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Abstract: The COVID-19 pandemic put significant strain on societies and their resources, with the
healthcare system and workers being particularly affected. Artificial Intelligence (Al) offers the unique
possibility of improving the response to a pandemic as it emerges and evolves. Here, we utilize
the WHO framework of a pandemic evolution to analyze the various Al applications. Specifically,
we analyzed Al from the perspective of all five domains of the WHO pandemic response. To effectively
review the current scattered literature, we organized a sample of relevant literature from various
professional and popular resources. The article concludes with a consideration of Al's weaknesses as
key factors affecting Al in future pandemic preparedness and response.
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1. Background and Significance

In December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was isolated from
a series of pneumonia cases in Wuhan, China [1]. Extensive international spread has followed since then,
causing millions of reported cases and hundreds of thousands of deaths to date [2]. The disease associated
with this coronavirus infection (COVID-19) continues to strain healthcare systems and societies at large
due to the disease virulence and morbidity [3,4]. History offers examples of pandemics that unfolded
similarly to COVID-19, and the World Health Organization (WHO) created a framework describing
distinctive intervals of an infectious outbreak (Figure 1) [5-8]. Initially, the “identification” of transmission
of a novel virus, viral strain, or biological organism to humans must be identified. The “recognition”
interval follows and features case clusters’ identification globally. “Initiation” comes next and references
the development of sustained human transmission. Next, case rates speed up during the “acceleration”
interval concomitant with the deployment of several mitigation strategies. These efforts lead to the
plateauing and subsequent decrease in case rates, which permits the international community to enter the
next pandemic interval, “deceleration.” As case rates finally slow, the international community enters the
final interval, “preparation” (for the next pandemic wave) [8].

Healthcare 2020, 8, 527; d0i:10.3390/healthcare8040527 www.mdpi.com/journal/healthcare


http://www.mdpi.com/journal/healthcare
http://www.mdpi.com
https://orcid.org/0000-0001-9105-5995
http://dx.doi.org/10.3390/healthcare8040527
http://www.mdpi.com/journal/healthcare
https://www.mdpi.com/2227-9032/8/4/527?type=check_update&version=3

Healthcare 2020, 8, 527 2of 14

How can Al be used Can Al How might Al Could Al
to identify emerging mitigate the | guide medical accelerate the

(o biological threats? spread of management development of
[«] biological and resource medical

e diseases? allocation? therapies and
g treatment

E protocols?
2w

— g

S @

= 9

Q

=

=

o

o

>

==

- - - - - - — - -
cDC - z
Investigation Recognition

Intervals

e

Y Y

Prepandemic Intervals Pandemic Intervals

Figure 1. WHO pandemic response phases with distinctive Al applications.

Artificial intelligence (Al) contains the potential to address all these pandemic challenges, a fact
slowly being realized by healthcare stakeholders [9-14]. In this manuscript, we will define the Al
as algorithms built on mathematical models, themselves continuously and automatically refined
through iteration within a “training dataset,” that is, through a set of examples used to increase
their prediction capabilities [10]. This article utilizes the WHO pandemic framework to organize
consideration of four questions regarding Al’s qualifications in each of the pandemic’s intervals:
(1) how can Al be used to identify emerging biological threats? (2) Can Al mitigate the spread of
biological diseases? (3) How might Al guide medical management and resource allocation? (4) How
might Al accelerate the development of medical therapies and treatment protocols? This article
concludes with a consideration of Al's weaknesses and then three questions about the overall future of
Al in healthcare and pandemic response.

2. Materials and Methods

The authors employed the WHO framework to inform an Internet search using keywords from
each pandemic interval (emergence, recognition, identification, mitigation, deceleration) on the cohort
of 866 PubMed manuscripts obtained after combining “artificial intelligence” and “deep learning”
with “pandemic” to filter relevant articles published in 2000-2020. Additionally, considerable and
appropriate Al writing appears in popular journals due to some of the Al information’s proprietary
and policy-related nature. Similar keywords were used in the Google™ search engine. Identified
hits were reviewed by one of the authors in terms of relevance to this manuscript. Two other
authors verified the information by cross-referencing the findings and searching PubMed with the
peer-reviewed manuscripts most relevant to the investigated popular article. The authors believed
that combining non-scientific and scientific sources produced a useful breadth of quality references on
this topic that is more helpful for this audience than a limited search across peer-reviewed articles.
The authors compared non-scientific sources wherever possible with scientific ones as described to
achieve satisfactory validation. When independent publications covering similar subjects had no
relevant peer-reviewed professional counterpart, the authors looked for the most representative article
among the independent publications covering similar topics.
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3. Results

