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Autoimmune destruction of pancreatic β-cells results in the permanent loss of insulin
production in type 1 diabetes (T1D). The daily necessity to inject exogenous insulin to treat
hyperglycemia leads to a relative portal vein insulin deficiency and potentiates
hypoglycemia which can induce weight gain, while daily fluctuations of blood sugar
levels affect the hepatic glycogen storage and overall metabolic control. These, among
others, fundamental characteristics of T1D are associated with the development of two
distinct, but in part clinically similar hepatopathies, namely non-alcoholic fatty liver disease
(NAFLD) and glycogen hepatopathy (GlyH). Recent studies suggest that NAFLD may be
increasingly common in T1D because more people with T1D present with overweight and/
or obesity, linked to the metabolic syndrome. GlyH is a rare but underdiagnosed
complication hallmarked by extremely brittle metabolic control in, often young,
individuals with T1D. Both hepatopathies share clinical similarities, troubling both
diagnosis and differentiation. Since NAFLD is increasingly associated with
cardiovascular and chronic kidney disease, whereas GlyH is considered self-limiting,
awareness and differentiation between both condition is important in clinical care. The
exact pathogenesis of both hepatopathies remains obscure, hence licensed
pharmaceutical therapy is lacking and general awareness amongst physicians is low.
This article aims to review the factors potentially contributing to fatty liver disease or
glycogen storage disruption in T1D. It ends with a proposal for clinicians to approach
patients with T1D and potential hepatopathy.
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INTRODUCTION

Type 1 diabetes mellitus (T1D) is caused by autoimmune
destruction of the insulin-producing pancreatic β-cells
resulting in chronic hyperglycemia and lifelong exogenous
insulin dependency (American Diabetes Association, 2021a).
T1D usually presents at a young age, contrasting type 2
diabetes (T2D), implying a long time spent with diabetes.
Lifelong adherence to therapy is essential in T1D, which is
difficult to obtain, certainly in adolescence (Datye et al., 2015).
Adequate glycemic control is, however, important since
fluctuations in blood glucose levels are predisposing factors for
disturbance of glycogen homeostasis, as discussed later.

The pathogenesis of T1D is multifactorial (Paschou et al.,
2018). The “accelerator” (Wilkin, 2001) and “overload”
(Dahlquist, 2006) hypothesis postulates that β-cell stress
caused by insulin resistance and increased insulin demand
might contribute to T1D. Already in 1975, Baum et al.
described that increased weight gain in infancy could be
linked to the development of T1D (Baum et al., 1975; Lauria
et al., 2015). This hypothesis is further fueled by an increased
odds ratio to develop T1D when childhood adiposity was present
(Censin et al., 2017), and a lower risk of T1D associated with the
presence of an insulin sensitivity-increasing polymorphism (Raj
et al., 2009). Since the global incidence of both (childhood)
obesity (Blüher, 2019; Di Cesare et al., 2019) and T1D are
rising (Mobasseri et al., 2020), there might be a common
pathway leading to increased β-cell fragility and subsequent
development of diabetes, in the presence of other stressors,
leading to patients with both T1D and an already present
chronic metabolic dysfunction (Liston et al., 2017).

Both T1D as T2D are strongly associated with multiple micro-
and macrovascular complications (de Ferranti et al., 2014;
Schofield et al., 2019). Mortality due to cardiovascular disease
is, despite current treatment strategies, still increased in patients
with T1D compared to the general population, with women being
proportionally more affected than men (de Ferranti et al., 2014;
Huxley et al., 2015; Khunti et al., 2015). A Korean nationwide
study determined that mortality risk and cardiovascular disease is
even higher in patients with T1D, as compared to patients with
T2D, stressing the importance of cardiometabolic risk
identification in these patients (Lee et al., 2019).

T1D-associated hepatic disease is less well known and
documented, as is the case for T2D-associated hepatopathy.
The most relevant chronic liver disease in this context is non-
alcoholic fatty liver disease (NAFLD), characterized by large
lipid droplet accumulation in hepatocytes in the absence of
well-established causes of steatosis, e.g., the use of alcohol or
steatogenic drugs (Marchesini et al., 2016; Chalasani et al.,
2018). NAFLD usually, but not exclusively, develops in the
context of metabolic disturbances such as overweight and
diabetes (Godoy-Matos et al., 2020; Targher et al., 2021).
The latest position statement of the American Diabetes
Association (ADA) clearly mentions non-alcoholic fatty
liver disease (NAFLD) as a common comorbidity of T2D
and recommends screening all patients with T2D, elevated
liver enzymes, and/or fatty liver disease present on ultrasound

(American Diabetes Association, 2021b), which is in line with
the joint European guideline (Marchesini et al., 2016). Neither
the American nor the European guidelines mention NAFLD as
a possible complication of T1D, nor provide any
recommendation on how or whom to screen in T1D
populations. Epidemiological data are limited, but according
to the currently available data the prevalence of NAFLD in
patients with T1D approximately equals that of the general
population (about 20–25%), while T2D is reported to be more
than 2-fold higher compared to patients with T1D (Younossi
et al., 2016; Younossi et al., 2019a; de Vries et al., 2020).
Nevertheless, a growing body of evidence suggests that
individuals with T1D may also be at an increased risk of
developing NAFLD, partly due to an increase in the
presence of metabolic risk factors such as obesity and the
metabolic syndrome in these patients, but also due to T1D-
specific conditions that can propel metabolic dysfunction
(Regnell and Lernmark, 2011; Barros et al., 2017; de Vries
et al., 2020). Furthermore, disturbances in liver enzymes or
imaging studies, suggesting underlying hepatopathy, have
been commonly described in T1D (Leeds et al., 2009;
Sherigar et al., 2018). Not all these cases are, however,
attributable to NAFLD. The number of published case
reports and series reporting glycogenic hepatopathy (GlyH),
an entity characterized by excessive glycogen storage in
hepatocytes leading to hepatomegaly and ultrasonographic
findings similar to those of NAFLD, is rising as well, but
estimates concerning the epidemiology of GlyH are absent
(Sherigar et al., 2018). Therefore, this review aims to describe
both the occurrence and pathophysiology of NAFLD and GlyH
in T1D to raise clinical awareness and inspire further research.
Furthermore, this review offers an overview of diagnostic
modalities enabling clinical differentiation.

