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Abstract
Fluorescence recovery after photobleaching (FRAP) is a common experimental
method for investigating rates of molecular redistribution in biological systems. Many
mathematical models of FRAP have been developed, the purpose of which is usually
the estimation of certain biological parameters such as the diffusivity and chemical
reaction rates of a protein, this being accomplished by fitting the model to experimen-
tal data. In this article, we consider a two species reaction–diffusion FRAP model.
Using asymptotic analysis, we derive new FRAP recovery curve approximation for-
mulae, and formally re-derive existing ones. On the basis of these formulae, invoking
the concept of Fisher information, we predict, in terms of biological and experimen-
tal parameters, sufficient conditions to ensure that the values all model parameters
can be estimated from data. We verify our predictions with extensive computational
simulations. We also use computational methods to investigate cases in which some
or all biological parameters are theoretically inestimable. In these cases, we propose
methods which can be used to extract the maximum possible amount of information
from the FRAP data.
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1 Introduction

1.1 Fluorescence recovery after photobleaching

The development of live cell fluorescence microscopy has revolutionised molecular
cell research. Much modern fluorescence microscopy depends upon the use of the
green fluorescence protein (GFP) and its variants. GFP, first isolated from the jellyfish
Aequorea Victoria, has the ability to absorb energy from light in the ultra violet blue
to wavelength range, which is then released by radiating green light (Tsien 1998). By
modifying cells to express a fusion of GFP with a particular target protein (tagging
or labelling), researchers are able to study gene expression and protein localisation
within the living cell (Giepmans et al. 2006). This is done by illuminating the target
cell with light of an appropriate wavelength and detecting the green fluorescent emis-
sion. However, observation of a cell at steady state reveals little, if anything, about
protein mobility. The small size of proteins (way below the resolution limit of light
microscopy) and the typically large number of labelled proteins (104−106) means that
in most experiments it is not possible to follow the movement of individual proteins.
Reducing the number of labelled proteins can help to address this problem, but then
detecting the fluorescent signal becomes increasingly difficult.

In the 1970s, researchers, mainly Axelrod et al. (2018), began to develop experi-
mental methods to study proteinmobility by perturbing the cell under observation. The
technique they devised, known as fluorescence recovery after photobleaching (FRAP)
(Cone 1972; Poo and Cone 1973; Liebman and Entine 1974; Koppel et al. 1976;
Axelrod et al. 1976; Wu et al. 1977) is widely used to this day. Although numerous
improvements have been made to FRAP procedure since it was first introduced, the
fundamental idea has not changed (Lippincott-Schwartz et al. 2018).

In typical FRAP experiments, a short sequence of images is acquired prior to pho-
tobleaching. These serve to document the initial spatial distribution of the fluorescent
molecule. The next step is photobleaching: a small defined region of interest is briefly
illuminated with high intensity light, usually delivered by a laser. This triggers an
irreversible change in the chemistry of the fluorophore (typically GFP) which causes
a permanent loss in fluorescent properties. This creates a high concentration of photo-
bleached (or simply bleached) protein molecules within the region of interest. Next,
the laser intensity is attenuated in order to acquire a longer sequence of images, ideally
with minimal photobleaching. During this period themotion of both non-bleached and
bleached GFP molecules will lead to the spatial re-distribution of the fluorescent sig-
nal. Passive transport processes, such as Brownian motion, will create a net transfer
of bleached molecules out of (and a net transfer of unbleached molecules into) the
region of interest, causing the cell to relax towards equilibrium. This is referred to
as the fluorescence recovery. The average intensity of fluorescent emission from the
region of interest is recorded against time to construct the fluorescence recovery curve
(White and Stelzer 1999; Meyvis et al. 1999; Reits and Neefjes 2001; Carrero et al.
2003).

The earliest FRAP experiments (conventional FRAP) were conducted using a static
laser thatwas attenuatedbyplacingneutral densityfilters in front of the beam(Jacobson
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et al. 1976). As fluorescence microscopy proliferated during the 1980s, the confocal
scanning laser microscope (CSLM) was developed (Amos andWhite 2003). This type
of microscopy relies on raster scanning a laser beam over an area of interest. Modern
FRAP apparatus essentially consists of a CSLM and an acousto-optical modulator
which is capable of rapidly varying the intensity of the CSLM laser as it scans across
the sample. During image acquisition a low laser intensity is used on the whole field
of view, whereas during photobleaching the laser intensity is increased, and the scan
area restricted to just the region that is being targeted for bleaching. A static beam can
only yield a fluorescence recovery curve, but with modern confocal scanning FRAP
almost any desired pattern can be bleached into fluorescent samples at high definition
and then imaged (Wedekind et al. 1994).

1.2 Quantitative analysis of fluorescence recovery after photobleaching

Quantitative analysis of FRAP data is made possible by mathematical modelling.
Many different models have been brought forward, beginning in the 1970s with rela-
tively simple analytical models, based on partial differential equations that are solved
(typically under idealised conditions) in order to derive an expression for the recovery
curve. By fitting a model to experimental data, estimates of the model parameters are
produced. The earliest FRAPmodels [the first being published inAxelrod et al. (1976)]
were single species analytic models of protein transport within cellular membranes,
due to diffusion or electrophoresis (Axelrod et al. 1976; Soumpasis 1983). Many
different models have since been proposed, including simplified one-dimensional
models (Ellenberg et al. 1997; Houtsmuller et al. 1999) and more complicated three-
dimensional models (Braeckmans et al. 2003; Braga et al. 2004; Mazza et al. 2008).

The principal disadvantage of analytical modelling is that it is almost always nec-
essary to make simplifying assumptions, for example that the system is homogeneous,
that the system is infinitely large or that photobleaching is effectively instantaneous.
The latter assumption is a problem in confocal scanning FRAP, since photobleach-
ing requires repeated scanning of the region of interest which typically takes several
seconds (Kang et al. 2009). This has forced analytical modellers to make phenomeno-
logical assumptions about the distribution of fluorescent material immediately after
photobleaching (Braga et al. 2007; Kang et al. 2009, 2010). There also exists a variety
of computational models that need not make any of these simplifying assumptions,
of which there are two main types: continuum models in which a partial differen-
tial equation is solved numerically (Beaudouin et al. 2006; Blumenthal et al. 2015;
Moraru et al. 2008; Bläßle et al. 2018; Röding et al. 2019), and stochastic approaches
that track the diffusion and interactions of individual molecules (Nicolau et al. 2007;
Vilaseca et al. 2011; Groeneweg et al. 2014). Computational models have the clear
advantage over analytical models that they may incorporate greater complexity yet
have the disadvantage that they may be time-consuming to run (particularly Monte
Carlo methods).

One of the most significant developments in the history of FRAPmodelling was the
introduction ofmodels that incorporate binding kinetics, either to immobile interacting
partners within the cell or to partners with different diffusion properties (Kaufman
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and Jain 1990; Carrero et al. 2003; Sprague et al. 2004; Lin and Othmer 2017; Hinow
et al. 2006; Phair et al. 2004; Kang et al. 2010; Braga et al. 2007). Knowledge of
kinetic properties may yield important biological conclusions about how proteins
function (Mueller et al. 2010). To give an example, Ege et al. established quantitative
differences in molecular association and dissociation rates of a regulatory protein,
YAP1, as evidence of qualitative biological differences between the normal and cancer-
associated variants of fibroblasts (Ege et al. 2018).

While there is much value in FRAP mathematical modelling, various problems
remain. First, FRAP studies using different kinetic models have been shown to arrive
at very different predictions for the same or similar proteins due to technical issues
(rather than genuine biological differences) (Mueller et al. 2010). Secondly, fits to
FRAP data are not necessarily unique, which diminishes their usefulness (Sadegh
Zadeh et al. 2006). In this article, we will seek to provide additional clarity by deriving
mathematical conditions, in terms of model parameters and experimental parameters
(such as recording frame rate), which guarantee that all model parameters are theoret-
ically estimable from FRAP data. When this is the case, we will say that the model is
tractable.

