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Abstract

Joint misclassification of exposure and outcome variables can lead to considerable bias in epidemiological studies of

causal exposure-outcome effects. In this paper, we present a new maximum likelihood based estimator for marginal

causal effects that simultaneously adjusts for confounding and several forms of joint misclassification of the exposure and

outcome variables. The proposed method relies on validation data for the construction of weights that account for both

sources of bias. The weighting estimator, which is an extension of the outcome misclassification weighting estimator

proposed by Gravel and Platt (Weighted estimation for confounded binary outcomes subject to misclassification.

Stat Med 2018; 37: 425–436), is applied to reinfarction data. Simulation studies were carried out to study its finite

sample properties and compare it with methods that do not account for confounding or misclassification. The new

estimator showed favourable large sample properties in the simulations. Further research is needed to study the

sensitivity of the proposed method and that of alternatives to violations of their assumptions. The implementation of

the estimator is facilitated by a new R function (ipwm) in an existing R package (mecor).
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1 Introduction

In epidemiological research on causal associations between a particular exposure and a certain outcome, errone-

ous information on either or both of these variables poses a serious methodological obstacle in making valid

inferences. In particular, joint misclassification of exposure and outcome can lead to considerable bias of standard

causal effect estimators, with direction and magnitude depending on various factors, including the misclassifica-

tion mechanism and the direction and magnitude of the true effect.1–6

Exposure and outcome misclassification is typically categorised according to two separate properties: whether

or not the misclassification is differential and whether or not it is dependent relative to some covariate vector L

containing patient characteristics.1,5 Joint misclassification of exposure and outcome is said to be nondifferential if

(1) the sensitivity and specificity of exposure classification are constant across all categories of the (true) outcome

given L and (2) the sensitivity and specificity of outcome classification are constant across all categories of the

(true) exposure given L; otherwise it is differential. Misclassification is said to be independent if the joint proba-

bility of any exposure and outcome classification given any true exposure and outcome categories and L can be

factored into the product of the corresponding probabilities for exposure and outcome separately; otherwise, it is
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dependent. In Dawid’s notation,7 that is, if true exposure level A and true outcome Y are (potentially mis)classified
as B and Z, respectively, misclassification is nondifferential if and only if B??YjA;L and Z??AjY;L and inde-
pendent if and only if Z??BjY;A;L.

Epidemiological research hampered by joint misclassification of some type is likely voluminous.6 Examples of
studies affected by exposure and outcome misclassification can be found, for example, in the literature on the
causal effects of drug use, which is largely based on routinely collected data, where exposures are typically
operationalised on the basis of prescription records and where outcomes are often self-reported.8–11 In applied
epidemiological research, misclassification or some of its potential consequences are often ignored.12,13 The asser-
tion often made in the discussion of study results that observed measures of association are biased toward the null
under nondifferentiality, for example, is not generally true unless additional conditions are presupposed.2,6

Methods to adjust for misclassification rely on additional information that can be used to estimate or correct
for bias. One potential source of information is validation data obtained through supposedly infallible measure-
ment. Recently, Gravel and Platt proposed an inverse probability weighting (IPW) method to simultaneously
address confounding and outcome misclassification by means of internal validation data.14 Other methods like-
wise suppose that either the exposure or the outcome is subject to misclassification.14–17 In what follows, we
propose an extension of Gravel and Platt’s method to allow for confounding adjustment and joint exposure and
outcome misclassification. This flexible estimator allows for the misclassifications to be dependent, differential or
both. In Section 2, inverse probability weights for confounding and joint misclassification are introduced through
a hypothetical study based on the illustrative example of Gravel and Platt. Section 3 details methods for estima-
tion of the various components of the proposed weights based on validation data. In Section 4, we describe a
series of Monte Carlo simulations that were used to study properties of the proposed method in finite samples.
We conclude with a summary and discussion of our findings in context of the existing literature.

2 Data distribution for illustration and development of weighting method

We first consider the data and setting described by Gravel and Platt and suppose that Table 1 represents a simple
random (i.i.d.) sample from (or that its cell counts are proportional to the respective densities in) the population of
interest. This illustration is based on a cohort study on the association between post-myocardial infarction
statin use (A) and the one-year risk of reinfarction (Y). In what follows, we will refer to this example as the
‘reinfarction example’.

Throughout we take the counterfactual framework for causal inference, formal accounts of which are given for
example by Neyman et al.18–22 The interest, we suppose, lies in estimating gðE½Yð0Þ�;E½Yð1Þ�Þ for some function g,
where Y(0) and Y(1) denote the counterfactual outcomes for hypothetical interventions setting A to 0 and 1,
respectively. Common choices of g define gðp0; p1Þ ¼ p1 � p0 (risk difference), gðp0; p1Þ ¼ p1=p0 (risk ratio), or
gðp0; p1Þ ¼ ½p1=ð1� p1Þ�=½p0=ð1� p0Þ� (odds ratio). For our numerical example and simulation studies, we con-
centrate on the causal marginal odds ratio (OR) in particular, with

OR ¼ gðE½Yð0Þ�;E½Yð1Þ�Þ ¼ E½Yð1Þ�=ð1� E½Yð1Þ�Þ
E½Yð0Þ�=ð1� E½Yð0Þ�Þ (1)

but the results naturally extend to other effect measures.

2.1 No misclassification

Under conditional exchangeability given L (i.e. ðYð0Þ;Yð1ÞÞ??AjL), consistency (Y(a)¼Y if A¼ a) and positivity
(PrðA ¼ ajL ¼ lÞ > 0 for a¼ 0, 1 and all l in the support of L), the mean counterfactuals E½Yð0Þ� and E½Yð1Þ� can

Table 1. Cross-classification of the reinfarction data for 33,007 individuals as given by Gravel
and Platt.