METHODOLOGY

The authors performed a literature search of the most relevant
articles in Pubmed (MEDLINE), Web of Science, and Google
Scholar based on Medical Subject Headings (MeSH) terms and
relevant synonyms. We searched using a combination of the
following MeSH terms: “Type 1 diabetes” AND “NAFLD” or
“Fatty Liver” or “Liver disease.” Further added to the search
strategy were the words “Hepatic Glycogenosis” or “Glycogenic
Hepatopathy” or “Liver Glycogenosis.” The reference lists of
relevant articles were screened for additional search terms and
articles. Abstracts were screened for relevance. All articles were
restricted to English.

Non-Alcoholic Fatty Liver Disease in Type 1
Diabetes: Epidemiology
NAFLD is highly prevalent in the world, with a quarter of the global
population affected, and is clearly associated with the metabolic
syndrome (Younossi et al., 2016; Younossi et al., 2019b). The
prevalence is higher in individuals with T2D, with an estimated
global prevalence of 55.5% (Younossi et al., 2019a). In comparison to
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epidemiological data on NAFLD in T2D, the number of studies
addressing the prevalence in patients with T1D are limited.

A recent meta-analysis of twenty studies in 3,901 individuals
with T1D showed that NAFLD is present in 19.3% of cases,
increasing to 22.0% in adults only (de Vries et al., 2020).
Interestingly, prevalence rates were highly discrepant when
looking more in detail at the type of diagnostics. Indeed,
ultrasound-based studies (n � 13) reported the highest
prevalence rates (27.1%) compared to studies (n � 4) relying
on magnetic resonance imaging (MRI) (8.6%) or the only
available study evaluating NAFLD based on liver biopsy
(19.3%) (de Vries et al., 2020).

A potential limitation of these included studies is that they are
in all but one based on non-invasive techniques, thus only able to
estimate the presence and severity of NAFLD, let alone they are
validated in T1D populations (Marchesini et al., 2016). Indeed,
ultrasonography only can reliably ascertain a fat infiltration of
more than 20–30% of hepatocytes, while MRI-based techniques,
such as proton density fat fraction, are excellent to determine and
quantify even low-grade hepatic steatosis, but they are expensive,
not widely available and cannot determine the concurrent
presence of NASH or fibrosis (Marchesini et al., 2016; Gu
et al., 2019). Keeping this difference in discriminating ability
in mind, one would expect prevalence rates to be higher in the
MRI studies, due to the limited detection capacity of ultrasound
for low-grade steatosis. However, as seen in the meta-analysis of
de Vries et al., pooled prevalence rates of MRI studies in subjects
with T1D were lower, compared to those of ulftrasound-based
studies (8.6 vs 27.1%) (de Vries et al., 2020). It is possible that
referral bias partially explains this discrepancy since most
ultrasound studies had retrospective designs, where only
patients with T1D and liver abnormalities underwent
abdominal ultrasound. Studies were also conducted primarily
in tertiary centers. A third potential factor is that
ultrasonographic studies may falsely classify patients as having
NAFLD, when they actually might have had GlyH, mimicking
steatosis on ultrasound.

It is indeed important to highlight the lack of prospective
studies and the intrinsic risk of referral/selection bias in the
ultrasound and biopsy-based studies since most studies
originate from tertiary care centers and rely on retrospective
analysis of those patients that had either imaging or biopsy. To
strengthen this hypothesis, a very recent cross-sectional study,
not included in the aforementioned meta-analysis, recruited 103
participants without any selection criteria besides T1D, excessive
ethyl consumption, or the absence of secondary liver diseases to
evaluate NAFLD prevalence (Barros et al., 2021). This study
reported that the prevalence of steatosis was 12.6% based on
classical ultrasound and 16.8% based on controlled attenuation
parameter (CAP), a novel ultrasound-based marker of steatosis
available on the Fibroscan© device (Echosens, Paris, France). One
important remark towards this study, in which NAFLD was only
associated with the presence of the metabolic syndrome, is that
the median hemoglobin A1c (HbA1c), a marker of longitudinal
metabolic control, was 8.6% (IQR 2.1), which implies general
poor metabolic control in this cohort. Another recently published
study, investigated the association between visceral fat and

NAFLD, assessed with MRI, in T1D. This was also a
prospective study, without selection bias, that reported a
rather low prevalence of NAFLD (11.6%) and an important
association with visceral fat volume, stressing the association
between metabolically unhealthy fat and NAFLD in T1D. Larger
and unbiased population-wide studies are needed to address the
epidemiology of NAFLD in T1D more accurately.

