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Abstract: Background: to assess the performance and speed of two commercially available advanced
cardiac software packages in the automated identification of coronary vessels as an aiding tool for
inexperienced readers. Methods: Hundred and sixty patients undergoing coronary CT angiography
(CCTA) were prospectively enrolled from February until September 2021 and randomized in two
groups, each one composed by 80 patients. Patients in group 1 were scanned on Revolution EVO
CT Scanner (GE Healthcare), while patients in group 2 had the CCTA performed on Brilliance iCT
(Philips Healthcare); each examination was evaluated on the respective vendor proprietary advanced
cardiac software (software 1 and 2, respectively). Two inexperienced readers in cardiac imaging
verified the software performance in the automated identification of the three major coronary vessels:
(RCA, LCx, and LAD) and in the number of identified coronary segments. Time of analysis was also
recorded. Results: software 1 correctly and automatically nominated 202/240 (84.2%) of the three
main coronary vessels, while software 2 correctly identified 191/240 (79.6%) (p = 0.191). Software
1 achieved greater performances in recognizing the LCx (81.2% versus 67.5%; p = 0.048), while no
differences have been reported in detecting the RCA (p = 0.679), and the LAD (p = 0.618). On a
per-segment analysis, software 1 outperformed software 2, automatically detecting 942/1062 (88.7%)
coronary segments, while software 2 detected 797/1078 (73.9%) (p < 0.001). Average reconstruction
and detection time was of 13.8 s for software 1 and 21.9 s for software 2 (p < 0.001). Conclusions:
automated cardiac software packages are a reliable and time-saving tool for inexperienced reader.
Software 1 outperforms software 2 and might therefore better assist inexperienced CCTA readers in
automated identification of the three main vessels and coronaries segments, with a consistent time
saving of the reading session.

Keywords: CCTA; automated coronary analysis; coronary arteries; coronary artery disease

1. Introduction

Coronary artery disease (CAD) is the most frequent heart disease and is considered
the leading cause of death in US citizens, accounting for more than 600 thousand deaths
yearly [1]. The underlying etiology of CAD includes atherosclerosis, which consists of en-
dothelial disruption and subsequent lipid accumulation and deposition in the intima layer,
causing luminal narrowing [2]. Coronary computed tomography angiography (CCTA)
is a non-invasive imaging modality recommended as the first diagnostic test for CAD in
symptomatic patients and in patients with low to intermediate risk of obstructive CAD
that cannot be excluded by clinical assessment alone, according to European Society of
Cardiology (ESC) 2019 guidelines [3]. The importance of CCTA lies in its ability to rule out
coronary stenosis with a negative predictive value (NPV) ranging between 97% and 99%,
whilst ensuring the visualization of the vessel wall and plaque morphology [4–6].
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The assessment of coronary arteries patency involves vessel extraction and visual
assessment, which can be rather subjective, expert-dependent, and time consuming, due to
image noise, vessel bifurcation or irregular pathway, and uneven image signal [7,8]. Fur-
thermore, for a correct evaluation of the coronary arteries, orthogonal cross sections, curved
multiplanar reformation (MPR), and volume rendering techniques (VRT) reconstructions
are required. Manual vessel identification and segmentation are time-consuming and
require expertise; automatic tools are under ongoing development [9], providing benefits
in terms of speed and accuracy in vessel detection [10].

Although correct interpretation of CCTA requires adequate training and experi-
ence [11,12], most practitioners have little exposure to CCTA interpretation during their
medical training years [13]; therefore, the implementation of automated steps in the reading
sessions appears to be desirable. Automated coronary analysis software packages provide
vessel segmentation without human intervention, allowing time-effective fully automated
identification of the coronary tree [14]. Compared to manual segmentation, these software
significantly reduce reconstruction time, including those cases in which brief manual input
is necessary due to incomplete automated coronary vessels segmentation [9]. The applica-
tion of such tools are more convenient than semi-automated methods and may theoretically
further facilitate coronary vessels’ evaluation, favoring the trend towards less reader de-
pendency [15]. It has been demonstrated that advanced cardiac software packages have a
NPV similar to high experience readers while their positive predictive value is comparable
to novice CCTA readers [16]; additionally, they may assist novice readers in ruling out
significant CAD [17]. Nevertheless, to the best of our knowledge, previous investigations
were focused on diagnostic performances rather than the identification of coronary vessels
and segments as an aiding tool for inexperienced CCTA readers.