3.1. How Can Al Be Used to Identify Emerging Biological Threats during Investigation and Detection?

Severe acute respiratory syndrome (SARS), influenza virus HIN1, Middle Eastern respiratory
virus (MERS), Zika virus, and Ebola have challenged world health in the 21st century to date [1,5-7].
The clinical presentations of new illnesses frequently make it difficult to distinguish them from known
conditions, even when the potential for transmission is identified [15-19]. Interestingly, the review of
the scientific literature revealed little peer-reviewed literature detailing the role of Al in the detection
of pandemic emergence [13,17,18,20,21]. However, several technologies emerged, but they were used
by private companies [17-19,22]. BlueDot, the company inspired by the SARS outbreak, used Al
analysis of multiple data points and detected the outbreak in the middle of December 2019 [22].
In this case, analysis of news reports and postings on social media revealed an increase in the use
of surgical masks coupled with the emergence of mysterious pneumonia, as did HealthMap [22,23].
Additional confirmation came from Dataminr, another Al company, which combined Al with humans
on the ground observation [24]. These examples demonstrate the strength of AI—to sort through an
enormous set of data for the clues escaping human analysis [10,25-27]. The same examples illustrate
the importance of verifying the findings in the process of utilizing the Al [22,24,25]. These particular
examples demonstrate that Al and humans augment each other, not being replacements.

The Al relies on a large amount of existing data to train pattern recognition, potentially suggesting
that looking for a novel pandemic may not be the best application for Al [10,28]. However, Al can be
pre-trained on similar diseases, e.g., by using MERS or SARS data for COVID-19 [9,10,23]. Furthermore,
an alternative approach, zero-shot learning, seems to be particularly suitable in pandemic detection
training for Al as it allows for learning when almost no clue is possible, but assumptions behind this
technique (e.g., variables are independent) may be unrealistic [20,29]. The effectiveness of Al algorithms
is challenging to study. The Al algorithms operated by Dataminr or BlueDot are not publicly available
and, most likely, not comparable [30]. Other systems are more open in terms of public knowledge of their
architecture. The study from 2012 demonstrated no difference in predictive values, yet, the manuscript
is relatively old [17]. Lack of insight into how these systems are engineered, or perception of Al being a
black box, may be one reason for poor reliance on Al-delivered warnings [9,11]. The industry approach
to keep the algorithms hidden under the patent law is not helpful [30,31].

The early detection and forecast of new pandemic emergence provide a time to ramp up supplies,
preparedness, and crash research programs. Unfortunately, human decision-makers failed to act
according to the Al alert and prior virologists” warnings [15,16,24]. In other words, Al is but a tool in
human hands [10,28,32]. Ignoring the warning from the best tool will render it useless. In stark contrast
to ongoing mistrust in Al capabilities, Canada has moved into the “preparation stage” for the next
pandemic and signed a contract with Bluedot for an early warning system to run continuously [22,33].

3.2. Can Al Forecast and Mitigate the Spread of Biological Diseases during the Initiation and Acceleration of a
Pandemic?

Mitigation of a pandemic depends on the ability to identify infected individuals and actual and
potential hotspots. BlueDot analyzed the tickets and flights from Wuhan and determined potential
hotspots with very high accuracy in December [22]. Soon, other Al engines were forecasting the dynamics
of outbreaks in Saudi Arabia, Egypt, Brazil, Canada, India, USA, and African countries [26,33-36].
The most popular approach in Al design incorporates a long-term short memory-based Al engine
utilizing rolling training sets [26,33,37-39]. Others used advanced autoregressive integrated moving
average [18,35,40]. It remains to be seen which of these Al engines perform with higher sensitivity.
The data sources could be numerous and include governmental data, social media, and collateral data
from mobile devices or public surveillance systems [17,37,38,41]. The relative scarcity of data for training
constrains but does not prohibit Al development and deployment even when resources are limited [42].
Furthermore, the pre-training of Al can help counteract the fact that data are only limited. For example,
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BlueDot leveraged SARS data [22]. Al can couple existing large databases of living area characteristics
(e.g., type of housing, population, and movement of people) with dynamics of the outbreak. Subsequently,
Al provides even more accurate prediction of the disease spread, privacy concerns about collecting
and sharing this data notwithstanding [22,24,25,42]. Al’s potential to analyze at the level of a city,
district, and neighborhood is a powerful feature of this technology [10,25]. The incorporation of contact
tracing further augments the power of Al prediction in the spread of a pandemic [23]. The effect of
mitigating measures can be studied to identify the most effective ones [43-45]. However, the accuracy of
Al predictions varies in part with how well its pre-training aligns with actual events [38,46]. Of course,
inappropriate predictions may lead to inaccurate estimation of the resources leading to misallocation of
resources and inhibit pandemic mitigation [38,46]. Developing Al’s predictive and analytical upside
will, in turn, provide a robust base for overcoming arguably the most significant barrier to the use of Al,
namely, the trust of humans and their political and social representatives.