Currently, clinical awareness and systematic screening for
NAFLD in T1D is globally virtually absent since knowledge of
the impact of NAFLD on clinical outcomes in T1D is scarce.
Unfortunately, NAFLD encompasses both a hepatic as a systemic
health burden (Estes et al., 2018). Within the disease spectrum of
NAFLD, liver steatosis can progress towards NASH, fibrosis,
cirrhosis, and hepatocellular carcinoma (HCC), but it also
poses an increased risk of cardiorenal morbidity and mortality
(Marchesini et al., 2016). Epidemiological data on the progression
rate towards end-stage liver disease are currently lacking in T1D,
but evidence shows that in patients with NAFLD and T2D the
risk of disease progression and overall and liver-related mortality
is higher than in NAFLD patients without T2D (Stepanova et al.,
2013). One study determined the natural history of patients with
T1D and histologically proven chronic liver disease and found
that 7% of patients with NAFLD developed cirrhosis over time.
Furthermore, compared to the general population, there was a
trend towards a 1.875-fold increased cirrhosis incidence in
relatively young (<55 years) T1D patients, compared to the
general population (Harman et al., 2014). Data on HCC in
T1D-related NAFLD are absent to the best of our knowledge.
Some studies have demonstrated associations between the
presence of NAFLD and worse cardiorenal outcomes in T1D
patients, but these studies originate from one research group only,
meriting further confirmation in other cohorts (Targher et al.,
2010; Targher et al., 2012a; Targher et al., 2012b; Mantovani et al.,
2016). Nevertheless, these limited set of data indicate a potential
association with hepatic and cardiometabolic risks, similar to
findings in T2D cohorts, which might contribute to the relative
excess mortality still present in T1D cohorts (Kasper et al., 2021;
Przybyszewski et al., 2021). Therefore, NAFLDmust be seen as an
important potential hepatic and systemic complication in T1D
patients.

Fatty Liver Disease in Type 1 Diabetes:
Pathophysiology
Several critical pathways are leading to diabetes-induced liver
damage. Firstly, it is important to stress the differences,
similarities, and overlaps between T1D and T2D, since both
conditions are hallmarked by hyperglycemia, but have utterly
different underlying mechanisms. T1D is, as mentioned above, a
condition characterized by absolute insulin deficiency, while T2D
primarily features insulin resistance, but can result in insulin
deficiency as well when insulin production is depleted due to
exhaustion. This means that most patients with T2D, in the early
stages, are characterized by hyperinsulinemia, while insulin-
dependent subjects with T2D and T1D are exposed to variable
insulin gradients due to exogenous administration of insulin.
Secondly, we emphasize the independent role of obesity and
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obesity-driven mechanisms of tissue damage, mostly, but not
exclusively through means of insulin resistance.

Insulin resistance and hyperinsulinemia are the predominant
causative factor for the development and progression of fatty liver
disease (Marchesini et al., 1999; Buzzetti et al., 2016; Haas et al.,
2016; Petta et al., 2016; Kitade et al., 2017; Manco, 2017;
Gastaldelli and Cusi, 2019). While classically only causatively
associated with T2D, recent studies have clearly indicated that
visceral obesity, metabolic syndrome, and insulin resistance are
increasingly common in T1D, so this mechanism is likely to occur
in T1D as well (DeFronzo et al., 1982; Greenbaum, 2002; De
Block et al., 2005; Stadler et al., 2010; Regnell and Lernmark, 2011;
Donga et al., 2015; De Block et al., 2018; Priya and Kalra, 2018;
American Diabetes Association, 2021a). Studies prospectively
following new-onset patients with T1D, stratified by the
presence of the metabolic syndrome at start or appearance
thereafter, are therefore essential to disentangle the
independent role of the metabolic syndrome on the
development or course of metabolic complications, including
NAFLD. It is important to mention that NAFLD is not always
associated with the metabolic syndrome. A growing number of
genetic risk alleles, including but not limited to PNPLA3 and
TM6SF2, are associated with fatty liver disease as well (Eslam and
George, 2020). Furthermore, these genetic contributions to
NAFLD seem to exert a protective effect on cardiovascular
risk, which is progressively associated with metabolic NAFLD
(Stefan et al., 2019). Data on NAFLD risk alleles in T1D-
associated NAFLD are lacking but are needed to fully
appreciate the role of NAFLD in the cardiometabolic risk
profile of patients with T1D.

In states of insulin resistance and hyperinsulinemia, liver
lipogenesis is increased, while fatty acid oxidation and
triglyceride secretion via very low-density lipoprotein (VLDL)
are decreased. Dyslipidemia is further enhanced due to peripheral
lipolysis increasing the circulating of free fatty acids (FFA) that
are then taken in by the liver (Donnelly et al., 2005). Obesity,
resulting in expansion of the visceral adipose tissue, especially
when its maximum storage capacity is reached, results in
lipotoxicity leading to even higher levels of FFA, ectopic fat
accumulation, decreased levels of anti-inflammatory
adipocytokines such as adiponectin, and higher levels of pro-
inflammatory adipocytokines and chemokines leading to a
chronic inflammatory state, further fueling insulin resistance
(Van Gaal et al., 2006; Shoelson et al., 2007; Marseglia et al.,
2014; Tarantino et al., 2019; Delli Bovi et al., 2021). Adiponectin is
pivotal for hepatic insulin sensitivity and is lower in patients with
NAFLD compared to those without (Francque et al., 2012;
Shabalala et al., 2020). Obesity and overnutrition also lead to
increased oxidative stress, reflecting the imbalance between
production and removal of reactive oxygen species (ROS),
which plays a key role in the development of insulin resistance
and liver tissue damage (Marseglia et al., 2014; Delli Bovi et al.,
2021). Furthermore, hepatic lipid overload induces
overproduction of ROS, leading to intracellular damage and
dysfunction affecting amongst others insulin signaling (Rolo
et al., 2012; Tarantino et al., 2019). Nevertheless, antioxidant
treatment of obesity or NAFLD thus far has shown little success

(Sanyal et al., 2010; Rolo et al., 2012) and the antioxidant vitamin
E is only recommended for nondiabetic patients with NAFLD.

The immune system is also involved, with macrophages/
Kupffer cells, natural killer cells, and T-cells adding to the
pro-inflammatory state and the development of NASH (Kitade
et al., 2017; Van Herck et al., 2019; Vonghia et al., 2019). Immune
activation will also further increase systemic insulin resistance
creating a vicious cycle (Chen et al., 2017). Additionally, the liver
is susceptible to hyperglycemia-induced oxidative stress involving
the diacylglycerol (DAG)–protein kinase C (PKC)–NADPH-
oxidase axis, leading to liver injury (Lucchesi et al., 2013;
Gargouri et al., 2016; Volpe et al., 2018).

