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Abstract: As the organ executing gas exchange and directly facing the external environment, the lungs
are challenged continuously by various stimuli, causing the disequilibration of redox homeostasis
and leading to pulmonary diseases. The breakdown of oxidants/antioxidants system happens when
the overproduction of free radicals results in an excess over the limitation of cleaning capability,
which could lead to the oxidative modification of macromolecules including nucleic acids. The
most common type of oxidative base, 8-oxoG, is considered the marker of DNA oxidative damage.
The appearance of 8-oxoG could lead to base mismatch and its accumulation might end up as
tumorigenesis. The base 8-oxoG was corrected by base excision repair initiated by 8-oxoguanine
DNA glycosylase-1 (OGG1), which recognizes 8-oxoG from the genome and excises it from the DNA
double strand, generating an AP site for further processing. Aside from its function in DNA damage
repairment, it has been reported that OGG1 takes part in the regulation of gene expression, derived
from its DNA binding characteristic, and showed impacts on inflammation. Researchers believe
that OGG1 could be the potential therapy target for relative disease. This review intends to make an
overall summary of the mechanism through which OGG1 regulates gene expression and the role of
OGG1 in pulmonary diseases.

Keywords: oxidative damage; OGG1; pulmonary diseases

1. Introduction

Redox reaction exists widely in the manifold biochemical processes of the human
body, rendering regular physiological function. Redox regulation could be achieved via
controlling the activity of enzymes and transcriptional factors. Oxidative modification of
the protein is the essential mechanism of redox signaling; moreover, sensing of the redox
state is also part of redox regulation [1,2].

Redox homeostasis is generally crucial for life and is more of a dynamic balance. Free
radicals, mainly reactive oxygen species (ROS) and reactive nitrogen species (RNS), pro-
duced under physiological conditions are detoxified and scavenged by antioxidants, thus
maintaining at a moderate level [3]. Exposure to endogenous and exogenous stimulation,
such as chemicals, radiation and microbiome, would disequilibrate the oxidant/antioxidant
system, leading to the excessive production of free radicals to a level exceeding the antioxi-
dant capacity, thus resulting in oxidative stress.

The lungs are one of the organs directly in contact with the external environment
and are often stimulated by external factors. Being the first interface between the internal
environment and the outside world, airway epithelium is the primary target of inhaling gas
or particles, which has important physiological functions in the process of sensing an injury
signal, innate immune defense and regulating inflammatory response [4]. It’s reasonable to
stress the impact oxidative stress has on the development of pulmonary diseases.
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Oxidative stress pervades all principal levels, causing damages ranging from oxidative
DNA damage to protein oxidation. Under physiological conditions, ROS could act as
signaling factors in certain circumstances, regulating gene expression and affecting bio-
logical processes, such as proliferation, migration and angiogenesis. While excessively
produced ROS could attack macromolecules such as proteins, lipids and nucleic acids,
the accumulation of oxidative modification might turn into disease. With its broad in-
volvement, oxidative stress was universally acknowledged as taking part in the genesis
of pathological processes, such as tumor growth [5], metastasis [6], inflammation and
fibrosis [7], to which a series of diseases, such as Parkinson’s syndrome [8,9], Alzheimer’s
disease [10,11], aging [12], cancer [13–15], obesity [16,17], cardiovascular diseases [18],
pulmonary fibrosis [19], inflammatory [20], rheumatoid arthritis [21] and so on, are related
(Figure 1).
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Figure 1. After oxidative stress attack, 8-oxoG is the most common form of bases which could
mismatch with Adenine. The Adenine mismatched with 8-oxoG would match with Thymine after
the normal DNA replication cycle, generating the transformation from GC-TA. Accumulation of such
a transformation could lead to pathological processes, such as fibrosis, tumor growth, metastasis and
inflammation. (drawn by Figdraw).

When it comes to the DNA oxidative damage, the function of 8-oxoguanine DNA
Glycosylase (OGG1) is non-negligible, since 8-oxoG is the most common DNA oxidative
damage and was fixed by base excision repair initiated by OGG1. This review collected
and sorted evidence over the biological function of OGG1 and its new role as a regulator,
trying to dig deep into the connection between OGG1 and pulmonary disease and figuring
out its potential possibility to work as target therapy in the future.

2. The Role of OGG1 in DNA Oxidative Modification

Oxidative stress can exacerbate airway inflammatory responses by which asthma,
chronic obstructive pulmonary disease (COPD) and other invasive pulmonary diseases
are accompanied [22,23]. Free radicals and reactive oxygen species can attenuate the
mucosal function of organs, increase endothelial permeability, reduce endothelial adhesion
and affect the reconstruction of extracellular matrix. In addition to the direct action of
oxidants, the oxidative stress response can also aggravate the inflammatory response
through the following mechanisms: (1). Oxidants can weaken the deformation ability
of neutrophils, which causes the retention and activation of neutrophils in pulmonary
microcirculation [24]; (2). Oxidative stress activates transcription factor nuclear factor
κB (NF-κB) and activator protein 1 (AP-1), which regulate the release of inflammatory
mediators, aggravating inflammation [25]; (3). Oxidants can promote the expression of
adhesion molecules on the surface of neutrophils. Neutrophils recruited in the lungs
release active oxygen and protein amines after activation, causing tissue damage at the
site of inflammation [26]. Currently, most studies focus on changes in protein function
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or abnormal lipid metabolism under oxidative stress, whereas the mechanism of DNA
oxidative modification on inflammatory response is not clear.

