all subjects. (C) Superposition average of PSD of

Oz electrode channel at 10 Hz visual stimulation frequency for all subjects.

signals smaller, making it more difficult to distinguish different
SSVEP signals or SSMVEP signals in the frequency domain.

2.4.2. Improvement of PSD by Zero-Padding
The frequency resolution of the frequency spectrum in the
discrete Fourier transform (DFT) can be understood as the
minimum frequency interval that can be obtained on the
frequency axis when using the discrete Fourier transform.

f0 =
Fs

N
= 1

Nts
= 1

T
(1)

where N is the number of sampling points, Fs is the sampling
rate. ts is the sampling interval. So Nts is the time length T of the

analog signal before sampling. Therefore, the longer the signal
length, the better the signal spectrum frequency resolution. The
Fourier Transform (FT) is a linear integral transform used to
transform the signal in the time domain to the frequency domain.
The continuous Fourier transform Xf is defined as

X(f ) =
∫ ∞

−∞
x(t)e−j2π f tdt (2)

where x(t) is a continuous signal in the time domain. X(f ) is
the continuous spectrum of the signal in the frequency domain,
t represents the time axis of the signal, and f represents the
frequency axis of the signal. DFT is a discrete form of Fourier
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FIGURE 3 | Artificial estimation of the visual latency and its average value in the SSMVEP dataset.

Transform. The DFT in the frequency domain of the discrete
sequence X(m) is defined as:

X(m) =
N−1
∑

n=0

x(n)e−j2πnm/N (3)

this is the DFT equation in exponential form. Among them,
x(n) is the discrete sampling value of the time-domain
continuous variable x(t), n is the discrete sampling of t. “e” is the
base of the natural logarithm, and the imaginary number symbol
j=

√
−1). n is the discrete sampling point on the frequency

axis of the signal’s bilateral spectrum behind the discrete Fourier
transform. The value range is the same asm, ranging from 0, 1, 2,
3, to N-1.

The DFT of a sequence of N points can only observe the
spectrum on a limited number of Nfrequency points. It is
equivalent to observing the scenery from the gap of the fence.
Sometimes it is not enough to understand the features of
EEG signals in the entire frequency domain. To observe the
information on other frequency points, it is necessary to process
the original signal x(n) to get more samples on the frequency
points. Increase the original number of sampling points in the
DTFT frequency domain to M the point, so that the sampling
point position becomes

{

ω′
k = eik

2π
M

}

0≤k<M
(4)

then the corresponding DFT becomes

x̂′[k] = x̂
(

eikω
′
k

)

=
N−1
∑

n=0

x[n]e−i 2πM kn (5)

where k represents the discrete sampling point of M discrete
sampling points on the frequency axis of the discrete Fourier
transform bilateral spectrum, with a value range of 0,1,2, . . . , M-1.

IfM−N zeros are added after the sequence x[n] and set as x′[n] ,
the above formula becomes

x̂′[k] =
M−1
∑

n=0

x′[n]e−i 2πM kn = Fx′ (6)

Therefore, the value x[n]’s DTFT at other frequency points can
be obtained by adding zero to x[n]’s and then doing DFT.
This is equivalent to moving the fence to be observed at other
frequency points.

The above conclusion can be verified by the theory of finite
DFT. Let the EEG signal x(n1) = [x(0), x(1), . . . , x(N − 1)1].
The sampling interval of the EEG signal is 1. Then after Fourier
transform, the frequency spectrum of x[n1] is

x(nd) =
N−1
∑

n=0

x(n1) · exp(−i2πmn/N) (m = 0, 1, · · · ,N − 1)

(7)
among them

d = 1/N1 (8)

d is the resolution when the length of the EEG signal is N.
If we addM zeros to the EEG signal x[n1], that is to say

x′(n1) = (x(0), x(1), · · · , x(N − 1)1, 0, · · · , 0) (9)

then the spectrum of x′(n1) after transformation is

x′(md1) =
M+N−1

∑

n=0

x′(n1) · exp(−i2πmn/(N +M))