In Sect. 2wewill introduce the two-species reaction diffusionmodel thatwewill use
throughout. In Sect. 3 we will present new analytic FRAP formulae and formally re-
derive existing ones using asymptotic methods (derivations may be found in appendix
A). Invoking the concept of Fisher information, we will infer sufficient conditions to
ensure FRAPmodel tractability. In Sect. 4 we present the computational methods used
to test our theoretical predictions from Sect. 3. Further numerical investigation will
inform as to the best course of action in cases where the tractability conditions do not
hold. Computational results are discussed in Sect. 5. In Sect. 6 we propose a general
method to determine when full parameter fitting is possible and when extra measures
will be required. Finally, possibilities for future work considered in Sect. 7.

2 Mathematical model

We assume that a diffusible protein species, A, associates reversibly with a homo-
geneously distributed binding partners, B, to form a complex molecules, C. We also
assume that the number of molecules involved is large enough for the law of mass
action to be applicable so that, in a well-mixed system, the concentrations of A, B and
C evolve according to,

⎧
⎪⎨

⎪⎩

d
dt [A] = −k̄on[A][B] + koff [C],
d
dt [B] = −k̄on[A][B] + koff [C],
d
dt [C] = k̄on[A][B] − koff [C],

(1)

where [X] denotes the concentration of X.
Prior to the FRAP experiment, protein A is tagged with a fluorescent probe.We also

assume that system (1) reaches chemical equilibrium before the experiment begins.
Let u(x, t) be the concentration of speciesA at point x and time t that is fluorescent (not
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Fig. 1 Schematic representation of model (3). Arrows, which indicate chemical reactions and photobleach-
ing, are labelled with the reaction rates derived from the principle of mass action. Note that the bleached
and unbleached concentrations of A and C sum to ueq and veq respectively, since photobleaching does not
perturb the overall chemical equilibrium, only the fluorescence equilibrium

photobleached), and Du be the diffusivity of A (note that photobleaching is assumed
not to alter the diffusivity or reactivity of the molecules). Likewise, let v(x, t) be the
concentration of the fluorescent C species and Dv its diffusivity. Similarly, let the
concentrations of photobleached A and C be ū and v̄ respectively.

AsA is the tagged species, onlymolecules of A, ormolecules which contain A,may
be fluorescent. Hence a molecule of C is fluorescent only if it contains a fluorescent A,
as B is not tagged. Association of fluorescent Awith Bwill always form fluorescent C,
and dissociation of fluorescent C will always release fluorescent A. Both A and C can
be photobleached by exposure to high intensity light, which we assume has intensity
I (x, t) at position x and time t . Making the simplifying assumption (Lorén et al. 2015)
that photobleaching is a first order process, the rate of bleaching per unit concentration
is α I (x, t), where α is the sensitivity of the fluorescent probe to photobleaching. The
resulting system of equations is,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u
∂t (x, t) = −k̄on[B]u(x, t) + koffv(x, t) + Du∇2u(x, t) − α I (x, t)u(x, t),
∂v
∂t (x, t) = k̄on[B]u(x, t) − koffv(x, t) + Dv∇2v(x, t) − α I (x, t)v(x, t),
∂ ū
∂t (x, t) = −k̄on[B]ū(x, t) + koff v̄(x, t) + Du∇2ū(x, t) + α I (x, t)u(x, t),
∂v̄
∂t (x, t) = k̄on[B]ū(x, t) − koff v̄(x, t) + Dv∇2v̄(x, t) + α I (x, t)v(x, t),

(2)
(also see Fig. 1 for a schematic representation).
It is clear by conservation ofmass thatu+ū = ueq, a constant (likewise v+v̄ = veq).

Note that ueq and veq are the pre-bleach equilibrium concentrations of fluorescent A
and C respectively, assuming that all material is fluorescent prior to photobleaching.
Using the fact that ū = ueq − u and v̄ = veq − v, (2) simplifies to

{
∂u
∂t (x, t) = −konu(x, t) + koffv(x, t) + Du∇2u(x, t) − α I (x, t)u(x, t),
∂v
∂t (x, t) = +konu(x, t) − koffv(x, t) + Dv∇2v(x, t) − α I (x, t)v(x, t),

(3)

where kon = k̄on[B], which is a constant as the concentration of binding sites is not
altered by photobleaching. Model (3) has appeared previously in several quantitative
FRAP studies, some of which assume the immobility of the binding sites (i.e. Dv = 0)
(Kaufman and Jain 1990; Sprague et al. 2004; Hinow et al. 2006; Beaudouin et al.
2006; Mueller et al. 2008; Tsibidis 2009), while others allow for the possibility of
mobile sites (Dv > 0) (Braga et al. 2007; Berkovich et al. 2011; Montero Llopis et al.
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2012) (this study of Ras by Kang et al. (2010) is an empirical example of a molecule
with a non-zero diffusivity in the bound state).

For convenience we measure fluorescence in units such that the total pre-bleach
fluorescence is 1 (ueq + veq = 1), which implies that

ueq = koff
kon + koff

, veq = kon
kon + koff

. (4)

Model (3) includes four physical parameters, the diffusivities Du and Dv and the
reaction rates kon and koff . Inwhat followswewill seek to determine the reliabilitywith
which these four parameters (or combinations thereof) canbemeasured experimentally
by fitting (3) to simulated synthetic data.

We assume the system (3) to be radially symmetric. Let r = √
x2 + y2, and non-

dimensionalise by setting r ′ = r/rn , where rn is the characteristic radius of the bleach
region of interest and t ′ = kont . The resulting equations (given negligible laser inten-
sity) are {

∂u
∂t ′ = −u + κv + η 1

r ′ ∂
∂r ′

(
r ′ ∂u

∂r ′
)
,

∂v
∂t ′ = u − κv + δη 1

r ′ ∂
∂r ′

(
r ′ ∂v

∂r ′
)
,

(5)

where
δ = Dv/Du, κ = koff/kon, η = Du/(konr

2
n ) (6)

are positive dimensionless parameters. We will consider the initial value problem for
(5) on an infinite spatial domain with far field conditions

lim
r ′→∞

u(r ′, t ′) = ueq, lim
r ′→∞

v(r ′, t ′) = veq, (7)

and initial conditions

u(r ′, 0) = U0(r
′) = ueqH(r ′ − 1), v(r , 0) = V0(r

′) = veqH(r ′ − 1), (8)

where H is the Heaviside step function. Initial conditions (8) are appropriate if all
available material inside the region of interest is bleached instantaneously. We will
show that the orders of magnitude of the dimensionless parameters η, κ and δ control
the identifiability of the model parameters, Du , Dv , kon and koff .

3 Inverse modelling problem

The inverse modelling problem is the problem of minimising an appropriate objective
function in order to obtain a maximum likelihood estimate for the values of the model
parameters. If all model parameters are identifiable given some data, we will refer to
the inverse modelling problem as tractable.

In keeping with numerous prior studies (Axelrod et al. 1976; Soumpasis 1983;
Sprague et al. 2004; Kang et al. 2009) we define the fluorescence recovery curve as
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the average light intensity of fluorescent emission across the region of interest (ROI),

F(t) =
∫∫

ROI w(r , t)dA
∫∫

ROI dA
, (9)

where
w(r , t) = u(r , t) + v(r , t). (10)

To be consistent with the initial conditions (8), the region of interest, which is the
area covered by the laser, is assumed to be a circular region of radius rn . Although
F(t) in (9) is a continuous function of time, in practice only finitely many data points
F(ti ) may be acquired at discrete times, ti . Let �t = ti+1 − ti for all i be the time
step, so that 1/�t is the frame rate of the imaging process; let Yi be the fluorescence
recovery curve data values at the sample times ti ; and Fi (θ) = F(ti ; θ), with θ being
the vector of model parameters. We assume that empirical data may be described by
the sum of the output of the mathematical model and a stochastic variable such that,

Yi = Fi (θ) + σiξi , (11)

where the ξi are normally distributed random variables and the σi account for the
scale of the observational uncertainty. This assumption is appropriate if the the model
accurately captures the underlying dynamics of the system under investigation and
experimental errors are normally distributed. The objective function may be defined
as follows

φ(θ) =
∑

i

(Fi (θ) − Yi )2

2σ 2
i

, (12)

where the factor of 2 is purely for notational convenience. The global minimum of
the objective function, θ∗, corresponds to a maximum likelihood estimate of model
parameters (White et al. 2016). The identifiability of the model parameters is given
by the Fisher Information Matrix (FIM) (Rao 1992; Akaike 1998), which in this case
is the Hessian matrix of the objective function,

Iμν = ∂2φ

∂θμ∂θν

∣
∣
∣
∣
θ∗

, (13)

which gives

Iμν =
∑

i

1

σ 2
i

∂

∂θμ

(

Fi
∂Fi
∂θν

− Yi
∂Fi
∂θν

)

=
∑

i

1

σ 2
i

(
∂Fi
∂θμ

∂Fi
∂θν

+ ∂2Fi
∂θν∂θμ

(Fi − Yi )

)

.