Another factor more specifically for insulin-dependent
diabetes is the altered dynamic of insulin delivery and
clearance in case of exogenous insulin administration. Blood
from the portal vein mixes with blood from the hepatic artery
in the liver sinusoids where, due to endothelium fenestrations,
insulin can move freely to the space of Disse. Once it reached the
space of Disse, insulin can be absorbed by the hepatocytes. Upon
its secretion from the pancreas into the portal circulation,
approximately 50–80% of insulin is cleared during first-pass
transit through the liver, primarily by a receptor-mediated
process carried out by hepatocytes (Polonsky et al., 1988;
Najjar and Perdomo, 2019). Smaller amounts are degraded by
Kupffer cells (15%), while non-receptor-mediated pinocytosis of
insulin by hepatocytes may significantly increase insulin uptake,
hence first pass elimination, at high circulating insulin
concentrations (Duckworth et al., 1998). Intracellularly, the
insulin-degrading enzyme (IDE) plays a major role in actual
insulin clearance. Models have shown that patients with T2D
have lower IDE levels contributing to hyperinsulinemia (Valera
Mora et al., 2003; Pivovarova et al., 2015; Merino et al., 2020).

Insulin release from β-cells in healthy individuals is biphasic:
following an increase in glucose, there is an initial peak secretion
followed by a second excretion with slower progression to
maximal secretion levels, persisting until glucose is cleared to
normal (Rorsman et al., 2000). Circulating insulin levels are
known to oscillate with high frequency. This is important
since continuous insulin exposure downregulates insulin
receptor density of target cells. The less variation in
oscillation, the more insulin is needed to provide cellular
effects (Bergsten, 2000). Subcutaneously administered insulin
is absorbed in the bloodstream, hampers this oscillation, and
only a fraction of it reaches the liver via the portal vein compared
to normal conditions (Regnell and Lernmark, 2011). This altered
kinetic implies the development of a relative insulin resistance
and an increased insulin need, accompanied by systemic and
hepatic effects. Diabetic rat models have shown that in the liver
expression of GLUT2, a glucose transporter, is increased in states
of hyperglycemia, but can be corrected to normal when
euglycemic conditions are reached (Burcelin et al., 1992).
However, due to potential upregulation of GLUT2, especially
within patients with poor metabolic control, glucose gets
transported into the liver, where it is converted into fat,
contributing to hepatic steatosis. If fat accumulation in T1D,
and also in insulin-dependent T2D, is indeed mediated by
conversion from carbohydrates, aberrations in glycogen
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metabolism are also likely to be present in the liver. Indeed,
insulin downregulates hepatic gluconeogenesis in normal
conditions by downregulation of phosphoenolpyruvate
carboxykinase and glucose-6-phosphatase and stimulates
glycogen synthetase activation leading to glycogen synthesis
(Han et al., 2016; Zhang et al., 2018a). When glycogen
synthesis pathways are saturated due to long-lasting
hyperglycemia, excess glucose is shunted away to lipogenic
pathways (Flatt, 1995).

A very important question to address is the intrahepatic
paradox of insulin resistance. Since insulin normally
suppresses gluconeogenesis and promotes de novo lipogenesis,
insulin resistance at the level of the liver would normally lead to
both ineffective hampering of gluconeogenesis in combination
with inhibition of lipogenesis (Brown and Goldstein, 2008; King
et al., 2016). Thus, selective insulin resistance in fatty liver disease
causes continuous hepatic glucose production, while the insulin
sensitivity for lipid pathways leading to lipogenesis paradoxically
remains intact (Santoleri and Titchenell, 2019). A recent study
tested this hypothesis in obese humans with NAFLD and found
that acute increases in lipogenesis are not explained by altered
molecular regulation of lipogenesis through a paradoxical
increase in lipogenic insulin action (Ter Horst et al., 2021).
They suggest that increases in lipogenic substrate availability
may be the key. Whether this applies as well in individuals
with T1D is unknown.

Insulin influences intrahepatic fat synthesis by increasing
sterol regulatory element-binding proteins (SREBPs) in
hepatocytes (Dif et al., 2006) and their activity via
upregulation of upstream stimulators of SREBP (Sun et al.,
2016; Steensels et al., 2020). SREBPs are transcription factors
activating the expression of various genes involved in the
synthesis and uptake of cholesterol, fatty acids, triglycerides,
and phospholipids (DeBose-Boyd and Ye, 2018). The SREBP-
1c protein is essential for glucokinase, liver-type pyruvate kinase
(LPK), fatty acid synthase (FAS), and acetyl-CoA-carboxylase
(ACC) expression, and is upregulated in the presence of
hyperglycemia (Shimomura et al., 1999; Bertolio et al., 2019).
While LPK is mostly involved in converting
phosphoenolpyruvate to pyruvate, the primary source for
acetyl-CoA used for fatty acid synthesis, FAS and ACC exhibit
effects on fatty acid transport to mitochondria, reducing
mitochondrial fatty acid oxidation (Koo, 2013). An additional
transcription factor, namely carbohydrate response element-
binding protein (ChREBP), can also stimulate LPK gene
transcription. Upregulation of this reaction happens also in
hyperglycemic states but is not dependent on insulin (Iizuka
and Horikawa, 2008). Therefore, both SREBPs and ChREBP are
potential pivotal contributors to fatty liver disease in T1D and
insulin-dependent T2D (Regnell and Lernmark, 2011; Benhamed
et al., 2012).