Therefore, in this prospective study, we evaluated and compared the performance and
speed of two commercially available advanced cardiac software packages in the automated
identification of coronary vessels as an aiding tool for inexperienced readers.

2. Materials and Methods
2.1. Patient Population

This prospective study was approved by local institutional review board and written
informed consent was obtained from all patients. From February 2021 until September 2021
consecutive patients undergoing elective CCTA for known or suspected CAD were enrolled.
Patients with contraindication to iodine contrast medium injection, renal insufficiency
(eGFR < 30 mL/min/1.73 m2), previous bypass grafts or coronary stenting, and unstable
angina pectoris, were not included in this study. Patients with a heart rate (HR) > 75 bpm
were treated with intravenous beta-blocker (metoprolol tartrate, 5 mg). Nitrates were
sublingually administrated to all patients, after exclusion of contraindications, to induce
vasodilation (Trinitrine, 0.8 mg).

Patients were randomly assigned (1:1 ratio, blocks of ten) into two groups: patients
in group 1 had the CCTA acquired on GE Revolution EVO CT Scanner (GE Healthcare,
Milwaukee, WI, USA), while patients in group 2 had the CCTA performed on Brilliance
iCT (Philips Healthcare, Cleveland, OH, USA). Each examination was eventually evaluated
on the respective vendor proprietary advanced cardiac software.

2.2. Image Acquisition—Group 1

CCTA examinations of group 1 were performed with a 128-slice CT (GE Revolution
EVO CT Scanner, GE Healthcare, Milwaukee, WI, USA) in cranio-caudal direction. CT
images were acquired using a retrospective ECG-gated protocol with the following scan
parameters: tube voltage of 120 kVp (in patients with BMI ≥ 30 kg/m2) or 100 kVp (in
patients with BMI < 30 kg/m2), tube current of 200 mAs, detector collimation of 0.625 mm,
gantry rotation time of 0.35 s, adaptive pitch factor varying from 0.16 to 0.23 based on heart
rate, and matrix size of 512 × 512 pixel.
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All patients received 70 mL of intravenous of non-ionic high-iodine concentration
contrast medium (400 mg I/mL iomeprol, Iomeron 400; Bracco Imaging, Milan, Italy)
at flow rate of 5 mL/s through an 18-gauge antecubital access, by using an automated
triple-syringe power injector (MEDRAD® Centargo CT Injection System; Bayer AG, Berlin,
Germany), followed by saline chaser bolus of 30 mL at the same flow rate. Scan delay
was determined using a bolus-tracking software program (SmartPrep, GE Healthcare,
Milwaukee, WI, USA), images were acquired 6 s after the trigger attenuation threshold
(150 HU) was reached into a region-of-interest (ROI) placed in the ascendent aorta at the
level of pulmonary arteries.

The CCTA of each patient was reconstructed at 75% phase of the R-R interval of the
cardiac cycle with hybrid IR reconstruction (ASiR-V, GE Healthcare) at a strength level of
50%, using standard kernel. The following specifications were applied: matrix size of 512
× 512 pixels; reconstruction field of view of 250 mm; section thickness of 0.625 mm; and
increment of 0.625 mm.

2.3. Image Post Processing—Group 1

CCTA images were transferred to a three-dimensional multimodality workstation
(Advantage Workstation 4.7, GE Healthcare) for further analysis. After dataset selection,
the application “CardIQ Xpress” was launched, selecting the “auto coronary analysis” tool.
The application is designed to automatically label the coronary vessels and to present axial
images, curved MPR, VRT and lumen views of all the identified arteries (Figure 1).