L¼ 0 L¼ 1

A¼ 0 A¼ 1 A¼ 0 A¼ 1

Y¼ 0 11602 13116 1302 5363

Y¼ 1 890 589 49 96
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be expressed in terms of ‘observables’ (meaning, here, variables that would be observed in the absence of mea-

surement error) as follows

E½Yð0Þ� ¼ E½WYjA ¼ 0� and E½Yð1Þ� ¼ E½WYjA ¼ 1�

where W denotes the inverse probability of the allocated exposure level A given L (i.e. the inverse propensity score

if A¼ 1 and the inverse of the complement of the propensity score if A¼ 0) multiplied by the prevalence of the

allocated exposure level A (i.e. W ¼ PrðAÞ=PrðAjLÞ; Supplementary Appendix I). We therefore have

gðE½Yð0Þ�;E½Yð1Þ�Þ ¼ gðE½WYjA ¼ 0�;E½WYjA ¼ 1�Þ (2)

Replacing components of the right-hand side of equation (2) with sample analogues, we obtain the following

estimator for the setting where L is binary

dOR :¼ gðbE½ bWYjA ¼ 0�; bE½ bWYjA ¼ 1�Þ

¼
bE½ bWYjA ¼ 1�=ð1� bE½ bWYjA ¼ 1�ÞbE½ bWYjA ¼ 0�=ð1� bE½ bWYjA ¼ 0�Þ

¼ ð bW10n110 þ bW11n111Þ=ðn110 þ n111 þ n010 þ n011 � bW10n110 � bW11n111Þ
ð bW00n100 þ bW01n101Þ=ðn100 þ n101 þ n000 þ n001 � bW00n100 � bW01n101Þ

(3)

where nyal denotes the number of subjects with Y¼ y, A¼ a, L¼ l and where bWal is the product of the proportion of

subjects in the sample with A¼ a and the inverse of the proportion of subjects with A¼ a among those with L¼ l.

For the data in Table 1, we obtain dOR� 0:573. The corresponding crude odds ratio (i.e. with bW ¼ 1) is 0.509.

2.2 Joint misclassification

Suppose that rather than observing Y and A we observe Z and B, the misclassified versions of Y and A, respec-

tively. The relation between Z and B on the one hand and Y, A and L on the other can be expressed as follows

PrðZ ¼ z;B ¼ bjY ¼ y;A ¼ a;L ¼ lÞ ¼ ðpbyalÞzð1� pbyalÞ1�zðkyalÞbð1� kyalÞ1�b

for z; b 2 f0; 1g and all possible realisations y, a, l of Y, A, L, and where pbyal ¼ PrðZ ¼ 1jB ¼ b;Y ¼ y;A ¼
a;L ¼ lÞ and kyal ¼ PrðB ¼ 1jY ¼ y;A ¼ a;L ¼ lÞ.

To simulate (dependent differential) misclassification in the reinfarction dataset, we use the true positive and

false positive rates given in Table 2. The expected cell counts for these rates are given in Table 3.
We redefine the weights in equation (2) as a function of B and L (as per Supplementary Appendix I) such that

W ¼ pðBÞeBLX
y

X
a
pByaLðkyaLÞBð1� kyaLÞ1�BðeaLÞyð1� eaLÞ1�yðdLÞað1� dLÞ1�a

(4)

Table 2. True and false positive rates for reinfarction example.

p0000 ¼ 0:050 p0001 ¼ 0:020 k000 ¼ 0:010
p1000 ¼ 0:060 p1001 ¼ 0:108 k100 ¼ 0:181
p0100 ¼ 0:930 p0101 ¼ 0:806 k010 ¼ 0:880
p1100 ¼ 0:938 p1101 ¼ 0:692 k110 ¼ 0:910
p0010 ¼ 0:030 p0011 ¼ 0:109 k001 ¼ 0:100
p1010 ¼ 0:060 p1011 ¼ 0:050 k101 ¼ 0:265
p0110 ¼ 0:906 p0111 ¼ 0:765 k011 ¼ 0:930
p1110 ¼ 0:950 p1111 ¼ 0:861 k111 ¼ 0:823

For b; y; a; l 2 f0; 1g; kyal ¼ PrðB ¼ 1jY ¼ y; A ¼ a; L ¼ lÞ and pbyal ¼ PrðZ ¼ 1jB ¼ b; Y ¼ y;

A ¼ a; L ¼ lÞ.
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where p(B) is the prevalence of level B of the potentially misclassified version of the exposure variable and where
eal ¼ PrðY ¼ 1jA ¼ a;L ¼ lÞ and dl ¼ PrðA ¼ 1jL ¼ lÞ for all possible realisations a and l of A and L, respectively.
In Supplementary Appendix I, it is shown that

E½Yð0Þ� ¼ E½WZjB ¼ 0� and E½Yð1Þ�¼E½WZjB ¼ 1� (5)

which suggests the plug-in estimator

dOR:¼ gðbE½ bWZjB ¼ 0�; bE½ bWZjB ¼ 1�Þ
¼
bE½ bWZjB ¼ 1�=ð1� bE½ bWZjB ¼ 1�ÞbE½ bWZjB ¼ 0�=ð1� bE½ bWZjB ¼ 0�Þ

(6)

where bE denotes the sample mean operator and bW the sample analogue (i.e. consistent estimator) of W in
equation (4). For other effect measures (i.e. other choices of g), the same plug-in strategy can be implemented.

In the absence of exposure misclassification, equation (4) reduces to

W ¼ ðdLÞAð1� dLÞ1�A

pðAÞ pA0AL
1� eAL
eAL

þ pA1AL

� � !�1

(7)

The first term within the round brackets corrects for confounding and represents the propensity score if A¼ 1
or its complemement if A¼ 0 divided by the prevalence of exposure level A. The term within square brackets is a
factor that corrects for misclassification in the outcome variable. This correction factor is similar to that proposed
by Gravel and Platt.14 The only difference is that where in equation (7) it does not depend on the fallible
measurement Z of Y, Gravel and Platt define different weights for subjects with Z¼ 0. Note, however, that the
choice of weights for subjects with Z¼ 0 does not affect the population quantity in equation (5) or the estimator
defined by equation (6), because the weights only appear in products with Z, which equal zero if Z¼ 0.