Not only caloric excess but also the composition of nutrients is
of importance. In Western diets, excessive consumption of
fructose, as found in industrially processed foods and soft
drinks, is often present. Fructose is considered partially
responsible for fat accumulation and progression towards
NASH (Brown et al., 1997; Lim et al., 2010; Jegatheesan and

De Bandt, 2017). Chronic fructose consumption leads to
activation of the abovementioned SREBP-1c and ChREBP
provoking hepatic energy homeostasis (Roeb and Weiskirchen,
2021). Furthermore, fructose is broken down into pyruvate faster
than glucose, leading to more substrate availability for de novo
lipogenesis. Applied on patients with T1D, dietary restrictions are
the first step in treatment, implying that diets rich in fructose are
often avoided by these patients. However, hypoglycemia, which
still occurs daily in the majority of individuals with T1D,
demands swift treatment with sugar-rich beverages such as
soft drinks and/or ingestion of industrially processed food,
often rich in fructose. As a consequence, weight gain due to
hypoglycemia-induced defensive snacking is an important factor
contributing to overweight or obesity (Bumbu et al., 2018).
Therefore, in individuals with T1D, especially when insulin
therapy is not optimally tailored, weight gain due to energy-
and fructose-rich defensive snacking could be a specific
additional pathway leading to NAFLD susceptibility.

Besides the absence of insulin production and the effects of
insulin replacement therapy, T1D features dysregulation of other
pancreatic hormones that might contribute to NAFLD. Glucagon
is a peptide hormone produced by α-cells in the pancreas,
counteracting the effects of insulin to secure glucose
homeostasis. Glucagon secretion is normally suppressed by
hyperglycemia and the paracrine function of insulin, the latter
not achieved with exogenous insulin, partially explaining
hyperglucagonemia seen in T1D (Unger and Orci, 2010).
Furthermore, amylin secretion is lost, which contributes to
hyperglucagonemia. Amylin is a polypeptide hormone secreted
by pancreatic β-cells in conjunction with insulin in response to
nutrient stimuli (Edelman and Weyer, 2002). In normal
conditions, amylin complements the former by suppressing
glucagon secretion, resulting in the further suppression of
hepatic glucose production in the presence of a postprandial
glucose load, combined with slowing of gastric emptying to avoid
postprandial glucose excursions (Nyholm et al., 1999; Edelman
and Weyer, 2002; Fineman et al., 2002). T1D is therefore
characterized by a paradoxical postprandial increase in
glucagon, with on top of that a blunted glucagon response to
hypoglycemia (Brown et al., 2008; Thivolet et al., 2019). Studies
with pramlintide, a synthetic amylin analog, showed
improvements in metabolic control, while a recent study with
a dual hormone (insulin and pramlintide) artificial pancreas also
showed improved time-in-range, indicating more time spent in
optimal glycemic control (Singh-Franco et al., 2007; Haidar et al.,
2020). Glucagon increases hepatic lipolysis and fatty acid
oxidation, while it inhibits hepatic lipogenesis and the
secretion of triglycerides and VLDLs (Galsgaard et al., 2019).
Thus, glucagon could exert a protective effect on the liver.
However, recent insights suggest the occurrence of hepatic
glucagon resistance in patients with NAFLD, which promotes
liver steatosis and hyperglycemia (Galsgaard, 2020). Evidence in
T1D patients is lacking, but it can be hypothesized that in states of
basal hyperglucagonemia, subsequent hepatic glucagon resistance
will further contribute to worsening of both glycemic control and
NAFLD. Glucagon and amylin therapeutics were tested in T1D
models mostly for glycemic control, but further studies are
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needed to determine whether amylin could play a role in
metabolic endpoints for patients with T1D since preliminary
results showed weight loss in patients with T1D treated with
pramlintide (Dunican et al., 2010).

Glucagon-like peptide 1 (GLP-1) is a hormone of the incretin
system that is secreted upon food intake and acts on satiety,
gastric emptying, and glycemia. GLP-1 levels are lower in T1D
patients, while differences were also noted between C-peptide
positive and negative individuals with T1D. The levels of GLP-1
correlate with glucagon values and the presence of the metabolic
syndrome (Blaslov et al., 2015; Zibar et al., 2015; Thivolet et al.,
2019). Due to their pleiotropic glucose-dependent effects that
improve glycemic control and reduce body weight, GLP-1
analogs are currently approved in T2D, but not in T1D
despite the presence of a deficiency and favorable results in
trials with liraglutide (Dimitrios et al., 2020). In NAFLD
cohorts, GLP-1 agonists reduce liver fat content and reduce
NASH activity (Mantovani et al., 2021). Whether liver
steatosis and GLP-1 levels are related in T1D-associated
NAFLD is unexplored, but the potential add-on effects of
GLP-1 agonists on liver fat content and NASH, on top of
glycemic control and weight could aid in the debate of
supportive GLP-1 therapy in patients with T1D, especially in
those with metabolic syndrome.

It can be stated that insulin highly mediates intrahepatic fat
homeostasis and can be linked to fatty liver disease. Fatty liver
disease negatively affects insulin clearance and sensitivity,
creating a vicious circle (Kotronen et al., 2007). The addition
of insulin therapy in T2D subjects reduces liver fat (Juurinen
et al., 2007). Pooled analysis showed that the HbA1c level was
2.7 mmol/mol lower in T1D subjects without NAFLD compared
to those with NAFLD (de Vries et al., 2020). However, meta-
regression analysis did not find an association between HbA1c
and NAFLD (de Vries et al., 2020). This can hypothetically be
explained based on the mechanisms outlined before since HbA1c
only informs about mean blood glucose levels over a 2–3 month
period, it cannot distinguish between patients with high
variability in blood glucose compared to low differences in
blood glucose, while upregulation of fatty-liver inducing
molecules is dependent on not only times spent in high
glycemia, but also fluctuations in glucose and insulin levels.
The novel diabetes parameters time in range (TIR: 70–180 mg/
dl) and coefficient of glycemic variation are continuous glucose
monitoring-derived variables showing the time spent in ideal
glucose range and the oscillation throughout the day, respectively.
Further research is needed to confirm whether a lower TIR and
higher glucose variability are associated with a higher hepatic fat
content.