In the course of evolution, organisms evolved complex repair pathways that maintain
genome integrity and accuracy, such as base excision repair (BER), nucleotide excision repair
(NER), mismatch repair (MMR), homologous recombination (HR) and non-homologous
termination (NHEJ) [27–31]. When facing stimulation, DNA oxidative damage could still
accumulate despite the existence of multiple repair pathways, causing gene mutations or
cell death [32,33].

DNA is oxidized to produce oxidative damage leading to modified bases (oxidized
bases), chain break (DNA single and double chain break) and chain cross [34]. DNA oxida-
tive modification has site specificity. Among all four bases—cytosine, guanine, adenine and
thymine, the lowest redox potential makes guanine (G) the most fragile base for oxidative
stress and 7, 8-dihydro-8-oxoguanine (8-oxoG) the most common DNA oxidative damage;
thus, the appearance and accumulation of 8-oxoG in DNA sequence was also considered as
the biomarker of DNA oxidative damage. As we mentioned above, 8-oxoG accumulation
is usually closely related to many physiological processes, and due to the stacking of π-π
bonds and the interaction of electron orbitals, the ionization energy of 5’ terminal guanine
in continuous guanine is reduced, so that the 5’ ends containing multiple adjacent guanines,
for example, 5’G < 5’GG < 5’GGG, could be the site of 8-oxoG preferentially [35]. The DNA
double helix is not affected by 8-oxoG, but it can mismatch with adenine (A) and appear
GC→TA mutation in DNA replication [36].

In eukaryotes, this DNA oxidative modification can be identified by the DNA gly-
cosylation enzyme, which can repair 8-oxoG by means of base excision repair (BER) [37].
As the initiator of BER process, OGG1 plays a pivotal role in the removal of 8-oxoG and
formamidopyrimidine (Fapy-G), the ring-opened guanine [37].

The base excision repair process could be divided into two sections, the AP sites
formation and the resolution of AP sites, executed by multiple enzymes. DNA glycosylation
enzymes cut off the N-glycosyl bonds by hydrolase activity and remove specific damage
bases to produce base-free sites (AP sites), which are further treated with endonuclease
and ligase. Finally, the complete repair of the original DNA sequence is realized. There
are five DNA ribozymes specifically recognizing oxidized bases in mammalian cells. They
are divided into two families: the Nth family including OGG1 and NTH1, and Nei family
including NEIL1, NEIL2 and NEIL3 [38]. These two families are named after homologous
proteins in bacteria—endonuclease III (Nth) and endonuclease VIII (Nei) [39–41], and
each have different mechanisms of de-base lyase reaction. OGG1 and NTH1 cut the DNA
chain by β-lyase activity, producing 3’ dRP and 5’ P ends, whereas NEIL1/2 have βδ lyase
activity, thus creating 3’ P and 5’ P in the chain gap [42].

The mechanism of NEIL3 catalysis needs further study. So far, 8-hydroxyguanine DNA
glucosidase 1 (OGG1) is a DNA repair enzyme found mainly in mammals that identifies and
cleaves 8-oxoG on genomic DNA. OGG1 corrects the occurrence of 8-oxoG through a series
of complex and subtle repair pathways to maintain genome accuracy. In the process, OGG1
binds to DNA containing damaged bases and bends the DNA strands, from which 8-oxoG is
exposed and encapsulated in an OGG1 highly conserved catalytic active pocket, which thus
cuts off the N-glycoside bond [43–45]. Among them, the binding ability of the OGG1 active
pocket to 8-oxoG is about 105 times higher than that of peripheral pocket to guanine, which
means the damaged base first enters the secondary center after OGG1 has been extruded
into a double helix and then inserts itself into the active pocket (Figure 2a) [37,46–48]. This
explains why OGG1 can accurately distinguish between highly similar 8-oxoG and G.
The mechanism of OGG1 repair of 8-oxoG is summarized as follows: OGG1 removes the
N-glycoside bond of the damaged base through the above recognition process, acting on a
sugar-phosphate backbone to form an apurinic/apyrimidinic (AP)-site(s) (Figure 2b). Then,
using its own weak AP lyase, OGG1 shows β-elimination thereby forming 5’ P (phosphate)
and 3’ d RP (unsaturated hydroxyl aldehyde) ends. Because the 3’ end residue does not
make a normal connection, OGG1 recruits apurinic/apyrimidinic endonuclease 1 (APE1) to
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clean up the 3’ end and get 3’-OH ends. At this point, DNA polymerase β inserts the correct
nucleotide through the polymerization and DNA ligase III, and DNA ligase I connects the
DNA chains, completing the base excision repair initiated by the OGG1 [42].
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Figure 2. The recognition and excision of 8-oxoG. (a) The lesion-specific binding pocket of OGG1
allows the recognition of the extrahelical flipped 8-oxoG, and excises it from DNA strand (drawn by
Figdraw). (b) OGG1 acts on a sugar-phosphate backbone to form AP-sites, generating 5’ P ends and
3’ d RP ends.