2.4. Image Acquisition—Group 2

CCTA examinations of group 2 were performed with a 256-slice CT (Brilliance iCT;
Philips Healthcare, Cleveland, OH, USA) in cranio-caudal direction. CT images were
acquired using a retrospective ECG-gated protocol with the following scan parameters:
tube voltage of 120 kVp (in patients with BMI ≥ 30 kg/m2) or 100 kVp (in patients with
BMI < 30 kg/m2), tube current of 800 mAs, detector collimation of 128 × 0.625 mm, gantry
rotation time of 0.27 s, pitch of 0.16, and matrix size of 512 × 512 pixels. Contrast media
injection protocol was identical to what previously described in group 1. Scan delay was
determined using a bolus-tracking software program (Bolus Tracking, Philips Healthcare),
images were acquired 6 s after the trigger attenuation threshold (150 HU) was reached into
a region-of-interest (ROI) placed in the ascendent aorta at the level of pulmonary arteries.

The CCTA of each patient was reconstructed at 75% phase of the R-R interval of the
cardiac cycle with IR reconstruction (iDose4, Philips Healthcare) at a strength level 7, using
Xres standard (XCB) kernel. The following specifications were applied: matrix size of 512
× 512 pixels; reconstruction field of view of 220 mm; section thickness of 0.8 mm; and
increment of 0.4 mm.
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Figure 1. Software 1 showing a VR of the coronary artery tree (a), axial images (b), curved multiplanar
reformation (cMPR, c), and maximum intensity projection (d) of the LAD. Additionally, the software
generates a stretched cMPR along the centerline (e) and axial sections of the vessel lumen (f).

2.5. Image Post Processing—Group 2

CCTA images were transferred to a three-dimensional multimodality workstation
(IntelliSpace Portal v6.0.2.33500, Philips Healthcare) for further analysis. After dataset
selection, the application “Comp. Cardiac” was launched. The application is designed
to automatically label the coronary vessels, the aorta, heart chambers and left ventricle
myocardium. For the purpose of our study, only the coronary arteries were selected and
displayed. The software subsequently displays axial images, curved MPR, VRT, and lumen
views of all the identified arteries (Figure 2).
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Figure 2. Software 2 showing cMPR of the RCA (a), a VR model of the whole heart (b), axial sections
of the vessel lumen (c), a stretched cMPR along the centerline (d), and axial image of the middle
segment of vessel (e).

2.6. Image Analysis

Automated detection of the coronary arteries was performed using the aforementioned
one-click coronary detection tools available at the two workstations. Two inexperienced
readers in cardiac imaging (1-year radiology residents) who had previously received
training in operating both software by a board-certified radiologist with ten years of
experience in CCTA, assessed software performance in the automated identification of the
three major coronary vessels [right coronary artery (RCA), left circumflex (LCx), and left
anterior descending (LAD)] and in the number of identified coronary segments according to
a 16-segments modified version [6] of the Society of Cardiovascular Computed Tomography
(SCCT) model [18]: segments 1–14, coronary artery segments of the RCA, LAD and LCx
as initially described; segment 15, combined left posterior descending and posterolateral
branches; segment 16, ramus intermedius. Time of analysis was also recorded for both
software. Results were eventually validated by a board-certified radiologist with 5 years of
experience in cardiovascular imaging.

2.7. Statistical Analysis

Statistical comparisons were performed using MediCalc® Statistical Software version
20.014 (MedCalc Software Ltd., Ostend, Belgium; https://www.medcalc.org; 2021).

Variables were expressed as mean ± standard deviation or as frequency and per-
centage, as appropriate. Differences between patient characteristics in group 1 and 2 and
differences in software processing time were assessed by Student’s t-test. Differences
between software performances in the identification of coronary vessels and segments in
group 1 and 2 were assessed with the “N-1” Chi-squared test [19,20]. A p value < 0.05 was
considered to indicate a statistically significant result.