=
N−1
∑

n=0

x(n1) · exp(−i2πmn/(M + N))

| (m = 0, 1, · · · ,M + N − 1)

(10)
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where

d1 = 1/(M + N)1 (11)

d1 is the resolution of the EEG signal when padding M zeros. It
can be seen from Equations (7) and (10) that for the same value
ofm

x(md) 6= x′(md1) (12)

but at the same frequency point, that is

md = m1d1 (13)

then there is

m1 = md/d1 = m(M + N)/N (14)

thus

x′(m1d1) =
M+N−1

∑

n=0

x′(n1) · exp(−i2πm1n/(M + N))

=
N−1
∑

n=0

x(n1) exp(−i2πmn/N) = x(md)

(15)

The above formula derivation proves that the spectrum observed
using the zero-padding technique and not the zero-padding
approach is consistent. However, the zero-padding can reduce the
interval between the various frequency points on the frequency
domain spectrum after the DFT of the signal. It can reduce
the influence of the “Picket Fence Effect” caused by continuous
Fourier transform to DFT in the frequency domain and improve
the observation of signals in the frequency domain. At the same
time, due to the nature of the DFT, an input signal whose
frequency component in the intercepted signal is not at an
integer multiple of the minimum frequency interval of the DFT
frequency domain. It will leak to other DFT output frequency
units. For a cosine wave with k cycles on the N-point input time
series, the frequency unit amplitude response of the N-point DFT
(the frequency unit index is represented by m) is approximately
equal to the sinc function. For a cosine wave with k cycles on the
N-point input time series, the frequency unit amplitude response
of the N-point DFT (the frequency unit index is represented by
m) is approximately equal to the sinc function.

X(m) = N

2
· sin[π(k−m)]

π(k−m)
(16)

this formula can determine the magnitude of the signal leakage
on the spectrum after the DFT. The truncation of the signal
in the time domain is equivalent to multiplying the signal by a
rectangular window in the time domain. The multiplication of
signals in the time domain is equivalent to convolution in the
frequency domain. Therefore, the DFT of the signal will convolve
a sinc function on each frequency component in the frequency
domain. So, an appropriate frequency interval in the frequency
domain can reduce the impact caused by spectrum leakage to a

certain extent. At the same time, because the rectangular window
has the smallest main lobe width on the DFT unit, it is easier to
obtain a clear and distinguishable signal spectrum than others,
such as Hamming windows and triangular windows. The feature
extraction part of the ZPFDCNN algorithm model we proposed
is to extract the PSD features of the EEG signal in the frequency
domain. The PSD spectrum is calculated based on the Fourier
transform. The calculation of the PSD under the continuous
Fourier transform is as follows.

P(f ) = lim
T→∞

|X(f )|2
2πT

(17)

among them, P(f ) is the PSD of the signal, and X(f ) is the
frequency spectrum after the DFT of the signal. The calculation
of the PSD in the discrete case is shown in the following formula.

P(m) = | X(m)) |2
Fs ∗ N

(18)

among them, P(m) is the PSD when the signal is discrete.
X(m) is the frequency spectrum under the DFT of the signal.
Fs is the sampling rate of the signal under discrete conditions.
N is the number of sampling points of the signal under discrete
conditions.