3. The Roles of Base Excision Repair Enzyme OGG1 in Gene Expression

Guanine is readily oxidized, thereby disrupting the integrity of the genome. From an
evolutionary perspective, vertebrate genomes contain more guanine than other organisms.
OxiDIP-Seq of human MCF10A cells shows that 8-oxoG is significantly enriched in the
intergenic region and the intron region of gene body, and most of the 8-oxoG are enriched in
protein coding DNA [49]. In total, 72% of human promoter regions are spread with higher
GC base pairs [50], including gene-coding pro-inflammatory factors, proto-oncogenes
and growth factors. Some conserved sequences recognized by transcription factors are
also enriched with guanine. For example, transcription factor specificity protein 1 (SP-1)
recognizes GC-rich sequences 5’-GGGGCGGGG -3’, and κB sequences identified by NF-κB
have a 5’-GGGRNYYYCC-3’ pattern, of which 5’ ends are distributed with continuous
guanine [51]. In recent years, there is growing evidence that 8-oxoG and its specific repair
protein OGG1 have epigenetic regulatory effects on gene transcription. Some researchers
found that Ogg1-/-mice shows significant 8-oxoG accumulation; however, it does not lead
to cancer or affect life span and embryo development. Surprisingly, the inflammatory
response in Ogg1-/-mice was also slighter [52], indicating that OGG1 function is closely
related to promoting inflammatory cell recruitment and promoting cytokine expression.

Experimental evidence was widely reported in recent years. Researchers found an
abnormal increase in 8-oxoG accumulation and a high spontaneous rate of lung cancer in
the genome of Ogg1-/-mice [52]. The reduced immune response of Ogg1-/-mice models
to endotoxic shock, diabetes and hypersensitivity manifested as decreased neutrophil
infiltration and lower expressions of Th1 and Th2 cytokines [53]. Moreover, inflammation
of the Ogg1-/-mice stomach was slighter after H. pylori infection when comparing to
wildtype. Similarly, in an asthma model, the cell infiltration in the airway, perivascular and
alveoli and the secretion of Th1, Th2 and Th17 cytokines of Ogg1-/-mice were slighter [54].

The small molecule inhibitor of OGG1,TH5487 is an effective selective active site
binding agent, which inhibits the activity of OGG1 DNA glycosylase, so OGG1 cannot
insert itself into the DNA chain and join the 8-oxoG, and also reduces the DNA occupation
of NF-κB and the level of TNFα-induced neutrophil recruitment and various cytokines in
human bronchial epithelial cells and in mice models [55]. In 2019, Pan et al. [56] showed that
in lung inflammation challenged by ozone, levels of 8-oxoG in genomes gradually ascend.
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HE staining showed that with the prolongation of ozone stress, more inflammatory cells
infiltrated airways around the alveoli, and other manifestations such as airway stenosis,
partial alveolar rupture and enlarged alveolar cavity arose. After five days of ozone stress,
8-oxoG accumulated in the airway epithelium and showed an increased oxidation level of
protein. The OGG1 inhibitor TH5487 treatment significantly improved above phenomenon
and manifested as reduced infiltration of inflammatory cells in the airways, surrounding
alveoli and the complete alveolar structure. There are also other studies reporting small
molecular inhibitors designed for OGG1, which provide a bright outlook for clinical anti-
inflammatory treatment [57].

The aforementioned studies suggest that OGG1 has immunomodulatory functions,
which are closely related to promoting inflammatory cell recruitment and cytokine expres-
sion. Studying the role of 8-oxoG and its repair enzyme OGG1 in pulmonary inflammation
plays an important role in elucidating the mechanism of pulmonary inflammation and de-
veloping new therapeutic targets for chronic pulmonary inflammation from the perspective
of oxidative stress.

Further studies show OGG1 plays a role in regulating gene transcription, called DNA
repair coupled gene transcription [58]. Genome-wide ChIP-Seq results indicate that OGG1
significantly recruited in the gene regulatory regions, such as promoters, introns, exons,
intergenic sequences and untranslated region in HEK293 cells stimulated by TNFα [59],
suggesting that OGG1 could conduct its regulatory function in wide genome regions. So far,
because of the different stimuli and target genes, there are several ways for 8-oxoG and its
repair enzymes OGG1 to regulate gene transcription [60–63], and the specific mechanism
of OGG1 in regulation of different genes still calls for further study.

3.1. OGG1 Regulates Gene Expression via Nonenzymatic Pathway

OGG1 can prompt inflammatory gene transcription without depending on its enzy-
matic activity. It could be an epigenetic mechanism to regulate innate immune responses
by non-excisional binding to 8-oxoG in promoter sequences [64]. Stimulated by TNF-α,
cells produce large amounts of ROS, leading to an accumulation of 8-oxoG. Meanwhile,
OGG1 cysteine oxidizes, which does not affect the ability to identify 8-oxoG but inhibits
its cleavage activity. Binding to 8-oxoG in the promoters of CXCL1 and TNF-α and chang-
ing the DNA structure thus recruits transcription factors such as NF-κB to bind to their
cis-acting elements rapidly, which can promote the rapid expression of inflammatory genes.
With the addition of NAC (ROS scavengers) or the interference of OGG1, both the ability of
NF-κB to bind to promoter regions and the expression of inflammatory genes decreased
significantly [65,66]. Among them, Cxcl2, a gene related to aging and chronic inflammatory
states, is at the highest level in a series of chemokines and cytokines. Therefore, OGG1
could be a potential target for aging-related diseases and chronic inflammation such as
asthma, COPD and so on. NF-κB family mainly includes five subunits: RelA/p65, RelB,
c-Rel, p50 (its precursor is p105/NF-κB1) and p52 (it precursor is p100/NF-κB2). NF-κB
must act in the form of homologous or heterodimers. RelA/p65, RelB and c-Rel contain
RHR domains with transcriptional activation; therefore, there must be at least one subunit
in the dimer where it can have transcriptional activity. The heterodimer p50/p65 is a
classical transcription factor in Rel family that regulates many cellular functions, such as
immune response, cell growth and development.