From Non-Alcoholic Fatty Liver Disease to
Metabolic Dysfunction-Associated Fatty
Liver Disease: Possible Consequences of a
Paradigm Shift
Recently, the term metabolic dysfunction-associated fatty liver
disease (MAFLD) was coined as an alternative to NAFLD to
better reflect the current knowledge on the factors driving

NAFLD as well as to address existing issues with the
definition of NAFLD, such as the exclusion of other chronic
liver diseases while they actually might co-exist (e.g. chronic viral
hepatitis and NAFLD) and subsequent consequences on studies
and trials (Eslam et al., 2020; Ratziu et al., 2020). The MAFLD
criteria dictate that when hepatic steatosis is present in adults,
MAFLD is diagnosed when: 1) overweight or obesity is present or
2) T2D is present or 3) at least two risk abnormalities are present
including elements of the metabolic syndrome, insulin resistance
according to the homeostasis model (HOMA-IR) or C-reactive
protein levels above 2 mg/L (Eslam et al., 2020).

Applying the MAFLD nomenclature and definitions is
potentially not without problems in T1D. Firstly, the criteria
imply that overweight patients with T1D automatically meet the
MAFLD criteria when steatosis is present based on imaging
techniques, biomarkers, or histology. As we will see below, this
might lead to the erroneous diagnosis of MAFLD since
ultrasound, the most used imaging tool, cannot distinguish
reliably between steatosis and other hepatopathies (Zhang
et al., 2018b). Additionally, the accuracy of NAFLD
biomarkers is unexplored in T1D cohorts, but two studies
found very high and incongruent prevalence rates based on
multiple NAFLD scoring systems, indicating the possibility of
overestimation and the need for cross-validation (Singh et al.,
2018; Sviklāne et al., 2018). Secondly, in several lean subjects with
T1D, some criteria of the metabolic syndrome, such as arterial
hypertension and dyslipidemia, may be a consequence of diabetes
itself (e.g. T1D-induced nephropathy) rather than reflecting
underlying metabolic disease impeding proper use of these
criteria (Chillarón et al., 2011; Vergès, 2020). On the other
hand, the HOMA-IR model cannot be used in T1D because of
absolute insulin deficiency, reducing the number of applicable
risk factors for these patients. Lastly, patients with co-existent
liver disease or excessive alcohol intake are excluded according to
NAFLD criteria but are included according to MAFLD criteria.
Therefore, studies are needed comparing NAFLD and MALFD
criteria in T1D cohorts to evaluate the clinical impact of both
definitions.

Glycogenic Hepatopathy: Epidemiology
GlyH is a rare clinical condition that is hallmarked by excessive
accumulation of glycogen in the hepatocytes. It is seen in patients,
mostly children and adolescents, with poorly controlled T1D, and
is mostly described in case reports and case series (Table 1). This
hepatopathy was initially described as part of Mauriac syndrome,
a rare complication of poorly controlled T1D, with extreme liver
enlargement due to glycogen deposition, growth failure,
cushingoid features and delayed puberty. The term GlyH was
later coined to address liver disease in diabetes characterized by
mere glycogen overload attributable to poor glycemic control,
without other features of Mauriac syndrome (Torbenson et al.,
2006). The large majority of cases of GlyH are seen in
uncontrolled T1D, but rare reports in T2D patients, mostly
when insulin therapy is present, are also made (Olsson et al.,
1989; Tsujimoto et al., 2006; Umpaichitra, 2016; Kumar et al.,
2018). The gold standard to diagnose GlyH is liver histology since
no serologic test nor specific imaging study is currently available
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TABLE 1 | Summary of published cases of GlyH in T1D.

Author N Age group Clinical features Metabolic control
(HbA1c)a

Histologically confirmed
GlyH?

Hepatomegaly Elevated
transaminases

Hyperechogenicity

Evans et al. (Evans
et al., 1955)

4 Mixed 4/4 NA NA Poor (NA) Yes

Ruschhaupt and
Rennert (Ruschhaupt
and Rennert, 1970)

1 Children 1/1 1/1 NA NA Yes

Berman (Berman,
1973)

1 Adults 1/1 1/1 NA NA Yes

Olsson et al. (Olsson
et al., 1989)

4 Mixed NA 4/4 0/2* Poor (NA) Yes

Chatila and West
(Chatila and West,
1996)

11 Adults 9/11 9/11 NA Poor (NA) Yes

Munns et al. (Munns
et al., 2000)

3 Adolescents 3/3 3/3 1/2* Poor (14.1; 13.3,12.2%) Yes

Torres and Lopez
(Torres and López,
2001)

1 Adults 1/1 1/1 1/1 Poor (8.1%) Yes

Carcione et al.
(Carcione et al., 2003)

2 Children 2/2 2/2 NA Poor (NA) Yes

Torbenson et al.
(Torbenson et al.,
2006)

14 Mixed 9/14 12/14 NA Poor in all (only few
cases had a mentioned
HbA1c, ranging from 9.9
to 13.5%)

Yes a steatosis present in 2
cases, NASH in 1

Sayuk et al. (Sayuk
et al., 2007)

2 Adolescents 2/2 2/2 2/2 Poor (8.1%,16.0%) Yes

Cuthbertson et al.
(Cuthbertson et al.,
2007)

1 Adolescents 1/1 1/1 1/1 Poor (12.2%) Yes

Basset et al. (Bassett
et al., 2008)

1 Children 1/1 1/1 0/1 Poor (10.1%) Yes

Martocchia et al.
(Martocchia et al.,
2008)

1 Children 1/1 1/1 1/1 Poor Yes a steatosis

Hudacko et al.
(Hudacko et al., 2008)

1 Adolescents 1/1 1/1 1/1 Poor (13.3%) Yes

Abaci et al. (Abaci
et al., 2008)

1 Adolescents 1/1 1/1 1/1 Poor (11.1%) Yes a steatosis

Van den Brand et al.
(van den Brand et al.,
2009)