2.4.3. The Steps of Feature Extraction
First of all, for the preprocessed EEG data, we use a sliding
window to obtain a single EEG data sample on the epoch between
the stimulation starts with the visual latency and the stimulation
ends with the visual latency. The step size of the sliding window
is a data length of 0.1 s. The overlap time of the data is the size
of the sliding window minus the sliding step length. Then, the
intercepted signal is zero-padded to make the frequency point
interval of the signal consistent with the minimum frequency
interval between the stimulation frequency. Perform feature
extraction on the data of nine electrodes (Pz, PO5, PO3, POz,
PO4, PO6, O1, Oz, O2) channels in the BETA: SSVEP dataset
and SSMVEP dataset. Finally, considering the influence of
the harmonic sub-band on the model classification, the 80*9
dimension feature matrix comprises the fundamental frequency
band amplitude data and the second harmonic frequency band
amplitude data. In the BETA: SSVEP dataset, under the 1.0 s time
window of the highest ITR of the ZPFDCNN algorithm model,
the superimposed average visualization of feature matrices
of 11.6, 11.8, and 12 Hz categories are shown in Figure 4.
Compared with the PSD estimation without zero-padding, the
PSD estimation with zero-padding technology further expands
the difference between different categories. It makes it easier to
distinguish different types of SSVEP signals.

Using this feature extraction has the following six advantages.
(1) This technology reduces the interval between the frequency
points of the spectrum and improves the resolution between
the frequency points of the signal spectrum. (2) In DFT,
the rectangular window function with the minimum main
lobe weakens the influence between adjacent frequency points
compared with other window functions. (3) The normalization
processing after feature extraction makes the data distribution
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FIGURE 4 | In BETA:SSVEP dataset, feature matrix after superposition and average of PSD without zero-padding and PSD with zero-padding.

more reasonable. (4) Compared with the direct use of PSD,
the zero-padding method of feature extraction increases the
“spacing” between various categories, which is more conducive to
the classification of the deep learning model. (5) The frequency
feature is one of the most prominent features of SSVEP and
SSMVEP. DFT can transform signals from aliasing frequency
information in the time domain to different dimensions in the
frequency domain, which is equivalent to a part of feature
extraction. (6) For the two datasets, using the frequency band
information of interest in the frequency domain removes some
noise interference. It reduces the input dimension, model
complexity, and training time compared with the time domain
information directly as the input.

2.5. Frequency Domain Convolution
Classifier
2.5.1. Convolutional Network Structure
This research designed the convolutional neural network
according to the extracted signal features as shown in
the following Table 1. The neural network consists of five
consecutive layers: two convolutional layers, two fully connected
layers, and an output layer.

The input data has been preprocessed and feature extracted as
described above. Then, the harmonic characteristics of SSVEP are
considered simultaneously in the ZPFDCNN method. The data
of fundamental frequency band (BETA: SSVEP dataset: 8–15.8
Hz, SSMVEP dataset: 3–20 Hz) and harmonic frequency band
(BETA: SSVEP dataset: 16–31.6 Hz, SSMVEP dataset: 6–40 Hz)
are used as the input of the network. Layer 1 and Layer 2 are
two-dimensional convolution layers. In Layer 1 and 2, 32 and 64,
3*3 convolution kernels are used for convolution, respectively.
The 3*3 convolution kernel has been proven to perform well
in the image field. The article shows that in the case of the
same receptive field, multiple 3*3 convolution kernels have more

TABLE 1 | The structure of the CNN model used in the BETA:SSVEP dataset and

SSMVEP dataset.

Number Type Description

1 Matrix input 80*9*1 Matrices with “rescale-zero-one”

normalization

2 Convolution 32 3*3 convolutions with stride [1 1] and

padding “same”

3 Batch normalization Batch normalization

4 Leaky ReLU Leaky ReLU with scale 0.01

5 Convolution 64 3*3 convolutions with stride [1 1] and

padding “same”

6 Batch normalization Batch normalization

7 Leaky ReLU Leaky ReLU with scale 0.01

8 Fully connected 2048 fully connected layer

9 Batch normalization Batch normalization

10 Leaky ReLU Leaky ReLU with scale 0.01

11 Fully connected Fully connected layer(BETA:SSVEP dataset:40

neurons; SSMVEP dataset:35 neurons)