As for the reinfarction example, the odds ratio estimate for the exposure-outcome effect based on inverse
probability weighting that assumes absence of exposure or outcome misclassification is 1.120, while the corre-
sponding misclassification naive crude odds ratio is 1.031. Estimation of the population weights W from observ-
ables using validation data is discussed in the next section. As shown below, weighting using the proposed weights
that account for confounding and outcome and exposure misclassification results in an odds ratio of OR ¼dOR � 0:573. Inference based on equation (7) rather than equation (4), i.e. using Gravel and Platt’s method
and ignoring misclassification in the exposure but correcting for outcome misclassification, yields an odds ratio
estimate of 0.934.

2.3 Parameterisation based on positive and negative predictive values

In the foregoing discussion, the proposed weights were expressed in terms of sensitivity and specificity parameters.
The sensitivity and specificity of Z with respect to Y, given (B, A, L), are pB1AL and 1� pB0AL, respectively.

Table 3. Expected cell counts (rounded to integers) for reinfarction example after misclassification was
introduced.

Z¼ 0 Z¼ 1

B¼ 0 B¼ 1 B¼ 0 B¼ 1

Y ¼ 0; A ¼ 0; L ¼ 0 10912 109 574 7

Y ¼ 1; A ¼ 0; L ¼ 0 51 10 678 151

Y ¼ 0; A ¼ 1; L ¼ 0 1527 10850 47 693

Y ¼ 1; A ¼ 1; L ¼ 0 5 27 48 509

Y ¼ 0; A ¼ 0; L ¼ 1 1148 116 23 14

Y ¼ 1; A ¼ 0; L ¼ 1 7 4 29 9

Y ¼ 0; A ¼ 1; L ¼ 1 334 4738 41 249

Y ¼ 1; A ¼ 1; L ¼ 1 4 11 13 68

Note: Because of rounding, the sum of all cell entries is 33,006 rather than 33,007, the size of the reinfarction dataset.
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Similarly, kY1L and 1� kY0L reflect the sensitivity and specificity, respectively, with respect to A, conditional on

Y and L.
As discussed below, it may be more convenient to choose a parameterisation that is based on (positive and

negative) predictive values. Define d�l ¼ PrðB ¼ 1jL ¼ lÞ; e�bl ¼ PrðZ ¼ 1jB ¼ b;L ¼ lÞ; k�zbl ¼ PrðA ¼ 1jZ ¼
z;B ¼ b;L ¼ lÞ and p�azbl ¼ PrðY ¼ 1jA ¼ a;Z ¼ z;B ¼ b;L ¼ lÞ. The weights in equation (4) can be rewritten as

W¼
X

y

X
a
p�ByaLðk�yaLÞBð1� k�yaLÞ1�Bðe�aLÞyð1� e�aLÞ1�yðd�LÞað1� d�LÞ1�aX

y

X
a
ðk�yaLÞBð1� k�yaLÞ1�Bðe�aLÞyð1� e�aLÞ1�yðd�LÞað1� d�LÞ1�a

� pðBÞ
e�BLðd�LÞBð1� d�LÞ1�B

(8)

In the absence of exposure misclassification, these weights simplify to

W ¼ pðAÞ
ðdLÞAð1� dLÞ1�A

eAL
e�AL

3 Estimation of weights based on validation data

Estimation of the proposed weights can be done using a number of approaches and we will here

consider a maximum likelihood approach that assumes the availability of internal validation data, i.e. that

some study participants have their observed exposure or outcome measured by an ‘infallible’ or ‘gold standard’

(100% accurate) classifier, and that all participants have the misclassified exposure and outcome variables

measured.

3.1 Validation subset inclusion mechanism

Let RY be the indicator variable that takes the value of 1 if the outcome is observed (i.e. measured by an infallible

classifier) and 0 otherwise. Similarly, define RA to be the indicator variable that takes the value of 1 if the exposure

variable is observed and 0 otherwise. RY and RA reflect which subjects have validation data available on Y and A,

respectively. The subset of subjects with validation data on Y need not fully overlap with the subset with vali-

dation data on A.
The validation subsets can be approached from the missing data framework of Rubin.23 Provided that Z, B, L

are free of missing values, Rubin’s missing at random (MAR) condition is met whenever the vector ðRY;RAÞ is
conditionally independent of (Y, A) given (Z, B, L).

3.2 Full likelihood approach based on parameterisation in terms of sensitivities

and specificities

Simultaneous estimation of the whole vector of d, e, k and p parameters can be done via maximum likelihood

estimation as follows. Assuming i.i.d. observations ðZi;Bi;Yi;Ai;LiÞ and ignorable missingness in the sense of

Rubin23 (MAR and distinctness), for valid likelihood-based inference it is appropriate to maximise the following

log-likelihood over the parameter space of h, the vector of d, e, k and p parameters

‘ðhÞ ¼
X

i:RYi¼RAi¼1

logfðh;Zi;Bi;Yi;Ai;LiÞ

þ
X

i:RYi¼1^RAi¼0

log
X
Ai

fðh;Zi;Bi;Yi;Ai;LiÞ

þ
X

i:RYi¼0^RAi¼1

log
X
Yi

fðh;Zi;Bi;Yi;Ai;LiÞ

þ
X

i:RYi¼RAi¼0

log
X
Yi

X
Ai

fðh;Zi;Bi;Yi;Ai;LiÞ;
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where

fðh;Zi;Bi;Yi;Ai;LiÞ ¼ pBiYiAiLið ÞZið1� pBiYiAiLi
Þ1�ZiðkYiAiLi

ÞBið1� kYiAiLi
Þ1�Bi

� ðeAiLi
ÞYið1� eAiLi

Þ1�YiðdLi
ÞAið1� dLi

Þ1�Ai

Evaluating this log-likelihood involves marginalising over unobserved quantities in the last three terms of ‘ðhÞ.
The log-likelihood equations may become considerably more tractable if we choose a parameterisation of the

likelihood that is based on predictive values rather than sensitivities and specificities.