1 Adults 1/1 1/1 NA Poor (15.3%) Yes

Sweetser and
Kraichely (Sweetser
and Kraichely, 2010)

1 Adults 1/1 1/1 NA Poor (15.0%) Yes

Saxena et al. (Saxena
et al., 2010)

1 Adults 1/1 1/1 1/1 Poor (13.7%) Yes

Bua et al. (Bua et al.,
2010)

1 Adolescents 1/1 1/1 0/1 Poor (12.0%) Yes

El Karaksy et al.
(El-Karaksy et al.,
2010)

60/692 Children 13/60 27/60 17/60 Poor compared to
controls

5 biopsies performed, 3 in
patients with signs of GlyH:
3/3 had GlyH, 1/3 had
steatosis

Aljabri et al. (Aljabri
et al., 2011)

1 Children 1/1 1/1 1/1 Poor (13.0%) Yes

Murata et al. (Murata
et al., 2012)

1 Adults 1/1 1/1 1/1 New-onset
diabetes 6.2%)

Yes

Dantuluri et al.
(Dantuluri et al., 2012)

1 Children 1/1 1/1 NA Poor (11.0%) Yes

Saadi (Saadi, 2012) 1 Adolescents 1/1 1/1 1/1 Poor (11.0%) Yes
Lin et al. (Lin and Kao,
2012)

1 Children 1/1 11 NA Poor (12.8%) Yes

(Continued on following page)

Frontiers in Pharmacology | www.frontiersin.org October 2021 | Volume 12 | Article 7685767

Mertens et al. Distinguishing Diabetes-Associated Hepatopathy

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


TABLE 1 | (Continued) Summary of published cases of GlyH in T1D.

Author N Age group Clinical features Metabolic control
(HbA1c)a

Histologically confirmed
GlyH?

Messeri et al. (Messeri
et al., 2012)

1 Adults 1/1 1/1 1/1 Poor (10.3%) Yes a steatosis

Al-Hussaini et al.
(Al-Hussaini et al.,
2012)

22/106 Children 10/22 0/22 12/22 Case group had worse
HbA1c: 12.14 vs 10.7%

No biopsies performed

Imtiaz et al. (Imtiaz
et al., 2013)

1 Adolescents 1/1 1/1 NA Poor (14.6%) Yes

Saikusa et al. (Saikusa
et al., 2013)

2 Children 2/2 2/2 NA Poor (12.0%) No biopsies were taken,
differentiation with NAFLD
was done with dual-
echo MRI.

Cha et al. (Cha et al.,
2013)

3 Adults 1/1* 3/3 3/3 Poor (13.8,
12.9, 13.6%)

Yes

Butts et al. (Butts et al.,
2014)

1 Children 1/1 1/1 1/1 Poor (8.8%) Yes a steatosis

Fitzpatrick et al.
(Fitzpatrick et al., 2014)

31 Children 31/31 31/31 26/31 Poor (mean: 11.0%) 19 biopsies performed.
GlyH was present in 17
cases, inflammation in 8,
mild fibrosis in 14

Jeong et al. (Jeong
et al., 2014)

1 Children 1/1 1/1 NA Poor (10.7%) Yes

Martin and Tomlinson
(Martin and Tomlinson,
2014)

1 Children 1/1 1/1 NA Poor (10.4%) Yes

Parmar et al. (Parmar
et al., 2015)

1 Adults 1/1 1/1 NA Poor (NA) Yes

Atmaca et al. (Atmaca
et al., 2015)

1 Adolescents 1/1 1/1 1/1 Poor (NA) Yes

Brouwers et al.
(Brouwers et al., 2015)

4 Adolescents 4/4 4/4 NA Poor (9.5%) Yes

Garcia-Suarez et al.
(García-Suárez et al.,
2015)

1 Adults 1/1 1/1 1/1 Poor (10.5) Yes

Irani et al. (Irani et al.,
2015)

1 Adolescents 1/1 1/1 1/1 Poor (12.0%) Yes

Xu et al. (Xu et al., 2015) 1 Adults 1/1 1/1 NA Poor (14.6%) Yes
Deemer and Alvarez
(Deemer and Alvarez,
2016)

1 Adolescents 1/1 1/1 1/1 Poor (11.3%) Yes

Silva et al. (Silva et al.,
2016)

4 Adults 4/4 4/4 3/4 Poor (9.0, 10.1,
10.9, 15.7%)

Yes

Chandel et al. (Chandel
et al., 2017)

1 Children 1/1 1/1 NA Poor (10.5%) Yes

Ikarashi et al. (Ikarashi
et al., 2017)

4 Adults 4/4 4/4 NA Poor (11.7, 11.0,
13.6, 16.5%)

Yes a NASH in 3/4 cases

Mukewar et al.
(Mukewar et al., 2017)

36 Mixed 22/36 NA NA Poor (mean: 11.4%) 20 biopsies were performed,
all positive for GlyH

Al Sarkhy et al. (Al
Sarkhy et al., 2017)

1 Children 1/1 1/1 0/1 Poor (11.6%) Yes

Shah et al. (Shah et al.,
2017)

1 Adults 1/1 1/1 NA NA Yes

Maharaj et al. (Maharaj
et al., 2017)

1 Adults 1/1 1/1 NA Poor (12.3%) Yes a signs of drug-induced
liver injury

Asada et al. (Asada
et al., 2018)

1 Adults 1/1 1/1 1/1 Poor (12.9%) Yes a NASH

Abboud et al. (Abboud
et al., 2018)

1 Adolescents 1/1 1/1 0/1 Poor (12.4%) Yes a NASH

Glushko et al.
(Glushko et al., 2018)

1 Adolescents 1/1 1/1 1/1 Poor (14.6%) Yes

Lombardo et al.
(Lombardo et al., 2019)

1 Children 1/1 1/1 0/1 Poor (13.1%) Yes (as part of Mauriac
syndrome)

Patita et al. (Patita
et al., 2019)