3.3. How Might Al Guide Medical Management and Resource Allocation during Acceleration and Deceleration
of a Pandemic?

Insufficient COVID-19 testing has significantly hampered diagnosing affected individuals.
Radiologic alternatives to serology and viral tests were proposed to link emerging clinical symptoms to
the COVID-19 infection. Some data suggest that radiological pieces of evidence are more robust [47-49].
Consequently, the Italian Society of Medical and Interventional Radiology suggested the use of Al
to estimate prognosis for hospitalized patients, albeit stopping short of recommending the use of
Al-analyzed CT images as a screening test [50]. Upside notwithstanding, neither the CDC nor the
American College of Radiology (ACR) mentioned Al-guided image analysis and its potential to
discern image features beyond traditional human-guided analysis [51]. Several other models for
Al-augmented analysis of portable X-rays were proposed due to the higher accessibility of X-ray
machines vs. CT scanners [52-54]. For several years, Al has been applied to image analysis, but even
more significant progress was made when large, publicly available data were made available to the
scientific community [12]. COVID-Net is an Al-based algorithm trained on the COVIDx database of
over 13,000 images [55]. Authors had previously trained Al on pre-existing data sets before acquiring a
specific COVID-19 data set, which enabled them to demonstrate Al’s capacity to diagnose COVID-19 by
image analysis [50,56-59]. The sheer size of the data is notable, but researchers’ efforts to provide open,
transparent, and validated tools for physicians are trailblazing and remarkable. Often, Al designers
do not stress these features, which leads to limited reach and low trust in Al-driven protocols [60,61].
This may be of particular concern if non-radiological data such as chatbots, phone information, and web
informatics are used to train Al [62,63].

Al-driven triage is a somewhat controversial application of this technology. However, the mismatch
between the ability of a healthcare provider system to deliver health services and demands generated
by patient influx is one of the top determinants of mortality in COVID-19. Hospitalized patients, and
especially intensive care unit patients, necessitate very resource-intensive treatment for a prolonged
period. When the healthcare system reaches saturation, healthcare providers have to make fast decisions
regarding which incoming patients will receive care [64-67]. The COVID-19 pandemic precipitated
several approaches to handling the mismatch, one being a framework based on a scoring system with
modification for specific consideration, an example being the Italian College of Anesthesia, Resuscitation,
and Intensive Care (SIAARTI) guidelines for the criteria that doctors should follow under COVID-19 [67].
This system follows the logic of several similar efforts outside pandemic situations. The United Network
for Organ Sharing point systems provides an additional example of using quality-adjusted life-years
and disability-adjusted life-years [68,69]. Others have advocated military-type triage based on age [70].
Using an Al-augmented triage protocol could also reduce the enormous stress related to making
choices, which are repetitive and deeply challenging healthcare workers during the pandemic with
significant ramifications during the pandemic and post-pandemic. Even slightly aiding a provider in
deciding about resource allocation might well result in fewer and less intense cases of posttraumatic
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stress disorder (PTSD) among care providers, especially physicians [71,72]. Less extreme situations in
emergency physicians and trauma surgeons result in PTSD [73,74]. Numerous predictive models of
COVID-19 prognosis in various individuals based on Al-driven algorithms have been designed and
published [75-80]. Their ability to distinguish between favorable outcomes and demise is significantly
accurate. A few of them were implemented to test their suggestions in real life, a fact that leaves
unaddressed concerns about dataset impartiality and concomitant ethical concerns about the implication
of Al—driven decisions [68,81,82]. Both concerns can be addressed [61,83]. Firstly, allocating medical
care in the absence of the best possible medical information hardly qualifies as the most ethical approach,
unless one wishes to argue that willful ignorance qualifies as an ethical (or legal) defense. Second, Al can
incorporate ethical standards into its algorithms [31,64,66]. Of course, incorporation does not guarantee
that everyone will view the recommended decision as the most ethical possible.