3.3 Full likelihood approach based on parameterisation in terms of predictive values

Inference may alternatively be based on a log-likelihood that is parameterised in terms of the vector h� of the

d�; e�; k� and p� parameters, i.e.

‘�ðh�Þ ¼
X

i:RYi¼RAi¼1

loghðh�;Zi;Bi;Yi;Ai;LiÞ

þ
X

i:RYi¼1^RAi¼0

log
X
Ai

hðh�;Zi;Bi;Yi;Ai;LiÞ

þ
X

i:RYi¼0^RAi¼1

log
X
Yi

hðh�;Zi;Bi;Yi;Ai;LiÞ

þ
X

i:RYi¼RAi¼0

log
X
Yi

X
Ai

hðh�;Zi;Bi;Yi;Ai;LiÞ

where

hðh�;Zi;Bi;Yi;Ai;LiÞ ¼ ðp�AiZiBiLi
ÞYið1� p�AiZiBiLi

Þ1�Yiðk�ZiBiLi
ÞAið1� k�ZiBiLi

Þ1�Ai

� ðe�BiLi
ÞZið1� e�BiLi

Þ1�Ziðd�Li
ÞBið1� d�Li

Þ1�Bi

If validation data is available on Y if and only if it is available on A, the complete data log-likelihood ignoring

the missing data mechanism can be conveniently expressed as follows

‘�ðh�Þ ¼ ‘�1ðh�Þ þ ‘�2ðh�Þ þ ‘�3ðh�Þ þ ‘�4ðh�Þ (9)

with h� denoting the vector of d�; e�; k� and p� parameters and where

‘�1ðh�Þ ¼
X

i:RYi¼RAi¼1

Yilogðp�AiZiBiLi
Þ þ ð1� YiÞlogð1� p�AiZiBiLi

Þ

‘�2ðh�Þ ¼
X

i:RYi¼RAi¼1

Ailogðk�ZiBiLi
Þ þ ð1� AiÞlogð1� k�ZiBiLi

Þ

‘�3ðh�Þ ¼
X
i

Zilogðe�BiLi
Þ þ ð1� ZiÞlogð1� e�BiLi

Þ

‘�4ðh�Þ ¼
X
i

Bilogðd�Li
Þ þ ð1� BiÞlogð1� d�Li

Þ

Now, assuming distinct parameter spaces for the vectors of p�; k�; e�, and d� parameters, the parameter values

that maximise ‘�ðh�Þ can be found by separately maximising ‘�1ðh�Þ and ‘�2ðh�Þ in the validation subset with respect

to the p� and k� parameters, respectively, and ‘�3ðh�Þ and ‘�4ðh�Þ in the entire dataset with respect to e� and d�.
Following Gravel and Platt14 and Tang et al.,24 the sum of the first and last two terms are therefore suitably

labelled the internal validation and main study log-likelihood, respectively. With this parameterisation, finding the

maximum likelihood estimates is readily achieved by taking advantage of standard statistical software.

478 Statistical Methods in Medical Research 30(2)



3.4 Equivalence of likelihood approaches based on different parameterisations

Without restrictions imposed on

hl :¼ ðp000l; p100l; p010l; p110l; p001l; p101l; p011l; p111l; k00l; k10l; k01l; k11l; e0l; e1l; dlÞ and

h�l :¼ ðp�000l; p�100l; p�010l; p�110l; p�001l; p�101l; p�011l; p�111l; k�00l; k�10l; k�01l; k�11l; e�0l; e�1l; d�l Þ

other than that hl; h
�
l 2 ð0; 1Þ15, it can be shown that the maximum likelihood estimator based on the internal

validation design is invariant to its parameterisation (sensitivities/specificities versus positive and negative pre-

dictive values). This is because there exists a function mapping every hl 2 ð0; 1Þ15 to a unique h�l 2 ð0; 1Þ15 and vice

versa. Maximising ‘ðhÞ with respect to h is then equivalent to maximising ‘ðrðh�ÞÞ (¼ ‘�ðh�Þ) with respect to h� for
some bijection r such that h ¼ rðh�Þ; that is,

argmax
h

‘ðhÞ ¼ r argmax
h�

‘ðrðh�ÞÞ� �
:

If more restrictions are imposed on h or h�, e.g. if we assume non-saturated logistic models for the components

of h and h�, this equivalence no longer holds and the resulting weight estimates may differ depending on the

parameterisation.

3.5 Application

For the re-infarction data example, we assume validation data are available according to a MAR mechanism

characterised by

PrðRY ¼ 1jRA ¼ s;Z ¼ z;B ¼ b;Y ¼ y;A ¼ a;L ¼ lÞ ¼ s;
PrðRA ¼ 1jZ ¼ z;B ¼ b;Y ¼ y;A ¼ a;L ¼ lÞ ¼ 0:25þ 0:10b

This mechanism assigns validation data to an individual on either both Y and A (30% of all individuals) or

neither depending on their realisation of B, the misclassified version of the exposure variable A (Table S.1). Tables

S.2 and S.3 (see Supplementary online Appendix) give the likelihood contributions for the parameterisation based

on predictive values and the closed-form maximum likelihood expressions, respectively. Maximum likelihood

estimates can also be found by fitting to the data the saturated logistic regression models of B and Z on L and (B,

L), respectively, and to the validation subset the fully saturated logistic regression models of A and Y on (Z, B, L)

and ðA;Z;B;LÞ, respectively. Estimated weights are then obtained by plugging in the maximum likelihood

estimates into equation (8). As in the complete data setting where we assumed the weights to be known, evaluating

equation (6) then yields an odds ratio of dOR ¼ OR� 0:573.