If the system is well-described by the model, then Fi (θ∗) = Yi , so the term involving
second derivatives vanishes and the FIM simplifies to

Iμν =
∑

i

1

σ 2
i

∂Fi
∂θμ

∂Fi
∂θν

∣
∣
∣
∣
θ∗

. (14)
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This relation is exact in our case since our data are synthetic. If an eigenvector of
the FIM has a large corresponding eigenvalue, then the combination of parameters
given by the eigenvector is identifiable (Gutenkunst et al. 2007). Models containing
a mixture of identifiable and non-identifiable parameters (for which the eigenvalues
of the FIM are spread across a logarithmic scale) are said to be sloppy (White et al.
2016). Sloppy models characteristically include certain parameters, or combinations
of parameters, in which even substantial variations do not significantly affect the
behaviour of the dependent variables. In geometric terms, there is a manifold within
the space of model parameters which is a flat minimum of the objective function so
that the global minimum cannot be easily located. Numerous sloppy models have
been identified within the mathematical biology literature, usually those with large
numbers of parameters (Gutenkunst et al. 2007;Daniels et al. 2008;Machta et al. 2013;
Transtrum et al. 2015). Even though the FRAP model (3) has only four parameters,
we will show that under certain circumstances it may be sloppy in the sense of having
a mixture of identifiable and unidentifiable parameters.

3.1 Asymptotic approximations

In this section, we will handle important special cases of (5) analytically under ide-
alised circumstances (i.e. subject to far-field conditions (7) and initial conditions (8),
paying special attention to the effect of varying η and κ on parameter identifiability. It
is useful at this stage to introduce the following function, which is the recovery curve
of a radially symmetric, single species, pure diffusion FRAP model with Heaviside
step function initial conditions (Soumpasis 1983):

FS(z) = e−z(I0(z) + I1(z)) =
√

2

π z

(

1 − 1

8z
+ ...

)

, (15)

where I0 and I1 are modified Bessel functions of the first kind. The series expression
is due to the asymptotic expansion of Abramowitz and Stegun (1972).

3.1.1 Rapid equilibration (� � 1)

In the limit as η → ∞, the dynamics of the fluorescence recovery arising from system
(5) subject to (7) and (8) admit a small parameter ε = 1/η � 1. The recovery curve
is then well approximated (see appendix A.1) by

F(t) = koff
kon + koff

FS

(
r2n

2Dut

)

+ kon
kon + koff

(

1 − e−koff t
[

1 − FS

(
r2n

2Dvt

)])

,

(16)
which holds for δ = O(ε), where δ = Dv/Du .

Fromexpansion (15) it is clear that limz→0 FS(z) = 1and that limz→∞ FS(z) = 0,
so, if the slow diffusion time scale is sufficiently long (r2n/Dv � 1) and the time scale
of rapid diffusion is sufficiently short (r2n/Du � 1), then for all t = O(1) (16) reduces
to the well known formula (Bulinski et al. 2001; Dundr et al. 2002; Phair et al. 2004;
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A B

DC

Fig. 2 Logarithm of the eigenvalues, log(λi ), of the Fisher information matrix computed from formula (16)
for different values of the rn and �t . Each subplot corresponds to one of the four eigenvalues, a λ1, b λ2,
c λ3 and d λ4

Rabut et al. 2004; Sprague et al. 2004) for ‘reaction limited’ dynamics,

F(t) = koff
kon + koff

+ kon
kon + koff

(
1 − e−koff t

)
= 1 − kon

kon + koff
e−koff t , (17)

or equivalently,
F(t) = 1 − veqe

−koff t . (18)

Formula (18) suggests prima facie that the dissociation rate koff is the only measur-
able model parameter, yet this is not necessarily true. The eigenvalues of the Fisher
information matrix derived from formula 16 are plotted in Fig. 2. One of the eigenval-
ues (Fig. 2a) is many orders of magnitude smaller than the other three. On this basis
we expect that there will be a manifold within the parameter space which represents a
flat minimum of the objective function. This is quite clearly visible in Fig. 3b, d and f,
showing that the diffusivity, Du , is inestimable. The fluorescence recovery in this case
is bi-phasic; there is an early diffusion-dominated phase which occurs imperceptibly
quickly unless the time step,�t , is much smaller than the time scale of diffusion across
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A B

DC

FE

Fig. 3 Logarithm of the numerically constructed objective function, log(φ), in the rapid equilibration
(reaction limited) regime. Colour indicates the size of the sum of square errors between a single simulated
fluorescence recovery curve spanning 15 seconds (1024 data points) generated with parameter values
Du = 20.0μm2s−1, Dv = 0.00μm2s−1, kon = 2.00s−1, koff = 1.00s−1, and a secondary simulated
recovery curve generated with indicated parameter values. Each subplot displays variation in one of the six
possible pairs of parameters, with the remaining two parameters held at the correct value in each case
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the bleach region of interest. Equivalently, Du is only estimable if

�t � r2n
Du

. (19)

Returning briefly to Fig. 2a, it is quite clear that the magnitude of the smallest
eigenvalue is increased as �t decreases and rn increases. Interestingly, two other
eigenvalues (Fig. 2c, d) visibly decline, for fixed�t , as rn increases. Notwithstanding,
it is clear that every model parameter is estimable in this case provided condition (19)
holds.

3.1.2 Intermediate equilibration (� = O(1))

No known approximations describe the dynamics of the intermediate case in which
η = O(1), but this does not mean that it is impossible to analyse. In order to derive
formula (17) we introduced an asymptotic expansion in terms of a small parameter
ε = 1/η to produce an approximation which holds whenever η is large. By extending
our asymptotics to include first order terms (see appendix A.2), we are able to produce
an approximationwhich is accurate for somewhat smaller values ofη and so gives some
insight into the behaviour of the system as it approaches η = O(1). The first-order
extension of formula (17) is

F(t) = 1 − kon
kon + koff

e−koff t − konrn
3Du

e−koff t
(
koff + konkoff t

kon + koff

)

, (20)

which holds for r2n/Dv � 1 and t � ε. In contrast with formula (18), Du appears
explicitly in (20),which implies that it could be estimated if the othermodel parameters
were known. The full significance of this result will be discussed in Sect. 3.3.

By contrasting Figs. 3 and 4, it can be seen quite clearly how reducing the value
of the dimensionless parameter η changes the shape of the objective function. In
particular, in the subplots that involve Du (Fig. 4b, d, f), there is a clear unique local
minimum of the objective function (in contrast with the manifold in Fig. 3b, d, f)
which tends to support the prediction that Du is estimable when η = O(1) (at least
when other parameters are known).

3.1.3 Slow equilibration (� � 1)

In the limit η → 0, we define the small parameter by ε = η. The fluorescence recovery
approximation is simply

F(t) = FS

(
r2n

2Defft

)

, (21)

where Deff, a straightforward generalisation of the effective diffusivity defined by
Crank (1975), is

Deff = konDv + koffDu

koff + kon
. (22)
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A B

DC

FE

Fig. 4 Logarithm of the numerically constructed objective function, log(φ), in the intermediate equi-
libration regime. Colour indicates the size of the sum of square errors between a single simulated
fluorescence recovery curve spanning 15 seconds (1024 data points) generated with parameter values
Du = 18.1μm2s−1, Dv = 0.0718μm2s−1, kon = 38.3s−1, koff = 68.2, and a secondary simulated
recovery curve generated with indicated parameter values. Each subplot displays variation in one of the six
possible pairs of parameters, with the remaining two parameters held at the correct value in each case

As the recovery curve (21) depends only on Deff , this is the only estimable combi-
nation of parameters. As η → 0 , a manifold within the parameter space, defined by
(22), emerges upon which the value of the objective function is approximately zero. In
Figure 5, which is clearly visible in any subplot of Fig. 5. No pair of parameters could
be estimated even if the values of the other two were known. It would be necessary to
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BA

DC

FE

Fig. 5 Logarithm of the numerically constructed objective function, log(φ), in the slow equilibration (effec-
tive diffusion) regime. Colour indicates the size of the sum of square errors between a single simulated
fluorescence recovery curve spanning 15 seconds (1024 data points) generated with parameter values
Du = 15.0μm2s−1, Dv = 0.374μm2s−1, kon = 1000s−1, koff = 5000, and a secondary simulated
recovery curve generated with indicated parameter values. Each subplot displays variation in one of the six
possible pairs of parameters, with the remaining two parameters held at the correct value in each case

determine three of the parameters to determine the fourth. If the diffusivities, Du and
Dv , could be independently determined, then at most the ratio of the reaction rates,
κ = koff/kon could be estimated.