12 Batch normalization Batch normalization

13 Leaky ReLU Leaky ReLU with scale 0.01

14 Softmax Softmax

15 Classification output Cross entropyex

nonlinear functions than a more significant size convolution
kernel, which increases the nonlinear expression and makes the
classification decision function more difficult deterministic. At
the same time, in the case of having the same receptive field,
the former has fewer parameters, which reduces the amount
of calculation in the convolution kernel. It is more conducive
to increasing the model’s depth or accelerating its training
speed. Layer 3 is fully-connected in the CNN model with 2,048
neurons. Layer 4 is also fully connected. However, the number
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of classification categories determines the number of neurons in
this layer. In the BETA: SSVEP dataset, the number of neurons in
Layer 4 is 40. In the SSMVEP dataset, the number of neurons
in Layer 4 is 35. Batch normalization makes the data output
distribution of each layer more reasonable. It can accelerate
the training speed and increase the model’s generalization
ability. The Leaky ReLU activation function can increase the
model’s nonlinear transformation capability. Therefore, the batch
normalization and Leaky ReLU activation functions are used for
all previous layers. Layer 5 is the output layer, using the softmax
function. The classification loss function is mutually exclusive
classes’ cross-entropy of Kc (Kind of category).

2.6. Training Parameters
The learning of network weights uses the Adam optimization
algorithm that combines the momentum gradient and RMSprop
algorithms. The optimization algorithm can further reduce
the jitter of the update and balance the update speed of
each parameter, speed up the convergence, and ensure the
convergence. The algorithm is computationally efficient and
used with very few memory requirements. It is very suitable
for more significant problems in terms of data and parameters.
The algorithm is ideal for non-stationary targets and issues
with very noisy and sparse gradients. The algorithm uses error
backpropagation to optimize network weights, and the loss
function uses a cross-entropy function. The learning rate is set
to 0.0001. The model assesses the number of training epochs to
30, and the batch size in stochastic gradient descent is 512.

3. RESULT

3.1. Evaluating Indicator
3.1.1. Information Transmission Rate
Information translate rate (ITR) was originally used for the
communication and calculation rate of measurement systems in
the communication field. It was introduced into the BCI field
by Wolpaw and is an important indicator for measuring the
performance of BCIs in the BCI field. The calculation formula
is as follows:

ITR = 60

T

[

log2 Q+ P log2 P + (1− P) log2
1− P

Q− 1

]

(19)

among them, Trepresents the average trial duration, which
includes the duration of the time window and the duration
of the attention shift. Qrepresents the number of targets, and
P represents the recognition accuracy rate. The unit of ITR is
bits/min. For calculating the theoretical ITR for offline analysis,
a gaze shift time of 0.55 s is chosen according to the previous
studies (Chen et al., 2015; Wang et al., 2017), which was proven
sufficient in an online spelling task (Chen et al., 2015).

3.1.2. Classifier Performance Quantification
Accuracy (ACC) and confusion matrix can be used to measure
the algorithm’s performance in the BETA:SSVEP dataset and
SSMVEP dataset. The calculations were carried out in two
datasets, respectively. Among them, FPR, TPR, ACC can be easily

calculated through the confusion matrix. The definitions of the
three indicators are as follows:

FPR = FP

FP + TN
(20)

TPR = TP

TP + FN
(21)

ACC = TP + TN

TP + FN + FP + TN
(22)

among them, FP, TN, TP, FN are the number of false positives,
true negatives, true positives, and false negatives, respectively. In
our research, positive refers to the state of correct classification,
and negative refers to the state of incorrect classification. the 10-
fold cross-validation was performed on the two datasets. Both
datasets are divided into 10 sub-samples of equal size. Among the
10 sub-samples, one sub-sample is reserved as verification data
to test the model, and the remaining nine sub-samples are used
as training data. There is no overlap between the training subset
and the test subset. The cross-validation process was repeated
ten times, and each sample data in the ten sub-sample data was
verified once.