Researchers found that there is a bidirectional interaction between OGG1 and NF-κB.
OGG1 influences the combination of NF-κB to DNA through the combination of 8-oxoG,
and the interaction between OGG1 and p50R sequence is more abundant. OGG1 increases
the binding of NF-κB to DNA through the combination with 8-oxoG outside the κB motif,
whereas the combination with 8-oxoG within κB motif reduced the binding. OGG1 not
only promoted the recognition of NF-κB to conserved sequences, but also shortened the
time of the recognition, whereas NF-κB could also increase OGG1-DNA binding. Through
these interactions, OGG1 ultimately promotes cxcl2 expression of TNF-α stimulated cells
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by activating promoter activity. This plays an important role in the rapid expression of
specific genes under stress conditions [65,66].

The regulatory model of gene transcription by OGG1 via its non-enzymatic path-
ways can be described as below: When an organism suffers from endogenous respiratory
metabolism, products or environmental pollutants, microbial infections and a massive
number of ROS product, on the one hand transcription factors are activated, and on the
other hand, a lot of 8-oxoG is generated. Then, 8-oxoG is not repaired immediately; instead
oxidized OGG1 bound to DNA promoter regions is recruited. OGG1 invades the DNA
helix through amino acid residues, extracts the damaged base and inserts it into the OGG1’s
catalytic center pocket, whereas the cytosine paired with 8-oxoG remains unmoved in the
DNA helix. These events eventually cause violent bending of DNA double strands at the
angle of 70◦ at the action site and adjacent sequences, resulting in structural changes [46,67],
which enable activated transcription factors to rapidly recruit to the corresponding pro-
moter region (perhaps this double helix overcomes the energy barrier required for NF-κB to
bend DNA), and then recruit other proteins to form transcription initiation complexes and
initiate gene expression. Meanwhile, ROS can be cleared through an antioxidant system to
keep redox at equilibrium. OGG1 initiates a base excision repair pathway after reduction
and ensures the stability of the genome [68].

In addition, Pan et al. showed that OGG1 can regulate the expression of tissue
inhibitors of metalloproteinase 1 (TIMP-1) in lung tissue through a nonenzymatic path-
way [56]. TIMP-1 plays an important role in pulmonary fibrosis, which can regulate cell
proliferation, apoptosis, differentiation and angiogenesis. The regulatory sequence of
TIMP-1 is located in the intron 1 [69], which contains a large number of 5’ GGG (even 5’
GGGGGGG), making it easy to produces 8-oxoG under oxidative stress. As a result, it
is a potential binding target for OGG1. The authors proposed the following models: In
the intron region, when transcriptions enter the extension phase, there are DNA: RNA
hybrids with about 11 nucleotides inside the transcription machine. The nascent RNA
are transcribed firstly in the chromatin, then mature mRNA are released after a selective
shearing. OGG1 can inhibit the release of the nascent RNA by binding to the DNA: RNA
hybrids, thus reducing the mRNA of TIMP-1. The specific role of OGG1 in regulating
TIMP1 in pulmonary inflammation and fibrosis needs further experimental proof. In
addition, whether this mechanism is applicable other cytokines also needs further study.

To sum up, similar to DNA methylation modification (5 mC), which was regarded
as a classical epigenetic marker, DNA oxidative modification (8-oxoG) also has epigenetic
characteristics and can change the process of gene expression. OGG1 has a regulatory
function in the early stage of transcriptions. Epithelial cells are first subjected to oxidative
stimulation, then OGG1 recognizes oxidative-damaged bases produced within gene regula-
tory regions, changing the pattern of gene transcription. Expression changes of cytokines
or chemokines in epithelial cells form the basis of pulmonary inflammation initiation,
indicating a bright prospect for the design of small molecular inhibitors of OGG1 intended
for inflammation control.

3.2. OGG1 Regulates Gene Expression via Enzymatic Activity-Dependent Pathway
3.2.1. OGG1-BER Mediated G-Quadruplex Regulation of Gene Expression

OGG1 can modify the DNA structure through the AP sites and productions of the BER,
to promote gene transcription. Hypoxia is a very common pathological process in clinical
diseases, involving the expression of genes such as heat shock factors, glycolytic enzymes,
extracellular matrix factors, cytoskeletal factors, apoptotic factors, cell cycle regulators and
angiogenic factors [70]. Hypoxia can induce lung inflammation, in which HIF1α plays an
important role. Under hypoxia conditions, ROS, produced by pulmonary endothelial cells,
makes instant oxidative modifications to the hypoxia-response element (HRE) of vascular
endothelial growth factor (VEGF), further adjusting the expression of VEGF [71]. Further
research finds that under hypoxia conditions, ROS produced by mitochondria leads to
the accumulation of HIF-1, the transcriptional regulators of hypoxia gene expression. But
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when hypoxia-induced base modification is suppressed, the binding of HIF-1 to HRE of
the promoter of VEGF is weakened, and the mRNA of VEGF also decreased. Pastukh V
proved that this process was related with 8-oxoG by chromatin immunoprecipitation of
pulmonary artery endothelial cells [72]. Inhibition of OGG1 by siRNA decreased the hif-1α
binding to Ref-1/Ape1 in each HRE region, thus inhibiting the expression of VEGF mRNA.
Among them, HIF-1 interact with Ref-1/Ape1, but not OGG1.

G-quadruplex is a special nucleic acid structure, whose constituent unit is G-quartet.
G-quartet is the square planar structure formed by the binding of multiple guanines by
Hoogsteen hydrogen bonds. With cations (e.g., Na, K) coordination, two or more G-quartets
form G-quadruplex by π-π stacking. The human genome bioinformatics analysis found
that more than 300,000 genes may form G-quadruplex [73]. The location of G-quadruplex
is nonrandomized, and it co-localizes with functional regions of the genome, especially
in telomeres and promoters, and is highly conserved among species. In addition, G-
quadruplex is positioned at the 5’ UTR, 3’ UTR, intron-exon boundary, especially in the
first intron, suggesting its broader function [74].