Like the rapid equilibration case, the slow equilibration recovery is bi-phasic. The
early phase consists of a rapid convergence to local chemical equilibrium between the
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bound and unbound species (v and u respectively) which is imperceptible because it
does not alter the total concentration, w.

3.1.4 Asymmetric reaction rates (� � 1)

If we take κ → ∞, we find that ueq = κ/(1+κ) → 1, so almost all available material
will be in the unbound state, and the system will be closely approximated by pure
diffusion. The recovery curve is

F(t) = FS

(
r2n

2Dut

)

. (23)

Since,

Deff = Dv + κDu

κ + 1
, (24)

it is clear that Deff → Du as κ → ∞. In effect, the κ � 1 case coincides with the
η � 1 case, except that κ = koff/kon could not be estimated in the κ � 1 case even
if Du and Dv could be independently measured.

3.1.5 Asymmetric reaction rates (� � 1)

As κ → 0 almost all available molecules are in a bound state, such that the recovery
curve can be approximated by

F(t) = FS

(
r2n

2Dvt

)

. (25)

and Dv is the onlymeasurable parameter.As κ → 0, Deff → Dv , so this case coincides
with the η � 1 case, except that κ itself is always inestimable.

3.2 Parameter identifiability

Here we will summarise the conditions which guarantee parameter identifiability in
FRAP modelling. Suppose we have a theoretical recovery curve based on the solution
to a mathematical model F(t; θ) for parameter values θ , and some recovery curve
data FData(t). We can define the objective function, φ(θ), to be the residual sum of
squared errors (without the scaling with σi used in (12)),

φ(θ) =
∑

i

(F(ti ; θ) − FData(ti ))
2. (26)

We have four physical model parameters that are unknown, θ = (Du, Dv, kon, koff)
and two experimental parameters: rn , the radius of the bleach region of interest and
�t = ti+1 − ti the time interval between data points.
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Of the cases we have considered in Sect. 3.1, the inverse modelling problem was
tractable only in the rapid equilibration (η � 1) when condition (19) holds. This
means that we require the following conditions on the physical parameters

koff
kon

= O(1), Dv � Du, (27)

and the following conditions on the experimental parameters

Du

konr2n
� 1, �t � r2n

Du
. (28)

These results imply that smaller bleach region radius and higher frame rate data acqui-
sition are generally preferable in principle. However, this is not necessarily practical;
rn cannot be reduced arbitrarily as the resolution of an optical system is limited by
diffraction. Although conditions (27) and (28) appear quite specific, we expect that
systems in which they are satisfied will be relatively common. For example, many
different nuclear proteins have been found to have a high mobility (van Royen et al.
2009; Phair and Misteli 2000). Highly mobile proteins such as those found within
the cell nucleus will satisfy condition (27) except in extreme cases of highly transient
binding interactions.

3.3 Confocal scanning FRAP

As we discussed in Sect. 1, confocal scanning FRAP, unlike conventional FRAP, may
yield a detailed recording of an entire cell. In this case, we may attempt to fit the total
fluorescence w(x, t), not just the recovery curve F(t). Under the assumption of radial
symmetry, let

w(r , t; θ) = u(r , t; θ) + v(r , t; θ), (29)

for some parameter values, θ , and let wData(r , t) be some appropriate fluorescence
microscopy data. The objective function in this case is defined as

φSpace(θ) =
∑

i

∑

j

(wData(r j , ti ) − w(r j , ti ))
2. (30)

It has already been observed that the process of averaging across the bleach region
of interest to compute the recovery curve effectively destroys a significant amount of
information (Orlova et al. 2011; Seiffert and Oppermann 2005), so we expect that it
will be advantageous to define the objective function as in (30). Here we will derive
simple conditions to ensure parameter estimability in confocal scanning FRAP.

Once again, we have four physical parameters, θ = (Du, Dv, kon, koff), though
this time we have three experimental parameters: �r , the length scale of a pixel of the
micrograph; �t , the duration of one frame; and L , the length scale of the whole field
of view.
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We could, in principle, construct a recovery curve of radius rn so that η =
Du/(konrn) � 1, provided that �r < rn (clearly we cannot have a recovery curve
radius smaller than one pixel). As we saw in Sect. 3.1.1, we could use this recovery
curve to estimate kon, koff and Dv , but not necessarily Du except for very high frame
rate data. Likewise, we could construct a second recovery curve of radius r ′

n so that
η′ = Du/(konr ′

n) = O(1) provided that L > r ′
n . From the results of Sect. 3.1.2 (for-

mula (20)) we know that Du will be estimable if η′ = O(1) or greater, as long as the
other model parameters are known, but this is certainly the case because estimates can
be obtained from the first recovery curve of radius rn . Moreover, there is no theoretical
reason to suppose that the two recovery curves would actually be necessary, as the
objective function (30) contains information about the redistributive dynamics of the
system under investigation on all length scales between �r and L . In summation, we
expect that the inverse modelling problem of confocal scanning FRAP will be fully
tractable as long as

koff
kon

= O(1), Dv � Du, (31)

and
Du

kon�r2
� 1,

Du

konL2 � 1. (32)

There is also an extremely weak implicit constraint on �t , that the frame rate is not
so low that the fluorescence recovery is totally imperceptible.

4 Computational methodology

The analysis in Sect. 3 has two limitations. First, it is local to the optimal point and does
not reveal anything about the viability of global parameter fitting with general initial
guesses that may be far from the global minimum. Secondly, it applies only to the
idealised case with step function initial conditions. In this section, we will introduce
the computational methods by which we aim to test our theoretical predictions from
Sect. 3 and extend our results to the global parameter fitting problem with non-ideal
initial conditions.

We simulate the FRAP model (3) numerically with the laser profile I (r , t) being
given in terms of the Heaviside step function as

I (r , t) = H(rn − r)H(tbleach − t). (33)

We impose zero-flux boundary conditions on a disk

∂u

∂r

∣
∣
∣
∣
r=0

= ∂u

∂r

∣
∣
∣
∣
r=R

= 0, (34)

and likewise for v. The radially symmetric Laplacian is

∇2u =
{
2 ∂2u

∂r2
, r = 0,

1
r

∂u
∂r + ∂2u

∂r2
, r > 0,

(35)
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where the result at r = 0 is a consequence of l’Hôpital’s rule.
Using a central difference approximation of the Laplacian (35) we produce a semi-

descretised approximation to (3) to which we apply a stiff ODE solver (MATLAB’s
ode15s function) to obtain numerical solutions uData(r j , ti ), vData(r j , ti ), which rep-
resent the mobile and bound fluorescent fractions at position r j and time ti . Then the
total fluorescence is

wData(r j , ti ) = uData(r j , ti ) + vData(r j , ti ), (36)

and the fluorescence recovery curve is

FData(ti ) = 1

πr2n

∑

{i∈N|r j≤rn}
wData(r j , ti )iδr . (37)

Wewill allow for simultaneous fitting of multiple instances of a fluorescence recov-
ery generated using different bleach region radii. Let each of these instances be indexed
by a number, k = 1, ..., nexp, then let rkn be the nominal bleach region radius used in
experiment k, wk

Data the total fluorescence and Fk
Data (note the superscript k does not

mean ‘raised to the power of k’). We will attempt to fit generated model solutions to
synthetic data simulated using known parameter values to ascertain the accuracy of
the parameter fitting in various cases.