4 Simulations

We performed a series of Monte Carlo simulation experiments to illustrate the implementation of the proposed

method, to study its finite sample properties and to compare the method to estimators that ignore the presence of

confounding or joint exposure and outcome misclassification. All simulations were conducted using R-3.5.025 on

x86_64-pc-linux-gnu platforms of the high performance computer cluster of Leiden University Medical Center.

4.1 Methods

For all 54 simulation experiments, we generated nsim ¼ 1000 samples of size n according to the data generating

mechanisms depicted in the directed acyclic graphs of Figure 1. This multi-step data generating process included

generating values on measurement error-free variables, introducing misclassification and allocating individuals

validation data. We applied various estimators to each of the simulation samples to yield, for each scenario, an

empirical distribution of each point estimator and corresponding precision estimators. These distributions were

then summarised into various performance metrics. These metrics include the empirical bias of the estimator on

the log-scale (i.e. the mean estimated log-OR minus the target log-OR across the nsim samples), the empirical

standard error (SE) of the estimator on the log-scale (i.e. the square root of the mean squared deviation of the

estimated log-OR from the mean log-OR), the empirical mean squared error (MSE) (i.e. the sum of the squared
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SE and the squared bias), the square root of the mean estimated variance (SSE, sample standard error) and the

empirical coverage probability (CP) (i.e. the fraction of simulation runs per scenario where the 95% confidence

interval (95% CI) contained the target quantity).

4.1.1 Distribution of measurement error-free variables

Following Gravel and Platt,14 we consider a setting based on that of “Scenario A” in the work of Setoguchi et al.

with slight modifications to the propensity score and outcome models.26 We consider a fully observed covariate

vector L ¼ ðL0; . . . ;L10Þ whose distribution coincides with that of h(V), where V ¼ ðV1; . . . ;V10Þ has the multi-

variate normal distribution with zero means, unit variances and correlations equal to zero except for the corre-

lations between W1 and V5, V2 and V6, V3 and V8, and V4 and V9, which were set to 0.2, 0.9, 0.2, and 0.9,

respectively. Function h was defined such that

hðVÞ ¼ ðIðV1 > 0Þ;V2; IðV3 > 0Þ;V4; IðV5 > 0Þ; IðV6 > 0Þ;V7; IðV8 > 0Þ; IðV9 > 0Þ;V10Þ
Thus, sampling from the distribution of L is equivalent to sampling from the multivariate normal distribution

with the given parameter values and dichotomising the first, third, fifth, sixth, eighth and ninth elements.
Next, let U1 and U2 be binary variables distributed according to the following logistic models:

logit PrðU1 ¼ 1jLÞ ¼ g0 (10)

logit PrðU2 ¼ 1jL;U1Þ ¼ l0 (11)

The distribution of the binary exposure variable A was defined according to the model

logit PrðA ¼ 1jL;U1;U2Þ ¼ a0 þ
X10
j¼1

ajLj þ a11U1 (12)

Letting U3 be a scalar random variable that is independent of ðA;L1; . . . ;L10;U1;U2Þ and uniformly distributed

over the interval ½0; 1�, we defined the counterfactual outcome Y(a), under the intervention setting A to a, as

YðaÞ ¼ I U3 < expit b0 þ caþ
X10
j¼1

bjLj þ b11U2

8<:
9=;

0B@
1CA (13)

With Y :¼ YðAÞ, the above implies consistency, conditional exchangeability given L and structural positivity.

4.1.2 Misclassification mechanism

For scenarios with joint misclassification, we defined B¼U1 and Z¼U2, so that the predictive values take a

standard logistic form

logit PrðY ¼ 1jA;B;L;ZÞ ¼ b0 þ cAþ
X10
j¼1

bjLj þ b11Z (14)

L A Y

U1 U2

B Z R

L A Y

U1 U2

B Z R

Figure 1. Data structure for scenarios with misclassification on the outcome only (left) or on both the exposure and outcome
(right). Bullet arrowheads represent deterministic relationships.
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logit PrðA ¼ 1jB;L;ZÞ ¼ a0 þ
X10
j¼1

ajLj þ a11B (15)

For scenarios without exposure misclassification, we set a11 ¼ 0 and defined B¼A and Z¼U2, so that

logit PrðY ¼ 1jA;B;L;ZÞ ¼ b0 þ cAþ
X10
j¼1

bjLj þ b11Z (16)

logit PrðB ¼ 1jL;ZÞ ¼ a0 þ
X10
j¼1

ajLj (17)

For simplicity, we removed any marginal dependence of Z on the covariates L and U1 as well as any marginal

dependence of U1 on L (cf. equations (10) and (11)). Although models (10) through (15) take a standard logistic

form, they do not imply that the corresponding sensitivities and specificities can be written in the same form. We

chose the predictive values rather than the sensitivities and specificities to take a standard logistic form so as to

ensure correct model specification in the estimation of the weights in the simulation experiments, in which a

likelihood approach based on predictive values was adopted (cf. equation (9)).