3.2. Performance
3.2.1. Performance in the BETA: SSVEP Dataset
By comparing with methods based on TRCA (Nakanishi
et al., 2018) and msTRCA (Chi et al., 2020), we studied the
performance of our proposed ZPFDCNN algorithm model on
the BETA: SSVEP dataset. The filter bank technology can
significantly improve the classification accuracy based on TRCA
and msTRCAmethods. Therefore, we explored algorithms based
on TRCA and msTRCA under five sub-bands. For simplicity,
we will refer to them as the TRCA algorithm and the msTRCA
algorithm in the following. Figure 5 compares the classification
accuracy percentage and ITR for all subjects at different time
windows. In this figure, one-way repeated measure ANOVAs
were performed to test whether there was a significant difference
between the three methods. The comparison of the Figure 5

and Table 2 shows that the classification accuracy and ITR
of the proposed ZPFDCNN model are significantly better
than the other two methods from 0.7 s and after the time
window. In the 1.0 s time window, the average classification
accuracy rate is 89.99%, reaching the highest ITR: 167.36
bit/min. The ZPFDCNN method is significantly better than
the msTRCA method, which is achieved 63.75% classification
accuracy and ITR: 140.65 bit/min under a time window of 0.5 s.
In Figure 6, the confusion matrix diagram is one of the ten-
fold crossvalidation of the BETA:SSVEP dataset under a 1.0 s
time window. It can see from Figure 6 that the ZPFDCNN
algorithm model can effectively distinguish the SSVEP signals
between different stimulation frequencies through the confusion
matrix diagram. Meanwhile, it also has enough classification
ability to distinguish two adjacent stimulus frequency points.
Under the time window >0.7 s, the ZPFDCNN method is
superior to TRCA and msTRCA. The possible reasons are as
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FIGURE 5 | (A) Average classification accuracy of the BETA:SSVEP dataset. (B) The average ITR of the BETA:SSVEP dataset with a visual shift time of 0.55 s. The

error bars indicate standard errors. Note that * denotes p < 0.05, ** denotes p < 0.01, *** denotes p < 0.001 according to one-way repeated measure ANOVAs.

TABLE 2 | Average classification accuracy and ITR of the BETA:SSVEP dataset

with a visual shift time of 0.55 s.

Time window

size(ms)

TRCA

(%)

msTRCA

(%)

ZPFDCNN

(%)

TRCA

(bpm)

msTRCA

(bpm)

ZPFDCNN

(bpm)

100 17.59 19.01 2.13 27.25 31.36 0.03

200 37.42 38.52 5.16 84.84 88.87 1.29

300 49.51 50.49 11.35 116.72 120.38 8.90

400 57.65 58.63 21.56 132.65 136.21 26.788

500 62.61 63.75 37.03 136.69 140.65 59.589

600 66.09 67.26 56.91 135.93 139.77 107.39

700 69.15 70.26 71.56 134.40 137.84 141.95

800 71.82 72.85 81.02 132.22 135.26 160.79

900 74.42 75.50 85.94 130.33 133.40 165.23

1,000 76.45 77.55 89.99 127.33 130.33 167.36

1,100 78.26 79.25 92.61 124.27 126.84 165.49

1,200 79.78 80.90 94.51 120.9 123.73 162.00

1,300 81.10 82.10 95.57 117.52 119.93 156.52

1,400 82.53 83.23 96.12 114.79 116.40 150.17

1,500 83.65 84.29 96.87 111.67 113.11 145.05

1,600 84.75 85.32 97.09 108.83 110.08 138.94

The optimal ITR performance of each algorithm is marked in bold.

follows: (1) In the frequency domain, the feature extraction
method of the zero-padding calculation PSD can be extracted
to more spectrum information than direct calculation PSD. (2)
Compared with the algorithm based on correlation analysis, the
nonlinear transformation ability of the deep learning algorithm is
more reliable in classification. In the time window of fewer than
0.7 s, the ZPFDCNN algorithm performs weaker than TRCA
and msTRCA. The possible reason is that the PSD information
calculated by the interception signal under the shorter time
window is insufficient to support the model to distinguish
between different categories. At this time, the performance of
the ZPFDCNN is not comparable to the algorithm based on
correlation analysis.