For each instance k, with bleach region radius rkn , we solve (3) numerically to obtain
uk(r j , ti ), vk(r j , ti ). We define the total fluorescence wk(r j , ti ) and the fluorescence
recovery curve Fk(r j , ti ) as in (36) and (37) respectively. We define the objective
functions, φ and φSpace as

φ =
nexp∑

k=1

⎡

⎣
∑

j

(Fk
Data(ti ) − Fk(ti ))

2

⎤

⎦ , (38)

and

φSpace =
nexp∑

k=1

⎡

⎣
∑

j

∑

i

(wk
Data(r j , ti ) − wk(r j , ti ))

2

⎤

⎦ , (39)

whose minima we attempt to find with the Nelder-Mead downhill simplex algorithm
(Nelder and Mead 1965; Olsson and Nelson 1975) (using the fminsearch function of
MATLAB). Since we know the values of the parameters used to generate wData, we
can easilymeasure the accuracy of the fitting procedure. Let θl be anymodel parameter
(Du, Dv, kon, koff ) used to generate wData, and θ̄l be the fitting procedure output, then
the proportional estimation error is

μk
l = | θ̄kl − θkl |

θkl

, (40)
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where once more the superscript k is an index, not a power. The mean error is then
simply

μl = 1

nrun

nrun∑

k=1

μk
l . (41)

In each case we take nrun = 1024. In this way we are able to condense information
about the accuracy of parameter estimation in the various dynamic regimes (rapid
equilibration, intermediate and so on) into a single variable. However, since kon and
koff may span several orders of magnitude, the mean errorμl may be biased by a small
number of extreme outlying results. For this reason it may also be of interest to record
the number of instances (indexed by k), nl(μ), which returned values θ̄kl such that
μk
l < μ. Then we may define,

fl(μ) = nl(μ)

nrun
. (42)

where μ has a chosen value. For example, if μ = 0.01, then fl(μ) would be the
fraction of instances which returned estimation errors of less than 1%.

It is necessary to produce samples of parameter combinations which are used as
inputs in generating wData, which is done semi-randomly as follows:

1. Generate a uniformly distributed positive random value for Du . We set Du ≤ 50
μm2s−1 to keep the diffusivity in a biologically realistic range (Kang et al. 2009).

2. Pick a random real number η̃ ∈ [−3, 3] from a uniform distribution, and set the
dimensionless parameter η = 10η̃. If η̃ ≥ 1, we consider the dynamics to be ‘rapid
equilibration’. If −1 < η̃ < 1 we consider the dynamics to be ‘intermediate’.
Finally, if η̃ ≤ 1 we consider the dynamics to be ‘slow equilibration’ (effective
diffusion).

3. Set the association rate kon = Du/(r2nη).
4. Pick a random real number κ̃ ∈ [−1, 1] from a uniform distribution, and set the

dimensionless parameter κ = 4κ̃ . Cases where κ̃ > 1 or κ̃ < 1 are handled
separately.

5. Set the dissociation rate koff = κkon.
6. Pick a random real number δ ∈ [0, 10−1] from a uniform distribution.
7. Set the slow diffusivity Dv = δDu .

Initial guesses are generated in two different ways. First, for the data (recorded in
Table 1), each initial guess, θ̃kl , is of the form

θ̃kl = θkl (1 + p), (43)

where p ∈ [0, 0.5] is a uniform random variable. This ensures that initial guesses are
within 50% of the correct parameter value in each case. This is done mainly to test
the predictions in Sect. 3. In the second instance, steps 1-7 were repeated to generate
more general random initial guesses (these data are recorded in Table 2).
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5 Computational results

We begin by considering the rapid equilibration case in which η � 1. On the basis
of the analysis in Sect. 3.1.1, we predicted that conventional recovery curve analysis
would be generally be sufficient to estimate the slow diffusivity, Dv , and the reaction
rates, kon, koff . Furthermore, the fast diffusivity, Du , could be estimated given suffi-
ciently high frame rate data. Numerical results (see Table 1) confirm this prediction.
We also predicted that the use of spatial data in confocal scanning FRAPwould enable
the estimation of all of the model parameters, even for a relatively low frame rate, and
again our simulated data supports this prediction. The use of spatial data offers a sig-
nificant improvement over recovery curves alone. On the basis of Table 2, we expect
that all four model parameters can be reliably estimated in the η � 1 case by fitting the
model to three spatially dynamic fluorescence recoveries with different bleach region
radii. We found that this process returned parameter estimates accurate to within 1%
of the correct values in at least 92% of instances given initial guesses were also in the
η � 1 regime, but otherwise uncontrolled.

In the intermediate case (η = O(1)) we were unable to establish in Sect. 3.1.2
that parameter estimation would be possible unless some parameter values could be
determined independently. Numerical results (Table 1) confirm that it is not possible
to obtain accurate parameter estimates in most cases, even high frame rate spatial
data. Interestingly, however, we consistently found that the effective diffusivity Deff
was strongly estimable, which suggests that in practice the intermediate fluorescence
recovery (η = O(1)) resembles the effective diffusion recovery (η � 1) quite closely.
On the basis of the constraints (32), we expect that improving the resolution of spa-
tially dynamic data would improve parameter estimation by increasing the value of η.
However, since this is not necessarily practical, we also investigated the utility of inde-
pendently estimating certain parameters, as previous studies have found that fitting
multiple fluorescence recoveries with different sized bleach regions (González-Pérez
et al. 2011) or independently determining certain model parameters (Sadegh Zadeh
et al. 2006) may be beneficial. We therefore investigated the possibility of fitting the
reaction rates to data while fixing the diffusivities at some independently determined
values. We found (Table 2) that this is method can be used to produce highly accurate
estimates of both kon and koff . Supplied with correct values for Du and Dv , and three
fluorescence recoveries with different sized bleach regions, we were able to obtain
estimates of kon and koff accurate to within 1% in 100% of instances.

In Sect. 3.1.3 we predicted that in the η � 1 case it will not be possible to identify
individual parameter values, only to show that they lie within a manifold defined by

konDv + koffDu

koff + kon
= Deff, (44)

for constant Deff. We found that it is possible to estimate accurately the effective diffu-
sivity Deff, but not of any of the parameters individually (see Table 1). In accordance
with our predictions, we did not find that increasing frame rate or the use of spatial data,
unless of extremely high resolution, could improve this (Table 2). As in the η = O(1)
case, it will be necessary to estimate the diffusivities Du and Dv separately; however,
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unlike the η = O(1) case, this does not enable us to estimate the reaction rates, kon
and koff , only the ratio κ = koff/kon. The estimation accuracy of κ is closely depends
upon the estimation accuracy of Du and Dv , with the relationship between them being

κ = Du − Deff

Deff − Dv

. (45)

Finally, we considered the case of asymmetric reaction rates, κ � 1 and κ � 1.
As predicted in Sects. 3.1.4 and 3.1.5 only Du and Dv respectively are measurable
in this case. Increasing frame rate, fitting multiple fluorescence recoveries, and using
spatial data regardless of resolution are not beneficial (Table 1).

Our summarised results are as follows:

• When η � 1, all model parameters can be estimated. This may be possible with
conventional analysis of recovery curves, but it is more reliable to fit a spatially
dynamic model to confocal FRAP data.

• When η = O(1), kon and koff can be estimated. To do this, it necessary to conduct
separate experiments in order to measure Du and Dv accurately.

• When η � 1, the ratio koff/kon can be estimated. As in the previous case, it nec-
essary to conduct separate experiments in order to measure Du and Dv accurately.

• When koff/kon � 1 or koff/kon � 1, it is only possible to measure Du or Dv

respectively. There is no experiment which could reliably determine kon, koff or
the ratio of the two.

6 Regime identification

We have so far determined that the reliability and accuracy of parameter estimation are
determined by the parameter regime of the data. However, one does not automatically
know the regime of experimental data. The objective of this section is therefore to
determine the precise boundary between the regimes and propose a method to deter-
mine the regime of arbitrary FRAP data. To this end, we ran numerical experiments in
which we attempted fitting on synthetic data with procedurally generated parameter
inputs, as described in Sect. 4, but precisely controlling the values of the dimensionless
quantities, η and κ . We consider η in Sect. 6.1 and κ in Sect. 6.2.

6.1 The effect of varying�

In order to locate the boundary between the regimes we ran a sample of parame-
ter fitting experiments with η values in a set of intervals, η ∈ [10η̃, 10η̃+0.1] with
η̃ ∈ {...,−0.2,−0.1, 0, 0.1, 0.2, ...}, and recorded the fraction of output parameter
estimates with an error of less than 1% relative to the correct corresponding parameter
input value ( fl(0.01) as defined in (42)).