4.1.3 Missing data mechanism

For these simulations, we stipulated L, B and Z to be observed for all subjects. We consider scenarios where the

dataset can be partitioned into a subset with validation data on all misclassified variables (denoted R¼ 1) and a

dataset with validation data on neither (R¼ 0). That is, we simulated data such that subjects have validation data

on both A and Y or neither on A nor on Y. Values for the response indicator R were generated according to the

following (MAR) model

logit PrðR ¼ 1jZ;B;Y;A;LÞ ¼ logit PrðR ¼ 1jZ;B;LÞ

¼ n0 þ n1Zþ n2Bþ n3ZB

4.1.4 Scenarios

We initially fixed most parameters of models (12) and (13) at the respective values of “Scenario A” of Setoguchi

et al.26 a1 ¼ 0:8; a2 ¼ �0:25; a3 ¼ 0:6; a4 ¼ �0:4; a5 ¼ �0:8; a6 ¼ �0:5; a7 ¼ 0:7; a8 ¼ 0; a9 ¼ 0; a10 ¼
0; b0 ¼ �3:85; b1 ¼ 0:3; b2 ¼ �0:36; b3 ¼ �0:73; b4 ¼ �0:2; b5 ¼ 0; b6 ¼ 0; b7 ¼ 0; b8 ¼ 0:71; b9 ¼ �0:19

and b10 ¼ 0:26. Parameters g0 and a0 were fixed at zero and n1, n2 and n3 at 2, 1 and �1, respectively. The

remaining parameters and b0 were allowed to vary across scenarios as per Table 4.
Scenarios differ by sample size n, the presence of outcome misclassification, potentially misclassified outcome

prevalence (via l0), the associations between the exposure and outcome on the one hand and the respective

misclassified versions on the other (via a11 and b11), outcome model intercept b0, the conditional log-OR c, or
the size of the validation subset (via n0). Based on an iterative Monte Carlo integration approach,27 we specified c
so as to keep the target marginal log odds ratio at �0.4.

4.1.5 Estimators

We considered five estimators of the OR for the marginal exposure-outcome effect: a crude estimator (labeled

Crude) that ignores both confounding and misclassication of any variable, a misclassification naive estimator

(labeled PS) that addresses confounding through IPW, complete cases analysis (CCA) in which IPW is applied

only to the subset of subjects with validation data, the Gravel and Platt estimator (GP) that ignores exposure

misclassification, and the method proposed in this article (labeled IPWM). Both GP and IPWM are implemented

using the R function mecor::ipwm,28,29 which in the simulation settings considered uses iteratively reweighted least

squares via the stats::glm function for maximum likelihood estimation. GP coincides with the approach of Gravel

and Platt where it concerns point estimation, but they differ in the construction of confidence intervals.
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Unlike Gravel and Platt,14 we used a non-parametric rather than a semi-parametric bootstrap procedure for

estimating standard errors and constructing confidence intervals. Semi-parametrically generating response indi-

cators would preferably require modelling of (or making additional assumptions about) the missing data mech-

anism. In particular, to obtain a bootstrap dataset, we defined the record of a unit as their observed data and

response indicators, imposed a uniform distribution across all records in the original dataset, and drew indepen-

dently as many records from this distribution as the total number of records in the original dataset. For all

methods and each original dataset, we drew 1000 bootstrap datasets for variance estimation and the construction

of percentile confidence intervals.
All estimators are based on a function of the estimated outcome probability P1 in the exposed group and the

estimated outcome probability P0 in the unexposed group. However, since P1 and P0 may take a value of 0 or 1,

the crude odds ratio ½P1=ð1� P1Þ�=½P0=ð1� P0Þ� need not exist. In contrast to what is often (implicitly) done in

simulation studies—i.e., studying the properties of the estimators after conditioning on datasets where ½P1=ð1�
P1Þ�=½P0=ð1� P0Þ� is defined—we first define P�

1 ¼ ðP1sþ 1Þ=ðsþ 2Þ and P�
0 ¼ ðP0sþ 1Þ=ðsþ 2Þ for a large pos-

itive number s (here set to 106) and then regard ½P�
1=ð1� P�

1Þ�=½P�
0=ð1� P�

0Þ� as the estimator of the OR for the

exposure-outcome association. This ensures the estimator is always defined and effectively shrinks the outcome

probabilities towards 0.5 and the OR towards 1 (online Supplementary Appendix II).
For PS and CCA, we used a logistic regression of B and A, respectively, on covariates L1 through L10 as main

effects to estimate the propensity scores. Taking the crude OR for the association between B and Z (PS) or A and

Y (CCA) over the data weighted by the reciprocal of the propensity scores provided an estimate of target OR. R

code for the methods GP and IPWM is given in online Supplementary Appendix III.

4.2 Results

The treatment assignment mechanism detailed above resulted in average exposure rates ranging from 17% to

51%, whereas average outcome rates ranged from 3% to 22%. Across all simulation studies, the average outcome

rate ranged from 6% to 18%. Across all simulation studies with exposure misclassification, exposure and joint

misclassification rates ranged from 16% to 33% and from 2% to 6%, respectively. Approximately 16% to 32% of

subjects were allocated validation data.
The results on the performance of the various methods in simulations studies 1–9 are provided in Table 5 (see

Supplementary Table S.4 for the results on all scenarios).

Table 4. Simulation parameter values used in the Monte Carlo studies.

Exposure

Scenarios misclassification l0 a11 b0 b11 C n0

1a,1b,1c Absent �2 0 �3.85 2 �0.431 �1.5

2a,2b,2c Absent �3 0 �3.85 2 �0.417 �1.5

3a,3b,3c Absent �2 0 �3.85 4 �0.624 �1.5

4a,4b,4c Absent �2 0 �3.85 2 �0.431 �2.5

5a,5b,5c Present �2 2 �3.85 2 �0.431 �1.5

6a,6b,6c Present �3 2 �3.85 2 �0.417 �1.5

7a,7b,7c Present �2 4 �3.85 2 �0.431 �1.5

8a,8b,8c Present �2 2 �3.85 4 �0.624 �1.5

9a,9b,9c Present �2 2 �3.85 2 �0.431 �2.5

10a,10b,10c Absent �2 0 �2 2 �0.470 �1.5

11a,11b,11c Absent �3 0 �2 2 �0.445 �1.5

12a,12b,12c Absent �2 0 �2 4 �0.641 �1.5

13a,13b,13c Absent �2 0 �2 2 �0.470 �2.5

14a,14b,14c Present �2 2 �2 2 �0.470 �1.5

15a,15b,15c Present �3 2 �2 2 �0.445 �1.5

16a,16b,16c Present �2 4 �2 2 �0.470 �1.5

17a,17b,17c Present �2 2 �2 4 �0.641 �1.5

18a,18b,18c Present �2 2 �2 2 �0.470 �2.5

Note: Scenarios indicated with ‘a’ have n¼ 10,000, those with ‘b’ have n¼ 5000 and those with ‘c’ have n¼ 1000.
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Table 5. Results for simulation studies 1–9b on the performance of different causal estimators in various scenarios of confounding
and misclassification in exposure and outcome.