3. Results
3.1. Patient Population

Detailed results of patient characteristics are reported in Table 1, flow diagram of
patient recruitment is depicted in Figure 3. Final study population included 160 patients: 80
patients scanned on GE Revolution EVO CT Scanner (group 1) and 80 patients scanned on

https://www.medcalc.org
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Philips Brilliance iCT (group 2). Mean age was 63 ± 11 years in group 1 and 64 ± 12 years
in group 2 (p = 0.583). Most of the population (96/160; 60%) was composed by male, with a
higher proportion in both groups: 50 individuals (63%) in group 1 and 46 individuals (58%)
in group 2 (p = 0.519). Mean BMI was 28.3 ± 5.5 kg/m2 in group 1 and 27.7 ± 4.4 kg/m2 in
group 2 (p = 0.675). Mean HR measured during the examination was 58 ± 7 bpm in group
1 and 59 ± 7 bpm in group 2 (p = 0.367).

Table 1. Patient Characteristics.

Group 1 Group 2 p Value

Patient Characteristics
Age, y * 63 ± 11 64 ± 12 0.583
BMI * 28.3 ± 5.5 27.7 ± 4.4 0.675
HR * 58 ± 7 59 ± 7 0.367

Sex: Male † 50 (63) 46 (58) 0.519
Sex: Female † 30 (38) 34 (43) 0.520

Cardiovascular Risk Factors †

Family history of CAD 57 (71.3) 56 (70) 0.857
Hypertension 53 (66.3) 56 (70) 0.616

Hypercholesterolemia 33 (41.3) 40 (50) 0.270
Diabetes Mellitus 24 (30) 16(20) 0.145

Current of former smoking 29 (36.3) 45 (56.3) 0.011

Medications †

Beta-blockers 24 (30) 19 (23.8) 0.378
Nitrates 33 (41.3) 46 (57.5) 0.004

* Data are mean ± SD. † Data are number of patients (%).
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Figure 3. Flow diagram of patient recruitment (CM: contrast medium; eGRF: estimated glomerular
filtration rate; CABG: coronary artery bypass grafting).

3.2. Image Analysis

Comprehensive results on software performances are reported in Table 2. On a per-
vessel analysis, software 1 and software 2 did not show statistically significant differences
in their performances, correctly identifying a comparable number of coronary vessels
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(p = 0.191). In particular, software 1 achieved greater performances than software 2 in
recognizing the LCx (p = 0.048; Figure 4), while no differences have been reported in
detecting the RCA (p = 0.679) and the LAD (p = 0.618).
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Figure 4. Software 1 showing a VR model (a) and a cMPR (b) of a correctly identified LCx. Software
2 (c,d) provides an inaccurate vessel identification, tracking part of the first obtuse marginal artery in
lieu of the proximal LCx.

On a per-segment analysis, software 1 outperformed software 2, automatically detect-
ing 88.7% of the coronary segments, while software 2 detected 73.9% (p < 0.001).

Average reconstruction and detection time was 13.8 s for software 1 and 21.9 s for
software 2 (p < 0.001).

Table 2. Software performances.

Group 1 Group 2 p Value

RCA 65/80 (81.2) 67/80 (83.7) 0.679
LAD 72/80 (90) 70/80 (87.5) 0.618
LCx 65/80 (81.2) 54/80 (67.5) 0.048

RCA–LCx–LAD 202/240 (84.2) 191/240 (79.6) 0.191
Coronary Segments 942/1062 (88.7) 797/1078 (73.9) <0.001

Time of analysis 13.8 ± 2 s 21.9 ± 3 s <0.001
LAD: left anterior descending artery; LCx: left circumflex artery; RCA: right coronary artery.

4. Discussion

The aim of our investigation was to assess the performances two vendor proprietary
software in the identification of coronary vessels, as aiding tool for inexperienced CCTA
readers. Our results demonstrated both software had similar performances in terms of
number of identified vessels, while software 1 identified 14.8% more coronary segments
(p < 0.001) and was 37% faster than software 2 (p < 0.001).