A pandemic such as the COVID-19 one necessitates matching the illness to the level of care in
large numbers of patients and the capacity to respond swiftly should their condition deteriorate [3,4].
Current healthcare systems often experience difficulty in detecting rapid changes in health conditions
and struggle to adjust care accordingly. In the case of the COVID-19 pandemic, the presenting
situation has been growing more complex as the healthcare system has been adding several remote,
non-traditional locations, often employing biosensors, apps, or telemedicine [14,82,84]. Supervising care
required by such a dynamic disease across heterogeneous care environments placed on care providers
additional and complex demands. In other words, a physician need not, for example, rely solely
on patient age, but on a rapidly evolving, data-driven prediction of the usefulness of resources in
the successful treatment of any given patient [14,65,85]. In telemedicine, Al-driven algorithms have
been introduced to score patient severity [86]. These protocols are relatively mature and augment
physician decisions’ quality by accounting for multiple factors not readily available to a caregiver.
In the specific case of the current pandemic, Stanford University and the University of Colorado
adopted systems for COVID-19 patients trying to predict which patients would deteriorate [87].
The operationalization of these Al-driven algorithms in some critical care situations has demonstrated
their effectiveness, but regulatory agencies need to discover a fast-track system for their approval [11].
In a protracted pandemic, Al provides the unrealized potential to allow a healthcare system to adapt
more quickly to illness severity, patient by patient, while better protecting its workforce’s mental and
emotional well-being.

Patient with COVID-19 are very resource-consuming [1,88]. They require sedation, supportive
medication, nutrition, care, and ongoing attention while on supportive respiratory care [4]. The associated
demand for medications, durable supplies, expendable items, space, and various types of personnel can
produce costly and dangerous bottlenecks [89]. This demand pushes the limits of the existing equipment,
including PPE. To date, the response has appeared decentralized and uncoordinated, with locales and
nations competing for the same limited resources [89]. Govindan et al. suggest using a decision support
system with several factors to guide healthcare resource allocation. The next step is the use of Al to analyze
the data [14,85]. Al can couple outbreak data with measures of potential demand and direct the supplies
more efficiently by directing resources into anticipated hotspots before full-blown local or national crises
emerge as well as adjust for individual care [90,91].

Better predictions about a pandemic’s course enable more effective deployment of healthcare and
societal resources [64,92]. Assessment of the likelihood of patient’s survival during initial triage and
hospitalization may augment the allocation of healthcare assets on the level of a ward, hospital, or
larger geographical area. Triage and outcome prediction are very controversial areas of Al application
with the medical community and public unprepared for these applications [77,93]. Al can improve
resource allocation and help assess the countries’ preparedness by taking into account the dynamic of
the spread and available resources, factors frequently minimized in classic epidemiological models [94].
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3.4. How Might Al Accelerate the Development of Medical Therapies and Treatment Protocols?

The COVID-19 pandemic has resulted in at least three significant types of Al contributions in the
development of science-based treatment of COVID-19.

First, machine learning has helped scientists search through the overwhelming amount of research
produced about COVID-19 to inform treatment. For example, the Allen Institute for Al, partnering
with several research organizations, created the “COVID-19 Open Research Dataset” (CORD-19)
which contains over 44,000 scholarly articles about COVID-19 and SARS-CoV-2, updated daily and
machine-readable [95]. A similarly curated dataset, LitCOVID, is available via the NIH, but it is
manually curated [96].

Secondly, Al played a significant, if largely unrecognized, role in drug development during SARS
by suggesting therapeutic compounds even before the emergence of COVID-19 [21,97]. Regarding
COVID-19, it can deliver compound selection clues superior to the initial recommendations of Plaquenil
or azithromycin to treat COVID-19, i.e., the recommendations based on underpowered, anecdotal,
and methodologically troublesome studies [88]. Early on, an Al application identified 78 novel small
molecules as candidates to test for rapid testing as potential treatment compounds. A European group
screened the existing compounds suggesting possible treatments [98-100]. In this manner, Al offers
researchers a novel tool to accelerate selection of the existing medications and the development of
original molecules. Such identification does not replace the need for clinical trials, but it can focus
clinical trials on the most promising therapeutic compounds.

Furthermore, Al may aid in repurposing existing medications for COVID-19 treatment and
thus leverage the advantages of the existing approval use: fewer regulatory hurdles and rapid trial
cycle [98]. BenevolentAl one of several groups leveraging Al, engaged in precisely this kind of targeted
discovery and trial process, identified baricitinib as a leading candidate for COVID-19 treatment [101].
This compound underwent a promising if limited clinical trial in Italy and has now entered US clinical
trials with Eli Lilly and the National Institute of Allergy and Infectious Diseases.