Current research shows that G-quadruplexs play roles in transcription, replication and
other key biological processes, such as hereditary diseases and cancer. Reportedly, genes
under regulation of the promoter PQS include VEGF, PDGF-A, KRAS, HRAS, SRC, etc. In
addition, PQS are rich in promoters of human DNA repair genes, suggesting the possibility
of its regulation on those genes. OxiDIP and Quadron analysis in MCF-10A cells found
that 37% of the 8-oxoG peaks contained potential G4 structures [49], most of which have
high folding potential, suggesting an unrevealed link between 8-oxoG and G-quadruplexs.

Specific G-quadruplexs formed in the VEGF promoters and VEGF gene transcription
can be controlled by ligand-mediated G-quadruplex stabilization [75]. The production
of VEGF may be inhibited in tumor cells via targeting the G-quadruplexs formed in
guanine-rich-regions in VEGF gene promoters. Fleming AM further elucidated these
findings, suggesting that ROS-mediated production of 8-oxoG within promoters is a signal
transduction agent for gene activation [76]. Large quantities of 8-oxoG are generated under
ROS, and the formation of AP sites during OGG1-initiated-BER leads to DNA structural
instability. Then, AP sites are preferentially squeezed into a ring and form the G-quadruplex
(G4), which is a four-strand spiral structure. At this point, APE1 binds to AP sites to recruit
transcription factors to promote gene transcription instead of cutting. When G4 forms on
the template chain, it inhibits gene expression [77–79]. Whether OGG1-BER regulation to
gene expression is applicable to other hypoxia-related genes still calls for ChIP-seq and
bioinformatics analysis.

The 8-oxoG in the human KRAS gene is more abundant in the G4 region than the
non-G4 region.

Normally, G4 sequences exist in the promoter regions of genes related to cancers such
as KRAS and HRAS, thus inhibiting transcription. The high metabolic rate of cancer cells
leads to increased ROS levels, which facilitate the oxidation of guanine.

Attacked by ROS, cells generate 8-oxoG, which is more likely to occur inside the
G-quadruplex, and the zinc finger transcription factors MAZ, SP1 and heterogeneous
ribonucleoprotein A1 will bind to the G4 quadruplex to unfold it to form a DNA double
helix, recruiting OGG1 to initiate the BER pathway to ensure the accuracy and integrity of
the genome, which allows the recruitment of transcription factors and RNA polymerase II
to promote gene transcription [80,81].

3.2.2. OGG1-BER Recruits Topoisomerase to Promote Gene Expression

The hormone estradiol 17β (E2) and homologous estrogen receptors (ERα and ERβ)
bind to DNA elements with high affinity, promoting expression of genes related to cell
cycle progression and apoptosis [82] and controlling the growth and survival of hormone-
sensitive cells. In this process, after lysine-specific demethylase1 (LSD1) binds to ERα,
it mediates the demethylation of H3K9me2 within the enhancer and promoter regions,
which leads to the production of H2O2. The Fe(II) or Cu(I)-mediated Fenton reaction could
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activate H2O2, thereby oxidizing G to OG, and causing the accumulation of 8-oxoG [83].
This accumulation is related to the presence of ERa and the activation of LSD1. Using the
LSD1 inhibitor monoamine oxidase or reducing the expression of LSD1 can reduce the
production of 8-oxoG [84–86]. The 8-oxoG mediated by LSD1 is first targeted for removal
by the base excision repair system initiated by OGG1. This repair process leads to single-
strand breaks and transient gap generation, which become the substrate of topoisomerase
II (TOPO). The recruitment of topoisomerase II can lead to changes in DNA structure,
promote chromatin accessibility or DNA bending to help RNA polymerase II loading onto
its target genes, thereby contributing to transcriptional activation (such as Bcl-2).

Cell death processes can control lung inflammation. In response to DNA damage
or endoplasmic reticulum stress, when the balance of pro-apoptotic and anti-apoptotic
mediators of Bcl-2 family proteins reach the level that is conducive to cell death, they
will mediate cell death through intrinsic or mitochondrial pathways. Understanding the
mechanisms regulating pulmonary cell death will help to identify new therapeutic targets
to reduce or cure lung inflammation [87].

3.3. OGG1 Regulates Gene Expression through Chromatin Modification

The modification of DNA and chromatin plays an important role in gene epigenetic
regulation. Studies have shown that OGG1 can affect gene expression by recruiting chro-
matin restructuring complexes. CHD4 is a key component of the complex of nucleosome
remodeling and histone deacetylation (NuRD). It is essential for DNA damage repair (DDR)
and is related to carcinogenesis (including abnormal stem cell renewal and dullness, differ-
entiation and changes in cell cycle regulation) [88]. The role of CHD4 in DNA double-strand
breaks is to recruit inhibitory chromatin to the open chromatin region of the active gene
promoter and protect the transcription region during the repair process [89,90]. Under
normal circumstances, the methylation level of CpG islands in the regulatory region of
tumor suppressor gene (TSG) expressed in human colon cancer cells is very low, and the
loose chromatin structure is conducive to gene transcription.