Crude

Scenario Bias BSE MSE SE SSE CP

1b 0:394 0.004 0.169 0.119 0.118 0.122

2b 0:382 0.006 0.179 0.183 0.184 0.492

3b 0:394 0.004 0.169 0.117 0.118 0.116

4b 0:401 0.004 0.174 0.117 0.118 0.102

5b 0:401 0.003 0.169 0.090 0.088 0.007

6b 0:407 0.004 0.183 0.132 0.134 0.133

7b 0:396 0.003 0.164 0.086 0.088 0.009

8b 0:395 0.003 0.164 0.086 0.088 0.005

9b 0:398 0.003 0.166 0.089 0.088 0.005

PS

Scenario Bias BSE MSE SE SSE CP

1b 0:392 0.005 0.182 0.168 0.169 0.382

2b 0:379 0.008 0.213 0.264 0.258 0.738

3b 0:389 0.006 0.182 0.175 0.169 0.402

4b 0:389 0.006 0.182 0.176 0.168 0.392

5b 0:402 0.003 0.170 0.090 0.088 0.010

6b 0:407 0.004 0.183 0.131 0.135 0.136

7b 0:396 0.003 0.164 0.086 0.088 0.009

8b 0:395 0.003 0.164 0.086 0.088 0.004

9b 0:398 0.003 0.166 0.089 0.088 0.005

CCA

Scenario Bias BSE MSE SE SSE CP

1b �0.078 0.015 0.226 0.469 0.491 0.899

2b �0.117 0.019 0.375 0.601 0.900 0.887

3b �0.020 0.010 0.091 0.301 0.300 0.919

4b �0.093 0.020 0.407 0.631 1.158 0.899

5b �0.145 0.009 0.103 0.286 0.286 0.903

6b �0.109 0.011 0.131 0.345 0.362 0.930

7b �0.213 0.007 0.101 0.237 0.250 0.865

8b �0.209 0.006 0.079 0.187 0.186 0.775

9b �0.175 0.012 0.184 0.392 0.411 0.902

GP

Scenario Bias BSE MSE SE SSE CP

1b �0.036 0.011 0.130 0.359 0.428 0.958

2b �0.097 0.016 0.265 0.505 0.861 0.938

3b �0.019 0.007 0.055 0.233 0.240 0.939

4b �0.045 0.016 0.253 0.501 1.087 0.944

5b 0.269 0.008 0.132 0.244 0.244 0.799

6b 0.280 0.010 0.177 0.314 0.339 0.862

7b 0.134 0.008 0.076 0.241 0.252 0.926

8b 0.259 0.004 0.087 0.140 0.144 0.570

9b 0.263 0.010 0.174 0.325 0.339 0.883
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As expected, Crude, PS and CCA clearly showed bias with respect to the target log OR of �0.4. The bias

associated with restricting the analysis to records with validation data is likely brought on to a large extent by

collider stratification, with R acting as the collider here (cf. Figure 1). Both Crude and PS indicated a null effect, as

one would anticipate in view of the marginal and L-conditional independence of B and Z implied by the simu-

lation set-up. The empirical coverage probabilities were, although low for both estimators, similar to substantially

larger for PS as compared with Crude. Paralleling this is that Crude, whose (implicit) propensity score model is

inherently at least as parsimonious, yielded similar to smaller empirical and sample standard errors as compared

with PS. With the average fraction of subjects with validation data being as low as 16% (in scenarios with low n0)
to 32%, it is not unsurprising that Crude was subject to the largest degree of variability.

The results for the IPWM approach are generally favourable for large samples and in line with its theoretical

(large sample) properties. For scenarios with smaller samples (scenarios 1c, 2c and 4c, 6c and 9c in particular),

however, we observed considerable bias (see Supplementary Appendix S.4). Comparing CCA with IPWM, we

note a strong linear association between the methods in terms of the absolute within-method differences in

estimated bias between scenarios of size 10,000 (scenarios labeled ‘a’) and the respective scenarios of size 1000

(scenarios labeled ‘c’) (Pearson correlation 0.997). Note that the results for GP and IPWM are identical for

scenarios labeled 1–4 and 10–13 since the methods are equivalent in terms of point estimation in the absence

of exposure misclassification. In all other scenarios, i.e. scenarios for which GP was not developed, GP performed

substantially worse than IPWM. The non-zero, albeit relatively small, systematic deviations of the IPWM point

estimates from the target �0.4, notably the estimated bias of �0.097 (scenario 2 b), may be attributable in part to

the outcome being rare (with prevalence ranging from 3% to 8% across scenarios labeled 1–9). This is indicated

by the superior performance of IPWM in scenarios where the outcome is more prevalent (cf. scenarios labeled 1–9

b versus 10–18 b, which have prevalence up to 22%). A similar observation was made by Gravel and Platt.14

The standard errors for GP and IPWM were noticeably higher than those of Crude and PS, which is unsur-

prising in view of the discrepancies in the number of estimated parameters. As expected, increasing the sample

size, the true outcome rate (via b0) or both led to a decrease in the variability of IPWM (cf. Table 4 and

Supplementary Table S.4). However, despite the large discrepancies between SSE and SE for some scenarios,

the empirical coverage probabilities of IPWM were close to the nominal level of 0.95, except for scenarios 1c, 2c

and 4c, where we observed considerable bias.

5 Discussion

The analysis of epidemiologic data is often complicated by the presence of confounding and misclassifications in

exposure and outcome variables. In this paper, we propose a new estimator for estimating a marginal odds-ratio

in the presence of confouding and joint misclassification of the exposure and outcome variables. In simulation

studies, this weighting estimator showed promising finite sample performance, reducing bias and mean squared

error as compared with simpler methods.