Results (Fig. 6) indicated that, as expected, the reliability of the fit generally
increased with the value of η. When Du and Dv were known, fits of the reaction
rates kon and koff were consistently accurate for η > 100.4 ≈ 2.51 (Fig. 6a). Fitting
all four parameters reliably, however, required η > 101.7 ≈ 50.1 (Fig. 6b).

123



Parameter estimation in fluorescence recovery after… Page 23 of 38 1

BA

C

Fig. 6 a Fraction of parameter estimates within 1% of the correct value ( fl (0.01) as defined in (42)) when
attempting to fit just kon and koff . Each data point is calculated from nrun = 128 instances of fitting
with η ∈ [ηmin, ηmax] where ηmin is indicated and log10(ηmax) = log10(ηmin) + 0.1. b identical to
a, except attempting to fit Du , Dv , kon and koff . c Residual sum of squared errors between a simulated
fluorescence recovery curve and recovery curves computed by the rapid equilibration formula (16) (φR )
and the slow equilibration (effective diffusion) formula (21) (φD). Parameters were Du = 30 μm2s−1,
Dv = 0.01 μm2s−1, rn = 0.5 μm, kon = koff = Du/(r2nη) for variable η. The rapid equilibration error,
φR , decreases as η increases, while the effective diffusion error, φD , increases

We would expect that, in the regime where accurate estimation of all model param-
eters is possible, the rapid equilibration formula (16) ought to well-approximate the
recovery curve. Accordingly, it is clear in Fig. 6c that the error between formula (16)
and simulated data, φR , decreases as η increases, and is negligible for η > 101.7.
Similarly, we would expect the slow equilibration (effective diffusion) formula (21)
to be a good approximation where estimation of kon and koff is not possible. Although
the error, φD , decreases as η decreases, as we would expect, it does not appear that the
effective diffusion formula is a good approximation when η = 100.4. This suggests
that for η ≈ 1, neither the effective diffusivity Deff , nor kon and koff individually, are
estimable with total accuracy.
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Table 3 Regime identification with constrained parameter fitting tested on a sample of 128 synthetic
experiments for each regime

X (regime) AICX < AICRE AICX < AICI AICX < AICSE AICX < AICD

Large η (RE) – 100% 100% 100%

Intermediate (I) 100% – 100% 100%

Small η (SE) 100% 100% – 84.4%

The leftmost row indicates the regime of the data: rapid equilibration (RE), intermediate (I) and slow
equilibration (SE). Each cell displays the percentage of cases in which the AIC in a regime indicated by the
column was greater than the AIC in the correct regime indicated by the row

We can place data into one of three regimes: rapid equilibration (η > 101.7),
intermediate (100.4 ≤ η ≤ 101.7), and slow equilibration η < 100.4. If the regime can
be determined, then the required course of action is obvious: in the rapid equilibration
regime full parameter fitting is possible, in the intermediate regime the reaction rates
can be estimated after separate experiments to determine the diffusivities have been
conducted, while in the slow equilibration regime at most the ratio of the reaction rates
can be estimated.

We propose that the regime can be identified by attempting separate fits which
are restricted to particular regimes. The best fit corresponds to the correct regime of
the data. We measured goodness-of-fit with the Akaike information criterion (Akaike
1998),

AIC = 2Nparam + Ndata log(φ), (46)

where Nparam is the number of model parameters, Ndata is the number of data points
and φ is the objective function/residual sum of squared errors. The model with the
smallest AIC is in general the best fit with the least degree of over-fitting.

We tested procedurally generated data by fitting in the three major model regimes,
as well as by fitting with a pure diffusion model. The restricted parameter estimation
was implemented using MATLAB’s constrained optimisation algorithm, fmincon.
We define AICRE as the AIC resulting from a model fit which is limited to the rapid
equilibration regime, while AICI and AICSE are likewise for the intermediate regime
and the slow equilibration regime respectively. AICD is the AIC of the pure diffusion
model fit. Note that Nparam = 4 for AICRE, AICI and AICSE, while Nparam = 1 for
AICD. For this reason, the pure diffusion model will yields a lower AIC than the full
reaction–diffusion model in cases where the residual sum of squared errors, φ, are
equal.

Results in Table 3 indicate that, for both intermediate and rapid equilibration, con-
strained fitting in the correct regime produced the best fit in all cases, which strongly
supports our contention that this method can be used for regime identification. In a
minority of cases, the pure diffusion model provided a better fit than the full model
in the slow equilibration regime, hence a slow equilibration recovery cannot reliably
be distinguished from a purely diffusive recovery. This is to be expected, as the fluo-
rescence recovery in slow equilibration regime tends to resemble pure diffusion with
effective diffusivity, Deff .
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C

BA

Fig. 7 a Fraction of parameter estimates within 1% of the correct value ( fl (0.01) as defined in (42)) when
attempting to fit Du , Dv , kon and koff . Each data point is calculated from nrun = 128 instances of fitting
with κ ∈ [κmin, κmax]where κmin is indicated and log10(κmax) = log10(κmin)+0.1. b Similar to a, except
over a different range of values of κmin. c Residual sum of squared errors between a simulated fluorescence
recovery curve and recovery curves computed by the pure diffusion formula (23) with diffusivities Du
(φu ) and Dv (φv). Parameters were Du = 8 μm2s−1, Dv = 1 μm2s−1, rn = 0.5 μm, kon = 1 s−1

and koff = κkon for variable κ . The goodness-of-fit of pure diffusion with diffusivity Du improves as κ

increases, while the fit with diffusivity Dv improves as κ decreases

6.2 The effect of varying �

As with η, we began investigating the effect of varying κ on parameter estimation by
locating the boundary between the regimes. Computational results (Fig. 7a, b) indicate
that parameter estimation deteriorates the further κ deviates from 1 in either direction.
We found that 10−0.9 < κ < 100.53 ensured reliably accurate estimation of all four
model parameters.

As κ → ∞, the system asymptotically approaches a pure diffusion recovery with
diffusivity Du , and likewise for Dv as κ → 0. Yet the pure diffusion model with the
appropriate diffusivity is a better approximation for κ = 10−0.9 than for κ = 100.53

(Fig. 7c).We believe that this asymmetry can be explained as follows. Since Du > Dv ,
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the diffusive recoverywith diffusivity Du is faster, hence there are comparatively fewer
data points available with the fluorescence recovery in progress, ultimately leading to
less accurate parameter estimates.

Next, we tested whether constrained fitting can identify the magnitude of κ , similar
to η in Sect. 6.1. Again, we computed the Akaike information criterion of various
fits limited to different regimes: AICU for κ > 100.53, AICV for κ < 10−0.9, and
AICD for the pure diffusion model. For fits where κ was of intermediate magnitude
(10−0.9 < κ < 100.53), we also imposed η > 101.7 (i.e. the rapid equilibration regime
considered in Sect. 6.1). We made this imposition because rapid equilibration is the
sole regime in which full parameter estimation is possible, so identifying it is the most
important problem.

Results (Table 4) clearly indicate that the κ � 1 and κ � 1 regimes cannot always
be distinguished from one another, nor can they always be distinguished from pure
diffusion; however this is unavoidable as both regimes are approximately diffusive.

For rapid equilibration data, the fit constrained to the rapid equilibration regimegave
the best fit in all cases, which encouragingly suggests that this regime can be identified.
On the other hand, for κ � 1 data, the fit constrained to the rapid equilibration
regimes gave a better fit in 11.7% of cases. Judging by goodness-of-fit alone, wewould
erroneously conclude that these data were rapid equilibration, leading to potentially
wildly inaccurate parameter estimates. However, in all of these instances we had
κ̄ ≤ 10−0.9+10−3 where κ̄ is the estimated value ofκ . The algorithmclearly converged
towards a pointwhichwas as close as possible to theκ � 1 regime (the correct regime).
We therefore imposed the additional rule that a regime is not considered viable if the
constrained fit in that regime yields parameter estimates at the boundary between
regimes. With the addition of this rule, in all of our numerical tests we were able to
identify the rapid equilibration regime without any false positives or false negatives.