When cells are under oxidative stress, OGG1 can bind to 8-oxoG and further recruit
chromodomain-helicase-DNA-binding protein 4 (CHD4). On the one hand, CHD4 will re-
cruit DNA methyltransferases (DNMT1, DNMT3B) to promote the methylation of cytosine
and make this region highly methylated; On the other hand, CHD4 will recruit histone
methyltransferases (EZH2, G9a) to methylate histone H3, forming the trimethylation modi-
fication of H3K27 (H3K27me3) and the dimethylation modification of H3K9 (H3K9me2),
thereby inhibiting gene transcription.

After suppressing the expression of OGG1, researchers found that the content of
8-oxoG in the genome increased, but CHD4 could not be recruited to the promoter region
of tumor suppressor genes, indicating that OGG1’s recognition and combination of 8-oxoG
resulted in lower tumor suppressor genes expression. When cells are under long-term
oxidative stress, the expression of tumor suppressor genes will be inhibited, which may be
related to the occurrence of cancer [91].

A recent study confirmed the role of OGG1 in the symmetric dimethylation of histone
H4-arginine-3. OGG1 binds to its DNA substrate to recruit arginine N-methyltransferase 5
(PRMT5), which can catalyze the symmetric demethylation of arginine-3 and cause gene
silencing [92].

3.4. OGG1 Regulates Gene Expression by Forming a Complex with Free 8-oxoG

In addition to the aforesaid mechanisms of gene expression regulation, there are
studies that point out that the complex formed by OGG1 and free 8-oxoG can affect
gene expression.

OGG1 has high affinity with free 8-oxoG base (the binding constant Kd is 0.56 n M),
and the complex formed by binding to the nonsubstrate site of 8-oxoG has a guanine-
nucleotide exchange factor (GEF) activity, which does not exist in cells lacking OGG1.
The OGG1-8-oxoG complex can activate canonical Ras family GTPases (canonical Ras
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family GTPases), such as K-RAS (Kirsten rat sarcoma viral oncogene homolog), N-RAS
(Neuroblastoma RAS viral oncogene homolog) and H-RAS (Harvey-RAS), and replace
its GDP with GTP [93], inducing the phosphorylation of its downstream targets Raf1,
MEK1,2 and ERK1,2, further participating in cell signal transduction, and play a role in cell
inflammation and pathophysiological processes.

The members of the small GTP binding protein superfamily are structurally di-
vided into at least five subfamilies: Ras, Rho, Rab, Sar1/Arf and Ran families. Among
them, the Ras subfamily members (Ras protein) mainly regulate gene expression. The
Rho/Rac/Cdc42 subfamily members (Rho/Rac/Cdc42 protein) of the Rho family regulate
cytoskeletal reorganization and gene expression [94]. Rac1 is mainly expressed in lung
tissues, especially non-phagocytic cells, such as lung epithelial cells and fibroblasts. The
OGG1-8-oxoG complex physically interacts with GDP-bound Rac1, and GDP is quickly
converted to GTP through GEF activity, thereby increasing the GTP-bound Rac1, and
Rac1-GTP can give a transient rise to ROS levels and participate in a series of cell signaling
transduction. The specific biological significance of OGG1-BER-related ROS production is
not known yet. Experiments have found that locally increased ROS can oxidatively modify
the cysteine residues at the active site of OGG1, thereby reducing the cleavage activity
of OGG1 [95]. Further observation found that the non-productive combination of OGG1,
which temporarily lost its cleavage activity, and 8-oxoG can increase the expression of
NF-κB-dependent inflammatory factors (such as CXCL2) [64].

The OGG1-8-oxoG complex can also increase the level of Rho-GTP in cells (such as
fibroblasts and epithelial cells), thereby mediating the polymerization of α-smooth muscle
actin (α-SMA) into stress fibers and increasing the level of α-SMA in insoluble cells/tissue
and participating in lung remodeling and fibrosis (including idiopathic pulmonary fibro-
sis) [96]. Researchers speculate that the reduced OGG1 activity observed in fibrotic tissues
and malignant cells may be a cellular defense against the extensive cytoskeletal changes
required for cancer cell proliferation and migration.

4. Roles of OGG1 in Pulmonary Inflammation and Disease
4.1. The Roles of OGG1 in Lung Cancer

Lung cancer ranks as one of the cancers with the highest morbidity and mortality in
recent years, which is also widely reported to have close association with oxidative stress.
Interestingly, there have been studies over the role of OGG1 in lung cancer separated into
different directions at the very beginning.

Case-control studies carried out in populations of different diseases, regions or life
states, together with meta-analysis based on them, tried to figure out the correlation
between OGG1 and lung cancers, and the conclusions were inconsistent. Some researchers
summarized that OGG1 has no relation to a higher risk of lung cancer [97,98], or if the
association appeared in certain populations, such as in non-smokers [99]. Opposite opinions
suggest that the Cys/Cys genotype of the OGG1 Ser326Cys polymorphism was believed to
have an association with a lung cancer risk [100], and the combined OGG1-Cys/Cys and
Ser/Cys genotypes show a 1.93-fold increased risk of lung cancer, which was particularly
elevated among women who suffered from relatively high cumulative exposure to smoky
coal [101]. Besides, genome-wide association studies (GWASs) found that the genotypes
for two DNA repair genes, TP53 and OGG1, showed significant associations with lung
squamous cell carcinoma (SQC) risk [102].