Table 5. Continued.

IPWM

Scenario Bias BSE MSE SE SSE CP

1b �0.036 0.011 0.130 0.359 0.428 0.958

2b �0.097 0.016 0.265 0.505 0.861 0.938

3b �0.019 0.007 0.055 0.233 0.240 0.939

4b �0.045 0.016 0.253 0.501 1.087 0.944

5b �0.017 0.009 0.082 0.286 0.284 0.942

6b �0.014 0.011 0.129 0.359 0.386 0.958

7b 0.004 0.008 0.059 0.243 0.261 0.969

8b �0.004 0.006 0.032 0.180 0.181 0.958

9b �0.025 0.012 0.141 0.374 0.415 0.956

PS: Propensity score method ignoring misclassification; CCA: complete case analysis; GP: Gravel and Platt estimator ignoring exposure misclassifi-

cation, consistent with the methodology of Gravel and Platt for point (but not for variance) estimation14; IPWM: inverse probability weighting method

for confounding and joint exposure and outcome misclassification; BSE: estimated standard error for the bias due to Monte Carlo error; SE: empirical

standard error; SSE: sample standard error; CP: empirical coverage probability. In all scenarios, the true marginal log OR (estimand) was �0.4.
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The proposed IPWM estimator is an extension of the inverse probability weighting estimator recently proposed

by Gravel and Platt (GP) which only addresses the misclassification in the outcome.14 IPWM and GP are

(mathematically) equivalent when the exposure is (assumed to be) measured without misclassification error.
Like the Gravel and Platt approach, IPWM relies on estimates of sensitivity and specificity or positive and

negative predictive values for the misclassified variables. In this paper, we used an internal validation approach

where a portion of subjects would receive error-free (‘gold standard’) measurements on either or both the outcome

and exposure. However, we anticipate that in some settings the likelihood may not be fully identifiable from the

data at hand. In these settings, it may be possible to incorporate external rather than internal information on

the misclassification rates, possibly through a Bayesian approach using prior assumptions about misclassification

probabilities. When validation data is external, however, it may be necessary to assume misclassification to be

independent of covariates L, because external studies seldom consider the same covariates as the main study.30

External validation approaches also require the assumption that the misclassification parameters targeted in the

validation sample are transportable to the main study.
In the absence of internal and external validation data, it is possible to conduct a sensitivity analysis within the

weighting framework. Formula (8) for the weights can readily be used in a sensitivity analysis in which the terms

describing the distribution of true exposure and outcome variables in relation to the observed data (positive and

negative predictive values) serve as sensitivity parameters of the sensitivity analysis. The models for the predictive

values can take complex forms, however, thus complicating the analysis and presentation of results.
If internal validation is available, the subjects with validation data need not form a completely random subset.

The proposed method, IPWM, was developed under the assumption that validation data allocation occurs in an

“ignorable” fashion.23 In practice, it may be that the researchers have limited control over the validation data

allocation mechanism. For instance, it is conceivable that individuals with specific indications (e.g. with a real-

isation of L, B or Z) are practically ineligible to be assigned a double measurement of the exposure (A and B) and

outcome (Y and Z). Further, the estimator also allows for validation subjects to receive either the double exposure

or double outcome measurement. We simulated data such that subjects have validation data on both the exposure

and outcome variables or on neither. Although this may greatly simplify analysis and enhance efficiency, in

practice it is not necessary to assume that this condition holds. An interesting scenario is where subjects have

validation data on at most one variable, i.e. on the exposure variable or the outcome variable but not both. In this

case, valid estimation would require additional modelling assumptions; for example, the error-free outcome

variable cannot then be regressed on the error-free exposure variable.
To accommodate settings where validation data allocation is not completely at random, we deviated from the

semi-parametric bootstrap procedure for variance estimation proposed by Gravel and Platt. Instead, the non-

parametric procedure we used requires less assumptions regarding the validation subset sampling procedure. The

non-parametric procedure showed good performance in our simulations.
Whilst we have discussed under what conditions the proposed method consistently estimates or at least

identifies the target quantity, the assumptions may be untenable in particular settings. Particularly, an infallible

measurement tool for the exposure and outcome that can be performed on a subset of the data need not always

exist. The robustness to deviations of infallibility is an interesting and important direction for further research.

This is especially relevant where there exists considerable uncertainty about the tenability of the assumptions that

is difficult to incorporate in the analysis. An obvious and flexible alternative to IPWM is to multiply impute

missing values including absent measurement error-free variables before implementing IPW (MIþ IPW).

Although MIþ IPW and IPWM may be comparable in terms of their assumptions, it is yet unclear how they

behave under assumption violations such as misspecification of the outcome model.
An advantageous property of MIþ IPW is that it can easily accommodate missing covariate values. Other

alternatives that can accommodate missing covariates were recently developed by Shu and Yi.31 Their proposed

weighting estimators simultaneously addresses confounding, misclassification of the outcome (but not of the

exposure) and measurement error on the covariates under a classical additive measurement error model. The

methods can be implemented using validation data or repeated measurements and use a simple misclassification

model (in which the outcome surrogate is independent of exposure or covariates given the target outcome) that is

suitable for performing sensitivity analyses.
Another interesting area for further research is where the researchers do have control over who is referred for

further testing by the assumed infallible measurement tool(s). An obvious choice is to adopt a completely at

random strategy (simple random sampling). However, other referral (sampling) strategies exist and it is not clear

what strategy leads to the most favourable estimator properties for the given setting.
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In summary, we have developed an extension to an existing method, to allow for valid estimation of a marginal

causal OR in the presence of confounding and a commonly ignored and misunderstood source of bias—joint

exposure and outcome misclassification. The R function mecor::ipwm has been made available to facilitate

implementation.28,29
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