It is worthwhile noting that, even though the fluorescence recovery approximates
pure diffusion as κ → ∞ or κ → 0, the κ � 1 and κ � 1 regimes could not
be reliably identified with model selection alone. For κ � 1 and κ � 1, we found
that AICRE < AICD in 63.3% and 74.2% of cases respectively. In other words, the
reaction–diffusion model produced a better fit than the pure diffusion model in the
majority of cases. It is clear, then, that constrained fitting of the reaction–diffusion
model is essential for the purposes of regime identification.

6.3 The diffusive regimes,� � 1, � � 1 and � � 1

Although the η � 1 and η = O(1) regimes can be identified, the κ � 1, κ � 1
and η � 1 regimes cannot be differentiated from one another as they all somewhat
resemble diffusive recoveries. However, this is no problem, as these regimes can easily
be identified by other means. Suppose that D is optimum diffusivity obtained from
fitting the pure diffusion model to data. If D ≈ Du then κ � 1 and veq ≈ 0, while if
D ≈ Dv then κ � 1 and veq ≈ 1. If it is clear that Dv < D < Du , then D = Deff and
κ can be calculated using formula (45). In summary, it is always possible, in principle,
to determine the parameter regime, and by extension, which parameters are estimable
and under what circumstances, of given FRAP data.
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7 Discussion

The application of mathematical modelling to FRAP can improve the understand of
biological systems by enabling researchers to extract quantitative binding information
from fluorescence microscopy data. In this article we investigated the feasibility of
obtaining quantitative information from fluorescence microscopy data. On the basis
of approximations derived using formal asymptotic methods, we theoretically pre-
dicted the conditions under which a FRAP inverse modelling problem (the problem
of determining parameter values from data) is tractable in terms of biological and
experimental parameters. We found that, in all cases, the inverse modelling problem
is tractable only if

koff
kon

= O(1), Dv � Du . (47)

For conventional FRAP recovery curve analysis we predicted that the following
sufficient conditions ensure tractability:

Du

konr2n
� 1, �t � r2n

Du
. (48)

where�t is the temporal resolution of the data and rn is the radius of the bleach region.
Since many modern FRAP experiments are carried out using confocal scanning laser
microscopy, we also considered the use of spatial information in FRAP fitting, and
derived the following sufficient conditions for tractability

Du

kon�r2
� 1,

Du

konL2 � 1, (49)

where �r is the length scale of a single pixel and L is the length scale of the whole of
the imaged region.

Whenever the rates of molecular association and dissociation are of comparable
order, all FRAP model parameters may be inferred from either conventional FRAP
or confocal scanning FRAP data of sufficient temporal and/or spatial resolution. We
expect that this will the case in many circumstances, but not universally. We found
(Sect. 5) that when the tractability conditions are not met, it is still possible to estimate
the reaction rates kon and koff , or at the very least the ratio koff/kon, by estimating the
diffusivities Du and Dv independently. We also proposed simple tests to determine
when full parameter fitting is possible andwhen separate experiments will be required.

Despite the large number of quantitative FRAP studies which have been published,
in practice researchers have often preferred to fit recovery curves with a simple expo-
nential formula, even in cases where pure diffusion is likely the best model of the
system under investigation (Taylor et al. 2019). Even in rapid equilibration reaction–
diffusion systems with Dv = 0, where the exponential formula is appropriate, it is
nevertheless an under-utilisation of data, as it yields only an estimate of the disso-
ciation rate, koff , where estimates of the association rate, kon, and diffusivity Du are
possible. Yet, the exponential formula is not really applicable to a diffusion-based
recovery, and it must be noted that inappropriate model choice may lead to inaccurate

123



Parameter estimation in fluorescence recovery after… Page 29 of 38 1

parameter estimates and incorrect conclusions (Sprague et al. 2004; Mueller et al.
2010; Mazza et al. 2012). Therefore, it is our belief that a thorough approach to FRAP
parameter estimation, incorporating model selection and regime identification, would
be beneficial. It is our intention to develop this approach in future work, utilising the
theoretical results which we have established here.
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A Derivations

In this appendix we present the derivations of the formulae in Sect. 3. We begin with
the non-dimensionalised FRAP equation,

{
∂u
∂t ′ = −u + κv + η∇′2u,
∂v
∂t ′ = u − κv + δη∇′2v,

(50)

which is equation (5) in the main text. Equation (50) is subject to the the far-field
conditions

lim
r→∞ u(r ′, t ′) = ueq = κ

1 + κ
, lim

r→∞ v(r ′, t ′) = veq = 1

1 + κ
, (51)

and the post-bleach initial conditions,

u(r , 0) = ueqH(r ′ − 1), v(r , 0) = veqH(r ′ − 1), (52)

where H is the Heaviside step function. The dimensionless variables are

r ′ = r

rn
, t ′ = kont, (53)

and the dimensionless parameters are

η = Du

r2n kon
, κ = koff

kon
, δ = Dv

Du
. (54)
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By assumption the Laplacian is radially symmetric

∇′2u = 1

r ′
∂

∂r ′

(

r ′ ∂u
∂r ′

)

= r2n∇2u = r2n
1

r

∂

∂r

(

r
∂u

∂r

)

, (55)

and likewise for v. We will use the following asymptotic expansion in the subsequent
sections, {

u(r ′, t ′) = u0(r ′, t ′) + εu1(r ′, t ′) + ε2u2(r ′, t ′) + ...,

v(r ′, t ′) = v0(r ′, t ′) + εv1(r ′, t ′) + ε2v2(r ′, t ′) + ....
(56)

A.1 Rapid equilibration (� � 1)

In the first instance, we will derive the rapid equlibration recovery curve formula, (16)
in the main text. We set ε = 1/η. Substituting expansion (56) into system (50) yields

{
ε ∂u0

∂t ′ = ε(κv0 − u0) + ∇′2u0 + ε∇′2u1 + O(ε2),
∂v0
∂t ′ + ε ∂v1

∂t ′ = (u0 − κv0) + ε(u1 − κv1) + δ
ε
∇′2v0 + δ∇′2v1 + δε∇′2v2 + O(ε2).

(57)
We will necessarily be left with ∇′2u0 = ∇′2v0 = 0 as we let ε → 0 unless we also
take δ → 0 (that is, the entire system instantaneously returns to equilibrium in the
limiting case where both species are infinitely diffusive). Neglecting this uninteresting
case, taking the limit ε, δ → 0 such that δ/ε = O(1), we are left with a single equation
in v0,

∂v0

∂t ′
= ueq − κv0 + δ

ε
∇′2v0, (58)

where we have already used the fact that u0 = ueq, since this is the unique solution
of ∇′2u0 = 0 given the boundary conditions (51). Noting that konueq = koffveq and
making the substitution v0(r , t) = veq − ṽ0(r , t), we arrive at

∂ṽ0

∂t
= −koff ṽ0 + Dv∇2ṽ0, (59)

where we should note that (59) has been restored to dimensional form. The solution
to (59) subect to Dirac delta intitial conditions is

ṽ(r , t) = 1

4πDvt
exp (−koff t) exp

(

− r2

4Dvt

)

, (60)

hence the solution to the general initial value problem of (59) is, in Cartesian coordi-
nates,

ṽ(x, y, t) =
∫∫

R2
ṽ(x ′, y′, 0) 1

4πDvt
exp

(

−koff t − (x ′ − x)2 + (y′ − y)2

4Dvt

)

dxdy,

(61)
which implies that

123



Parameter estimation in fluorescence recovery after… Page 31 of 38 1

ṽ(x, y, t)ekoff t = veq

4πDv t

∫∫

R2

(
1 − H(x ′2 + y′2 − r2n )

)
exp

(

− (x ′ − x)2 + (y′ − y)2

4Dv t

)

dxdy.