Studies over the impact of OGG1 on lung cancer also did not reach a consensus. Re-
searchers reported that TET1 regulated the balance of hydroxymethylation and methylation
in the promoter region of BER related genes, which participates in the development of lung
cancer induced by environmental chemicals [103], and in the tumor tissues of smoking
patients with non-small cell lung carcinoma. The activity of hOGG1 was significantly
higher compared with control samples, whereas the activity of endonuclease III homologue
(hNTH1) was lower. Such alterations could affect tumor growth by increasing the number
of AP sites [104]. These aforesaid results imply that OGG1 may contribute to tumorigenesis.
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On the contrary, it was observed that OGG1 mutant mice manifested an increased
susceptibility to the multiorgan carcinogenesis induced by N-diethylnitrosamine (DEN),
N-methyl-N-nitrosourea (MNU), N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN), N-bis (2-
hydroxypropyl) nitrosamine (DHPN) and 1,2-dimethylhydrazine dihydrochloride (DMH)
(DMBDD) [105], and OGG1 depletion suppressed A3 T-cell lymphoblastic acute leukemia
growth, both in vitro and in vivo, suggesting that OGG1 could play a role as a potential
anti-cancer target [106]. As corroborative evidence, other research found that the CDK4/6
inhibitor sensitized G1-arrested cells to anticancer drugs by downregulating the expression
of PARP1, on which OGG1 depends to conduct its DNA damage repair function [107].
Additionally, the anticancer effects of MTH1 inhibition also require the existence of OGG1,
transforming the mismatch caused by 8-oxoG to the DNA strand break to injure onco-
cyte [108].

4.2. The Roles of OGG1 in Innate Lung Immunity

Airway epithelium is the main surface in contact with inhaled particles, pathogens
and allergens, and is lined with a semi-impermeable barrier of highly adapted epithelial
cells [109]. Epithelial cells play a central role in triggering the protective host response. After
microbial invasion, airway epithelial cells first activate the reproductive system coding
Pattern recognition receptor, recognize the pathogen-associated molecular pattern (PAMPs)
or damage-associated pattern (DamPs), and then trigger cells to produce innate immunity
(IIR) to prevent/reduce the spread of foreign pathogens, which is then key to triggering
adaptive immunity [110].

Ros produced in the PRR signaling pathway plays an important role in signal trans-
duction by controlling phosphorylation. Little is known about the synergistic effects in
IIR of cellular reactive oxygen species (ROS). It was proposed that OGG1 and Ataxia
telangiectasia-mutated (ATM) are endogenous nuclear ROS sensors that coordinate the Pat-
tern recognition receptor signaling pathway and regulate the innate immune response [95].
ATM responded to DSBs/ROS, forming a scaffold with ribosomal S6 kinase, which induced
RelA phosphorylation and resulted in the transcription coupling of type I and III IFN, CC
and CXC chemokines. The cytosolic OGG1-8-oxoG complex acts as a guanine nucleotide
exchange factor, inducing the formation of MAP-, PI3-and MS-kinases, and activating
the classical NF-kB pathway by phosphorylation and nuclear translocation at Ser276, and
playing a role in innate immune response (IIR).

4.3. The Roles of OGG1 in Airway Remodeling and Asthma

Genes under regulation of the OGG1-8-oxoG complex are associated with some impor-
tant biological processes and airway remodeling. Researchers performed an imitation of the
OGG1-BER process by attacking mice lungs using 8-oxoG. In total, 1592 transcripts were
identified by RNA-seq analysis [103]. The up-regulated mRNA was associated with bio-
logical processes, including homeostasis, immune system, macrophage activation, surface
tension regulation and response to stimuli. These processes are mediated by chemokine,
cytokine, gonadotropin-releasing hormone receptor, integrin and interleukin signaling
pathways. In addition, their analysis of another study identified 3252 differentially ex-
pressed transcripts, of which 2435 were up-regulated and 817 were down-regulated [102].
In the up regulated transcripts, 2080 mRNA were identified, encoding proteins involved in
the regulation of actin family cytoskeleton, extracellular matrix, cell adhesion, cadherin and
cell junctions that influence biological processes such as tissue development, cell-to-cell
adhesion, cell communication and the immune system. OGG1-BER involved in the over-
expression of cadherin, integrin, Rho GTP enzyme, TGF, WNT and cytokine/chemokine
signaling pathway indicates that OGG1-BER can continuously repair DNA oxidative dam-
age and conduct downstream signal transduction through small GTP enzyme and induce
airway remodeling associated with gene expression, leading to changes in lung function
and structure.
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Asthma is characterized by airway inflammation and hyperresponsiveness, and the
tilt towards TH2 cytokines is considered to be a key risk factor for asthma. There is
growing evidence that oxidative stress is also a key factor in the development of asthma.
Oxidative stress levels in the lungs of asthmatics are increased and ROS produced in the cells
regulates the gene expression of asthma-associated TH2 cytokine IL-4 [111]. In addition,
oxidative DNA damage in the peripheral blood lymphocyte was significantly higher in
asthmatic patients than in healthy subjects [112]. Whole-genome expression analysis also
suggests that the OGG1-BER-induced gene expression may play a role in asthma and EIA
Pathophysiology [113,114]. OGG1 was found to up-regulate the expression of Cytokines,
especially IL-4, through the STAT6/NF-κB pathway in OVA-sensitized asthmatic mice [54].