3.2.2. Performance in the SSMVEP Dataset
By comparing with methods based on TRCA (Nakanishi
et al., 2018) and msTRCA (Chi et al., 2020), we studied the
performance of our proposed ZPFDCNN algorithm model
on the SSMVEP dataset. As mentioned above, the filter
bank technology (five sub-bands) is used to improve the
classification accuracy based on the TRCA and msTRCA
methods. Figure 7 shows the comparison of classification
accuracy and ITR for all subjects in different time windows.
In this figure, one-way repeated measure ANOVAs were
performed to test whether there was a significant difference
between the three methods. From comparing of the Figure 7

and Table 3, the ZPFDCNN algorithm model we proposed is
significantly better than the other two methods in classification
accuracy and ITR starting from 0.6 s time window and
after. Moreover, in the time window of 0.7 s, the average
classification accuracy rate is 89.84%, reaching the highest
ITR: 198.64 bit/min. The ZPFDCNN algorithm model is
significantly better than the msTRCA method, which reaches
84.50% classification accuracy and the highest ITR: 178.49
bit/min in the time window of 0.7 s. At the same time,
the confusion matrix in Figure 8, one of the 10-fold cross-
validation, also shows the excellent classification performance
of the ZPFDCNN algorithm model. Compared with the BETA:
SSVEP dataset, the ZPFDCNN method’s performance is better
in the SSMVEP dataset. The possible reasons are as follows:
(1) Fewer classification categories. (2) Compared with the
stimulation frequency interval of 0.2 Hz and the frequency
bandwidth of 8–15.8 Hz in the BETA: SSVEP dataset, the
stimulation frequency interval of the SSMVEP dataset is more
extensive, reaching 0.5 Hz, and the frequency band to evoke
visual stimulation is wider: 3–20 Hz. The latter contains more
helpful information at the same sampling rate and time length,
which is more conducive to classifying different categories. To
make the frequency interval of the calculated PSD spectrum
consistent with the interval between stimulation frequencies, the
feature extraction method in this dataset will use fewer zeros
for padding.
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FIGURE 6 | Under the time window of 1.0 s, the confusion matrix for one of the 10-fold cross-validation of the BETA:SSVEP dataset.

FIGURE 7 | (A) Average classification accuracy of the SSMVEP dataset. (B) The average ITR of the SSMVEP dataset with a visual shift time of 0.55 s. The error bars

indicate standard errors. Note that * denotes p < 0.05, ** denotes p < 0.01, *** denotes p < 0.001 according to one-way repeated measure ANOVAs.

3.2.3. Ablation Experiment
To compare the influence PSD method with zero-padding
and the PSD method without zero-padding on CNN model
classification. We only change the size of the CNN model input
when other conditions remain unchanged. Figure 9 shows the
comparison between calculating the SSVEP’s PSD with zero-
padding and convolution (the ZPFDCNN method), calculating
the SSVEP’s PSD without zero-padding and convolution (the
FDCNN method), and the method of directly using the original
signal as the network input (the CNN method) and due to

the high sampling rate of SSMVEP dataset, directly using the
original EEG signal as input is easy to make GTX 2080TI
burst video memory. Therefore, the data is downsampled to
250 Hz. In the CNN method with the original data as the
input, the data dimension of 1.2 s is too high, which leads to
the explosion of video memory. So, in the 1.2 s data length,
neither BETA: SSVEP dataset nor the SSMVEP dataset can get
the result of the CNN method classification. It can be seen from
the figure that the performance of the ZPFDCNN method is
better than the FDCNN method and CNN method. One-way
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repeated measure ANOVAs are performed to test whether there
was a significant difference between the ZPFDCNN method and
the FDCNN method. The results of 10-fold cross-validation are

TABLE 3 | Average classification accuracy and ITR of SSMVEP dataset with a

visual shift time of 0.55 s.