(62)
At this stage, the derivation becomes virtually identical to that of Soumpasis (1983).
The precise form of v0 can only be expressed in integral form, yet if we define the
contribution of the bound fraction to the fluorescence recovery as

Fv(t) = 1

πr2n

∫ 2π

0

∫ rn

0
v0(r , t)drdθ, (63)

then we conclude that

Fv(t) = veq − veqe
−koff t

(

1 − FS

(
r2n

2Dvt

))

. (64)

The above approximation breaks down over the short time scale, t ′ = O(ε), so it is
helpful to consider the rescaling t ′ = ετ which, in the limit ε → 0 reduces (57) to

∂u0
∂τ

= ∇′2u0,
∂v0

∂τ
= 0, (65)

which indicates that the dynamics of u are governed purely by diffusion, implying
that, if we define Fu analogously to Fv such that

Fu(t) = 1

πr2n

∫ 2π

0

∫ rn

0
u0(r , t)drdθ, (66)

we conclude that

Fu(t) = ueqFS

(
r2n

2Dut

)

. (67)

Finally, noting that the total fluorescence recovery curve is given by F(t) = Fu(t) +
Fv(t) and that ueq = koff/(kon + koff), veq = kon/(kon + koff), we arrive at

F(t) = koff
kon + koff

FS

(
r2n

2Dut

)

+ kon
kon + koff

(

1 − e−koff t
[

1 − FS

(
r2n

2Dvt

)])

.

(68)

A.2 Intermediate equilibration (� = O(1))

We now derive FRAP formula (20) from the main text by taking the asymptotic
expansion (57) to first order. We can eliminate the ‘zeroth’ order, which we have
already balanced, where we cancel ε throughout. Then, once again considering the
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limit δ, ε → 0, we are left with

{
∇′2u1 = u0 − κv0,
∂v1
∂t ′ = +(u1 − κv1) + δ

ε
∇′2v1.

. (69)

Since, u0 and v0 entirely satisfy the far field conditions (51), for consistencywe impose

lim
r→∞ u1(r

′, t ′) = 0, lim
r→∞ v1(r

′, t ′) = 0. (70)

When r ′ ≥ 1, we have v0(r ′, t ′) = veq, hence ∇′2u1 = ueq − κveq = 0, which taken
together with (70) implies that u1(r ′,′ t) = 0 for r ′ ≥ 1. Imposing the continuity
condition u1(1−, t ′) = 0, we then solve for u1 on r ′ ≤ 1

1

r ′
∂

∂r ′

(

r ′ ∂u1
∂r ′

)

= ueq − κveq(1 − e−κt ′) = ueqe
−κt ′ , (71)

which implies that

u1(r
′, t ′) = 1

4
ueqe

−κt ′(r ′2 − 1), (72)

where we have used the symmetry condition ∂u1
∂r ′

∣
∣
∣
r=0

= 0. Further analytic progress is

possible in the limiting case δ/ε → 0, bymultiplying through (69) with the integrating
factor eκt ′ , yielding

eκt ′ ∂v1

∂t ′
+ κeκt ′v1 = ∂

∂t ′
(v1e

κt ′) = 1

4
ueq(r

′2 − 1). (73)

Taking v1(r ′, 0) = 0 as the initial condition, we are left with

v1(r
′, t ′) = 1

4
ueq(r

′2 − 1)t ′eκt ′ . (74)

We may precisely express the asymptotic expansion as follows

{
u(r , t) = ueq + ε 1

4ueqe
−κt ′(r ′2 − 1) + O(ε2),

v(r , t) = veq(1 − eκt ′) + ε 1
4ueqt

′e−κt ′(r ′2 − 1) + O(ε2).
(75)

In dimensional form and truncated to first order, we have
⎧
⎨

⎩

u(r , t) = ueq
(
1 + kon

4Du
e−koff t (r2 − r2n )

)
,

v(r , t) = veq

(
1 − e−koff t + kon

4Du
koff te−koff t (r2 − r2n )

)
.

(76)

We are now able to evaluate the fluorescence recovery function,

F(t) = 1

πr2n

∫ 2π

0

∫ rn

0
(u(r , t) + v(r , t))drdt, (77)
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to obtain

F(t) = 1 − veqe
−koff t − konrn

3Du
e−koff t (1 + koff t), (78)

as required.

A.3 Slow equilibration (� � 1)

Finally, we will derive the FRAP formula (21) from the main text. Let ε = η. We
begin by truncating the asymptotic expansions, (56), of u and v to zeroth order prior
to substitution into (50), yielding

{
∂u0
∂t ′ = κv0 − u0 + ε∇′2u0,
∂v0
∂t ′ = u0 − κv0 + δε∇′2v0,

(79)

In the limit ε → 0, there is no net spatial redistribution and the the total concentration,
w0 = u0 + v0 is time-invariant, yet it is clear that the system will converge towards a
local chemical equilibriumat each point, given byu0 = κw0/(1+κ), v0 = w0/(1+κ).
Notwithstanding, this approximation fails over sufficiently long time scales (t ′ =
O(1/ε)), which we may investigate by rescaling time such that we have t ′ = τ/ε for
τ = O(1), yielding

{
ε ∂u0

∂τ
(r ′, τ/ε) = κv0(r ′, τ/ε) − u0(r ′, τ/ε) + ε∇′2u0(r ′, τ/ε),

ε ∂v0
∂τ

(r ′, τ/ε) = u0(r ′, τ/ε) − κv0(r ′, τ/ε) + δε∇′2v0(r ′, τ/ε).
(80)

Adding the two equations in system (80) neutralises the zeroth order terms

∂u0
∂τ

+ ∂v0

∂τ
= ∇′2u0(r ′, τ/ε) + δ∇′2v0(r ′, τ/ε), (81)

where we have cancelled ε throughout. Taking ε → ∞

∂w0

∂τ
=

(
κ

1 + κ
+ δ

1 + κ

)

∇′2w0. (82)

At this point it is convenient to re-dimensionalise, finally yielding

∂w0

∂t
= koffDu + konDv

kon + koff
∇2w0 = Deff∇2w0, (83)

hence the total fluorescence concentration recapitulates the behaviour of a pure diffu-
sion system and the fluorescence recovery function is

F(t) = FS

(
r2n

2Defft

)

. (84)
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A.4 Fisher informationmatrix

Here we derive the Fisher information Matrix from the η � 1 approximation (68).
The eigenvalues of the matrix derived here are plotted in Fig. 2 for different values of
rn and �t . It is necessary to determine the partial derivatives with respect to each of
the four model parameters, Du, Dv, kon, koff . We begin by differentiating the function

FS(z) = e−z(I0(z) + I1(z)). (85)

We will make use of identities,

d

dz
I0(z) = I1(z), (86)

and
d

dz
Iα(z) = Iα−1(z) + α

z
Iα(z) ∴ d

dz
I1(z) = I0 + 1

z
I1(z). (87)

From (86) and (87) it follows that

dFS

dz
= −e−z I1(z)

z
. (88)

Then, taking z = (r2n )(2Dt)−1 it takes a simple application of the chain rule to
conclude that

∂

∂D
FS

(
r2n
2Dt

)

=
e− r2n

2Dt I1
(

r2n
2Dt

)

D
. (89)

It follows that

∂F

∂Du
= koff

kon + koff

e− r2n
2Du t I1

(
r2n

2Dut

)

Du
, (90)

and

∂F

∂Dv

= kon
kon + koff

e−koff t
e− r2n

2Dv t I1
(

r2n
2Dv t

)

Dv

. (91)

It follows from the quotient rule that

∂F

∂kon
=

koffe−koff t
(
FS

(
r2n

2Dv t

)
+ ekoff t − FS

(
r2n

2Dut

)
ekoff t − 1

)

(kon + koff)2
, (92)

and

∂F

∂koff
=

kone−koff t
(

FS

(
r2n

2Dv t

)

(1 + kont) + ekoff t − (kon + koff )t − FS

(
r2n

2Dut

)

ekoff t − 1

)

(kon + koff )2
.

(93)
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Now that we have explicitly derived the partial derivatives of F with respect to each
of the four model parameters, from formula (14) in the main text it follows that

Ii =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(
∂F
∂Du

)2
∂F
∂Du

∂F
∂Dv

∂F
∂Du

∂F
∂kon

∂F
∂Du

∂F
∂koff

∂F
∂Du

∂F
∂Dv

(
∂F
∂Dv

)2
∂F
∂Dv

∂F
∂kon

∂F
∂Dv

∂F
∂koff

∂F
∂Du

∂F
∂kon

∂F
∂Dv

∂F
∂kon

(
∂F
∂kon

)2
∂F
∂kon

∂F
∂koff

∂F
∂Du

∂F
∂koff

∂F
∂Dv

∂F
∂koff

∂F
∂kon

∂F
∂koff

(
∂F

∂koff

)2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(ti ). (94)

Then the Fisher information matrix is simply

I =
∑

i

1

σ 2
i

Ii . (95)
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