4.4. The Roles of OGG1 in Allergic Airway Inflammation

Ragweed pollen extract (PWPE), which contains NADPH Oxidase (Nox; RWPENOX),
can induce the production of a reactive oxygen species (ROS) and lead to airway hyper-
sensitivity. Bacsi et al. found that the level of 8-oxoG increased in the airway epithelial
cells of mice challenged with RWPE, and DNA SSB formed during 8-oxoG repairment
enhanced antigen-driven allergic immune response [115]. It was found that attacking OGG1
proficient mice with ragweed pollen induced strong recruitment of airway eosinophil gran-
ulocyte, whereas attacking OGG1 deficient mice showed reduced recruitment [116]. After
infusing free 8-oxoG into mouse lungs to simulate the OGG1-BER pathway and evaluate
the unbiased RNA sequencing and molecular histologic changes, researchers found that
PWPE attack could induce an oxidative burst, cause DNA damage and activate the OGG1
signal, resulting in the differential expression of 84 microRNAs (miRNAs). OGG1 can
increase levels of TH2 cytokines (such as IL-13, IL-4 and IL-5) by downregulating miRNA
let-7b-3p, which leads to Eosinophil granulocyte recruitment and exacerbates allergic air-
way inflammation. Affymetrix microarray genechips show that in airway epithelial cells,
the OGG1-Ras regulatory network is regulated by TF, including NF-κB, tumor protein-53
(TP53), Kruppel-like factor 4 (KLF4) and so on [117]. It is suggested that the recruitment of
OGG1-BER-small GTPases, activated TF and/or OGG1-mediated recruitment of TF in pro-
moter regions may be involved in miRNA transcription regulation. The aforesaid research
suggest that it is worth exploiting a new therapy to alleviate airway inflammation achieved
by pharmacological modulation of OGG1 signal transduction or local administration of
specific miRNAs.

4.5. The Roles of OGG1 in Hyperoxia-Induced Lung Injury

In clinical work, oxygen was given as a supportive treatment for patients suffering
from acute respiratory distress syndrome (ARDS). However, hyperoxia could also induce
lung injury. Considering its function as a key factor in the response to oxidative DNA dam-
age, it is natural to consider of the role of OGG1. The existence of OGG1 could help elevate
the resistance to hyperoxic cytotoxicity, overexpression of hOGG1, alleviate DNA damage
of A549 and AECII from hyperoxia and H2O2 exposure, and could be related to the MAPK
pathway activation [118,119]. It has been reported that inflammatory cytokines (TNF-α,IL-
6,IFN-γ) increased in the OGG1 deficiency in mice after hyperoxia exposure [120], as OGG1
interacted with the promoter of Atg7, thus regulating the autophagy pathway to influence
inflammatory cytokine release in the hyperoxia-induced lung injury.

Oxidative stress has been testified to be a non-negligible risk factor for neonatal dis-
ease, especially affecting pulmonary development. Supplementary oxygen for respiratory
disfunction in infants is an important source of oxidative stress, causing lung injury that
manifests as delayed alveolar growth, extracellular matrix deposition and pulmonary
fibrosis, which could evolve into permanent lung injury—bronchopulmonary dysplasia
(BPD). Human lung morphogenesis is divided into five stages: embryonic, pseudoglandu-
lar, canalicular, saccular and alveolar. Premature infants are under a higher risk of being
attacked by supplementary oxygen, since their lungs tend to be at the saccular-alveolar
stage, during which lungs are more sensitive to oxidative stress [121]. Elevated 8-OHdG
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levels along with lung injury were observed in a hyperoxia model, and its alleviation after
suppressing oxidative stress implied the potential role of OGG1 in pulmonary develop-
ment [122], which was subsequently documented by another research team, who suggested
that OGG1 expression was upregulated in a hyperoxia-induced BPD model [123]. Interest-
ingly, the expression of OGG1 showed a time-related fluctuation, which reached a peak at a
certain timepoint but descended to normal when hyperoxia exposure was prolonged.

5. Conclusions

The breakdown of redox homeostasis brings multiple organs’ diseases to the human
body, among which, pulmonary diseases were closely related to DNA oxidative damage.
The ROS-overproduction-induced accumulation of base mismatch has been proven to be
one of the pathogenic factors of inflammation, fibrosis and tumorigenesis. Base excision
repair initiated by OGG1 takes the majority of the responsibility for the correction of
mismatched base pairs, since 8-oxoG is the most common type generated from oxidative
attack. As the investigation over OGG1 gets deeper, research over the other perspective of
OGG1 function were reported. As the big picture became complete, scientists found that
during the whole process of BER, from recognition to excision, even its combination with
free 8-oxoG, OGG1 impacts gene expression in multiple aspects.

With the functions originated from its DNA binding characteristic come the conflicts
that need to be solved. Take inflammation for example; in an hyperoxia-induced lung
injury model, despite the fact that we expect OGG1 to conduct a pro-inflammation function,
researchers found that overexpression of OGG1 and Fpg protected alveolar epithelial cells
from toxics in oxygen-derived species [119]. Meanwhile, OGG1 deficiency mice exhibited a
significant increase of pro-inflammatory cytokines (TNF-α, IL-6, IFN-γ) after challenged by
hyperoxia [120], indicating a positive role of OGG1 in hyperoxia-induced lung injury.

Moreover, when another perspective was taken into consideration, alleviation of
inflammation is also a promising target for BPD treatment. Inhibition of the NF-κB pathway
by either Grx1 ablation [124] or Quercetin [125] treatment shows protective effects on
pulmonary angiogenesis and alveolar growth in variant degree. As Pan Lang documented,
after oxidative stimulation, the precedingly binding of OGG1 to the 8-oxoG upstream from
NF-κB motif in the promoter regions of pro-inflammation gene increased NF-κB DNA
occupancy and gene expression, whereas depletion of OGG1 shows the reverse effect on
both NF-κB binding and gene expression. Thus, it creates a puzzle about what the overall
effect of OGG1 to inflammation is when confronting oxidative stress.

In summary, studies performed so far have given enough evidence that OGG1 plays
important role in pulmonary diseases and show the necessity of further investigation
on its relative mechanism. That is to say, problems remaining unsolved are also part of
our expectations.
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