Time window

size(ms)

TRCA

(%)

msTRCA

(%)

ZPFDCNN

(%)

TRCA

(bpm)

msTRCA

(bpm)

ZPFDCNN

(bpm)

100 17.05 18.01 2.51 23.11 25.65 0.03

200 34.10 35.52 6.81 68.07 72.83 2.36

300 49.61 51.10 21.37 110.54 115.91 26.86

400 62.53 64.02 45.16 143.30 148.80 85.02

500 71.73 73.72 69.08 161.83 169.23 152.23

600 78.01 80.00 83.21 169.60 176.87 188.99

700 82.51 84.50 89.84 171.40 178.49 198.64

800 85.72 87.73 93.16 169.40 176.37 196.51

900 88.01 89.51 93.81 165.11 170.12 185.36

1,000 89.49 90.99 94.31 159.08 163.91 175.15

1,100 90.56 91.90 94.73 152.65 156.81 165.94

1,200 91.88 92.89 95.07 147.78 150.78 157.54

1,300 92.84 93.84 95.48 142.48 145.37 150.28

1,400 94.02 94.80 96.32 138.41 140.61 145.07

1,500 95.01 95.70 96.53 134.33 136.23 138.59

1,600 95.67 96.27 97.03 129.81 131.43 133.54

The optimal ITR performance of each algorithm is marked in bold.

shown in Figure 9. Meanwhile, we compared the training time
of the ZPFDCNN method, the FDCNN method, and the CNN
method when other training parameters remained unchanged.
The comparison results are shown inTable 4. Compared with the
CNNmethod, the training time of the ZPFDCNNmethod is also
reduced due to the reduction of input dimension.

3.2.4. The Influence of Separable Convolutions on

ZPFDCNN Model
Separable convolutions have been widely used in the field of
deep learning (Zhang et al., 2017; Zhang R. et al., 2019; Huang
et al., 2020). It divides a kernel into two smaller kernels, were
most common is to divide a 3*3 kernel into a 3*1 and 1*3
kernel. Hence, instead of conducting one convolution with nine
multiplications, two convolutions with threemultiplications each
are done. Therefore, based on the ZPFDCNN method, the most
common separable convolutions are applied to two convolution
layers, respectively (This method is hereinafter referred to as the
S-ZPFDCNNmethod). The 10-fold cross-validation results of the
two ways are shown in Table 5. As can be seen from Table 5, the
ability of S-ZPFDCNN to classify SSVEP and SSMVEP is not as
good as ZPFDCNN. The possible reason is that not all kernels
can be divided into two smaller ones.

3.2.5. The Influence of Different Harmonic Sub-band

Numbers on Classification
We tested the influence of different harmonic sub-band numbers
in the ZPFDCNN algorithm model’s frequency identification
of SSVEP and SSMVEP signals. We only change the size of

FIGURE 8 | Under the 0.7 s time window, the confusion matrix of one of the 10-fold cross validation of the SSMVEP dataset.
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FIGURE 9 | Comparison among the ZPFDCNN method, the FDCNN method, and the CNN method. (A) Comparison on BETA:SSVEP datset. (B) Comparison on

SSMVEP dataset. The error bars indicate standard errors. Note that * denotes p < 0.05, ** denotes p < 0.01, *** denotes p < 0.001 according to one-way repeated

measure ANOVAs.

TABLE 4 | Comparison of training once time of the ZPFDCNN method, the

FDCNN method, and the CNN method in BETA:SSVEP dataset (under the time

window of 1.0 s) and SSMVEP dataset (under the time window of 0.7 s).

Training time (minutes) ZPFDCNN FDCNN CNN

BETA:SSVEP dataset 51 14 198

SSMVEP dataset 12 4 26

TABLE 5 | The comparison of the average accuracy of the ZPFDCNN method

and the S-ZPFDCNN method after 10-fold cross-validation in BETA:SSVEP

dataset and SSMVEP dataset.