Correct interpretation of cardiac imaging requires extensive training and experience,
needed to reduce inter-observer variability [21]. Inexperienced readers, at the beginning of
their learning curve, benefit from the assistance of dedicated software in the identification
of coronary arteries and segments [17,22,23]. A thorough evaluation of the coronary tree is
fundamental for the CCTA to achieve high diagnostic yield. Native axial CCTA images
can be rapidly assessed during the reporting session; however, an accurate evaluation
of the coronary tree cannot simply rely on standard axial image datasets. MPRs are
fundamental to validate stenoses on a second plane and, therefore, to avoid false positive
findings. Curved MPRs and true axial lumen views are of fundamental importance to
comprehensively evaluate the presence CAD, by depicting coronary stenoses in their full
extent [24].

Software reliability in correctly identifying and labeling the coronary arteries is manda-
tory in the diagnostic setting, especially for readers with little experience, often in-training
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and not extensively exposed to CCTA interpretation sessions. Our results demonstrated
the LAD was the coronary vessel most frequently identified in both groups (90% and 87.5%
in group 1 and 2, respectively), such performance might be explained by the fact that the
LAD is the coronary vessel least affected by overall motion during the cardiac cycle [25].
Both software packages returned also comparable performance in the identification of the
RCA (p = 0.679), while software 1 performed significantly better in the identification of
the LCx (p = 0.048); a possible explanation of this result might be related to LCx smaller
caliber compared to other major vessels in the high prevalent setting of right-dominant
circulation [26]; therefore, software 2 performance might be negatively influenced by vessel
diameter compared to software 1. Despite these small differences, both software pack-
ages had similar performances in the overall identification of the coronary tree (p = 0.191).
Nevertheless, focusing on the per-segment analysis, software 1 outperformed software 2,
identifying 14.8% more coronary segments (p < 0.001); these results demonstrate that both
software packages might assist inexperienced readers during the CCTA reporting session.

In terms of time-effectiveness, software 1 was 37% faster that software 2 (p < 0.001).
Although time of analysis is not a primary endpoint when reporting a CCTA, time plays an
important role both in clinical workflow and in determining procedural reimbursement [21];
therefore, a fast and reliable coronary vessel identification is highly advisable in clinical practice,
especially for readers at the beginning of their learning curve, typically slower and less accurate
than more experienced readers in the interpretation of CCTA datasets [11,21,27].

Further, the field artificial intelligence (AI) has recently gained momentum in radiol-
ogy. In particular, machine learning (a subset of AI) and deep learning (a subset of machine
learning) are currently under active investigation both in private sectors and in several
academic institutions worldwide, showing potential for clinical workflow optimization,
image and reporting improvements. The implementation of AI in cardiac imaging is also
achieving promising results in prognosis prediction, automated calcium score quantifi-
cation, plaque characterization and stenosis evaluation [28–33]. In this regard, AI can
also be applied to coronary artery segmentation in CCTA, further assisting inexperienced
readers in their diagnostic tasks. However, vessel segmentation is only the first step of a
comprehensive CCTA evaluation; therefore, additional investigations are needed obtain a
seamless integration of AI in clinical practice [34].

Our study has some limitations that should be addressed. First, it was limited to
the two vendors that are available at our Institution; other software packages might out-
perform the ones we have investigated; therefore, comparisons with other vendors are
advisable. Second, our investigation was not designed on diagnostic accuracy; neverthe-
less, automated approaches in stenosis detection have been proved effective in improving
inexperienced readers’ sensitivity in diagnostic CAD [35]. Third, in our study population
no patient had coronary artery origin anomalies, which might represent a challenge for the
software in the correct vessel identification.

5. Conclusions

In conclusion, our results suggest that automated cardiac software packages are a
reliable and time-saving tool for inexperienced readers. Software 1 outperforms software 2
and might, therefore, better assist inexperienced CCTA readers in automated identification
of the three main vessels and coronary segments, with a consistent time saving of the
reading session. Since correct vessel identification is also a fundamental step of CCTA inter-
pretation; these software packages might also improve inexperienced readers’ diagnostic
performances through the identification of coronary stenoses.
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