Thirdly, Al can aid rapid acceleration of the development of an effective vaccine. In the US,
the Vaccine Research Institute began turning away from traditional vaccine development in 2018,
employing instead newer technologies using either DNA or messenger RNA that could potentially work
for multiple viruses [102]. Academic institutions followed suit in the wake of COVID-19. Having these
platforms available offers the possibility of shortening the development of a vaccine from 20 months to
just over 3 months. Moderna had developed eight mRNA vaccines for a variety of viruses and used Al
to choose the most promising therapeutic options in the fight against COVID-19 [102,103].

In short, Al can delve deeply and broadly into what humans know in the service of focusing
attention on where to delve more deeply and, as importantly, where not to waste valuable time [104,105]
on care protocols or potential compounds and vaccines.

3.5. Weaknesses of Al

Al carries the possibility of refined impartiality, a key contributor to its potential acceptance.
However, “garbage in / garbage out” highlights the real possibility of embedding human errors and
biases in Al For example, the Correctional Offender Management Profiling for Alternative Sanctions
(COMPAS) system, an algorithm designed to aid the judicial system, replicated common biases and
errors [106]. Only the most careful attention will allow us to make those errors and biases visible so
that they can be recognized and addressed [107,108].

Healthcare providers are underrepresented in Al development despite considerable expressed
interest [10]. Such underrepresentation will likely lead to several weaknesses: more reluctant acceptance
thereof by caregivers, particularly by physicians, and less infusion of traditional medical values into its
development [109]. Unfortunately, physicians have limited opportunities during their education to
familiarize themselves with Al and the related concepts. Healthcare providers need far more education
in Al development and use to understand and facilitate its development and application.
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4. Final Points

The strength of artificial intelligence comes down to its ability to synthesize a vast amount of data
quickly and in a way that humans simply cannot. In a pandemic, data emerge rapidly, proving too
voluminous, too varied, and too fast-changing for humans to process into information as quickly as Al
can (Table 1). It can more quickly determine which variables determine recovery and which appear
irrelevant for a specific patient [10]. Additionally, Al can sort through the effects of practice biases such
as the amount of ventilation pressure employed, a practice that varies by country, and so decrease the
variation in the decisions made by individual healthcare providers [10]. In short, AI offers the potential
to support faster development of clinical protocols for a new and evolving disease such as COVID-19.

Table 1. The promise and peril of using Al in pandemics.

Key Questions The Promise of AI The Peril of AI References

How can Albeused to
identify emerging
biological threats?

Early detection of the O
leading indicators

Need for prompt human

validation and response [1,9-12,15,17,26,63-67]

O  Contact tracing and aggregation

Can Al mitigate the feedmg prechctign of O Privacy and
spread of biological contagion sprea appropriateness of [1,11,12,68]
diseases and guide early O Rapld evaluation of.treatment predictive modeling s
treatment? options based on prior
similar events
O  Image analysis-driven diagnosis
of disease existence, severity,
and prognosis
O Resource allocation informed by
ongoing data-based
determination of the likely O  Refined analysis of poorly
. ) medical outcome refined, incomplete,
HOV‘_’ might Al guide O  Reduce stress on or biased data
medical managemgnt medical personnel Abdication of human [13-18,20,25,26,37,69-72]
and resource allocation? Sophisticated and developing responsibility for

analysis of optimum resource

triage decision-making

allocation across any chosen
variable set (e.g., likely outcome,
current and likely resource
availability, and probable
near-term demand)

O  Erroneous delegation of
decisions to Al with
insufficient human
oversight, e.g., of clinical
trials or the role of
social disparities

How might Al accelerate

development of medical ~©

therapies and treatment
protocols?

Rapid identification of treatment

and vaccine candidates [41-43,45,46,48,73]

Not surprisingly, the notion of incorporating Al decision-making in healthcare stirs considerable
controversy, including about responsibility and ethics [13,32]. However, the point here is not that
Al will make more and better decisions, but rather that it could facilitate more targeted and ethical
decision-making. Al will provide a consistency of application and can, under human supervision,
serve to broaden and explicate ethical considerations before disasters such as pandemics strike and
necessitate all too profound choices. People could take any of a number of approaches to creating
standards to govern development and supervision of Al, be it for healthcare or for autonomous
vehicles [31,68,69,110].
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In closing, the authors highlight three sets of questions worthy of careful exploration. First, who is
responsible for Al in healthcare? The hospital system? The creators of any given Al application? If Al
achieves the level of self-programming, who carries responsibility for its actions from then onward?
Second, who should own AI? Currently, many private entities conduct much of Al development [30].
Does the fact that Al in healthcare will likely include triage and other life and death decisions argue
sufficiently for more universal ownership or at least governance? Does the power of Al argue for
a definition of “universal” as nothing less than global? Third, if Al can become independent and
self-developing, then should it?
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