BETA:SSVEP dataset Acc(%)

Time(s) 0.6 0.8 1.0 1.2

ZPFDCNN 56.91 81.02 89.99 94.51

S-ZPFDCNN 35.17 56.71 71.09 83.17

SSMVEP dataset Acc(%)

Time(s) 0.5 0.7 0.9 1.1

ZPFDCNN 69.08 89.84 93.81 94.73

S-ZPFDCNN 41.65 63.79 75.99 84.31

the feature matrix input of the ZPFDCNN algorithm model
when other parameters remain unchanged. Furthermore, the
test was carried out under the time window of the optimal
ITR performance of the BETA: SSVEP and SSMVEP datasets,
respectively. Like the filter bank technology (Chen et al., 2015),
when the feature matrix contains different numbers of harmonic
sub-band, we verify its impact on the classification accuracy of the
ZPFDCNN algorithm model. The average classification accuracy
of the ZPFDCNN algorithm with ten-fold cross-validation under
different harmonic sub-band numbers is shown in Figure 10.

In BETA: SSVEP dataset, the SSVEP signal is the EEG
caused by the flashing stimulation of the black and white
square flipping, which is a traditional classic SSVEP stimulation
paradigm. This stimulation paradigm allows the brain to

produce electrophysiological signals with the same frequency
and multiples of frequency as visual stimulation. This also
enables the harmonic components in the EEG signal to be
used for signal classification and detection. From the above
Figure 10, for traditional SSVEP signals, with the increase of
the number of harmonic sub-band, the classification accuracy
rate has been dramatically improved under the ZPFDCNN
algorithm model. The improvement is significant, especially
when harmonics are between 0 and 1. In the ZPFDCNN
algorithmmodel, the harmonic frequency band of the traditional
SSVEP signal stimulation frequency significantly impacts signal
classification. In the SSMVEP dataset, we consider the visual
latency of the SSMVEP signal. Then, we analyzed the PSD of
all the subjects’ Oz electrode channel EEG signals superimposed
and averaged at a visual stimulation frequency of 10 Hz. The
PSD shows that the SSMVEP signal has a very significant
amplitude performance at the fundamental frequency of the
stimulation target. But, there is almost no corresponding
amplitude response at the octave frequency of the stimulation
frequency. It can also be seen from the Figure 10, under
the ZPFDCNN algorithm model, the number of harmonic
frequency bands of the SSMVEP signal caused by the periodic
radial contraction-expansion checkerboard stimulus paradigm
has minimal effect on the classification accuracy. It is far less than
the influence of harmonics in SSVEP induced by the traditional
stimulation paradigm.

4. DISCUSSION AND CONCLUSION

The ZPFDCNN method has the following three advantages.
(1) Compared with the direct calculation of PSD, the zero-
padding method reduces the frequency point interval in the PSD
calculated by the SSVEP signal. It reduces the sampling error
caused by the “Picket Fence Effect” of DFT. It makes the PSD
of SSVEP more accurate and improves the observation in the
PSD of SSVEP. The comparison between the ZPFDCNNmethod
and the FDCNN method also shows the effectiveness of the
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FIGURE 10 | The influence of different harmonic frequency band numbers on the ZPFDCNN method.

zero-padding method. (2) The traditional deep learning model
takes the time-domain information of EEG data as the input;
the ZPFDCNN method proposed in this study uses a whole
frequency band. The harmonic band as input reduces the input
dimension and reduces the complexity and training time of the
model. In addition, it also reduces the impact of some noise. (3)
Based on the improvement of spectrum by zero-paddingmethod,
the nonlinear ability of CNN is used to convolute in multi-
channel andmulti-band. The excellent classification performance
of SSVEP signal and SSMVEP signal with many categories
is realized.

In this study, we conclude that the CNN-based frequency
domain convolutional neural network: the ZPFDCNN method.
It is suitable for classifying SSVEP signals and SSMVEP
signals with many categories. It can effectively improve
the ITR of SSVEP-based high-speed BCI. The ZPFDCNN
method based on CNN has excellent potential in various
communication and control applications in the high-speed BCI
of SSVEP.
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