1 Adults 1/1 1/1 0/1 Poor (14.8%) Yes a steatosis

(Continued on following page)
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to accurately diagnose GlyH (Sherigar et al., 2018). Clinical and
biochemical features, supported by imaging studies can however
guide the physician towards GlyH, but awareness is needed since
the manifestation of GlyH is very similar to NAFLD, and occurs
in the same subtype of patients (see Table 2). A liver biopsy will
typically show swollen hepatocytes with cytoplasmatic glycogen
accumulation. Associated steatosis is often described, stressing
the clinical overlay of both hepatopathies (Figure 1). A
hematoxylin and eosin stain of the specimen shows pale,
enlarged hepatocytes with prominent plasma membranes,
increased cytoplasmic volume, and empty, glycogenated nuclei
featuring ring-like chromatin elements (Sherigar et al., 2018).
Adding diastase to the Periodic-Acid Schiff stained specimen,
enabling digestion of glycogen in the hepatocytes, would lead to
the appearance of “ghost cells” (Shah et al., 2017). It is important
to mention, that in the histology of NAFLD, besides steatosis,
inflammation, and fibrosis, hepatocellular glycogenated nuclei
are also often described, facilitating differentiation between
NASH and alcoholic steatohepatitis, since they are rarely seen
in the latter (Pinto et al., 1996; Takahashi and Fukusato, 2014).

Furthermore, the occurrence of glycogenated nuclei in NAFLD
cases is associated with disease progression, which may be
reflected in the number of cases of concomitant NASH in
GlyH case reports (Table 1) (Schwertheim et al., 2020).

GlyH and hepatic steatosis showcase important similarities on
ultrasound imaging studies. Ultrasound studies will reveal
hyperechogenic liver parenchyma and hepatomegaly,
mimicking NAFLD (Figure 2). Moreover, criteria to define
echogenicity or liver size are subjective and often ill-defined.
Computed tomography (CT) could aid to differentiate between
GlyH and NAFLD, since GlyH features an increased liver density
on CT, whereas liver density is decreased in patients with
NAFLD, especially compared to the density of the spleen
(Figure 3) (Sweetser and Kraichely, 2010). However, CT
diagnosis of NAFLD is not recommended in guidelines, nor
studied in T1D cohorts, so the utility of CT needs further
validation, especially due to the radiation burden associated
with CT, which is not present in MRI-based imaging (see
Table 2) (Marchesini et al., 2016; Chalasani et al., 2018; de
Vries et al., 2020). Furthermore, as mentioned above, and in

TABLE 1 | (Continued) Summary of published cases of GlyH in T1D.

Author N Age group Clinical features Metabolic control
(HbA1c)a

Histologically confirmed
GlyH?

Aydin et al. (Aydın
et al., 2019)

17/110 Children and
adolescents

NA Not significantly
higher compared

to controls

17/17 Mean HbA1c 10.1% in
cases, 11.8% in controls

No biopsies were described

Azariadis et al.
(Azariadis et al., 2019)

1 Adolescents 1/1 1/1 0/1 Poor (11.2%) Yes

Lui et al. (Lui et al.,
2019)

1 Adults 1/1 1/1 0/1 Poor (18.7%) Yes

Medhioub et al.
(Medhioub et al., 2019)

1 Adolescents 1/1 1/1 01 Poor (10.5%) Yes

Sharma et al. (Sharma
et al., 2019)

1 Adolescents 1/1 1/1 NA Poor (12.1%) Yes

Regan et al. (Regan
et al., 2020)

1 Adults NA 1/1 NA Poor (13.0%) Yes

Aluko et al. (Aluko
et al., 2020)

1 Adults 1/1 1/1 NA Poor (11.5%) Yes

Alenazy et al. (Alenazy
et al., 2020)

1 Adolescents 1/1 1/1 1/1 Poor (11.5%) Yes

Fujisaki et al. (Fujisaki
et al., 2020)

1 Adult 1/1 1/1 1/1 No HbA1c provided,
poor control mentioned
in text

Yes

Hsu et al. (Hsu et al.,
2021)

1 Adults NA 1/1 0/1 NA Yes

Abu et al. (Abu et al.,
2021)

2 Children 2/2 2/2 0/2 Poor (case 1 ranging
from 12.5 to 16.1%,
case 2 ranging from
10.0 to 13.3%)

Yes

Adams et al. (Adams
et al., 2021)

1 Adolescents 1/1 1/1 1/1 Poor (13.5) Yes a steatosis

Azhar et al. (Azhar
et al., 2021)

1 Adults 1/1 1/1 1/1 Poor (9.5–11%) Yes

Ahmed et al. (Ahmed
et al., 2021)

1 Adolescents 1/1 1/1 1/1 Poor (14.0%) Yes a steatosis and fibrosis

Fox et al. (Fox et al.,
2021)

1 Children 1/1 1/1 1/1 Poor (14.0%) Yes (as part of Mauriac
syndrome)

aReflected by a HbA1c > 8%; *: ultrasound is mentioned, but echogenicity of the liver is unmentioned, and therefore probably normal; GlyH: glycogenic hepatopathy.
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Table 1, steatosis is often co-present in GlyH and vice versa,
potentially attenuating the contrast on CT and impeding
diagnosis. Neither CT nor ultrasound are thus useful tests for
the definitive diagnosis of GlyH. However, MRI-based imaging
studies might be beneficial, since MRI can distinguish fat from
glycogen deposition or acute tissue injury. MRI imaging in GlyH
shows low intensities on T2 weighted images, whereas T1
weighted gradient-dual-echo MRI images with in-phase and
opposed-phase conditions could efficiently differentiate hepatic
glycogen from liver steatosis (Table 2 and Figure 4) (Sweetser
and Kraichely, 2010; Saikusa et al., 2013).

It is important to mention that almost all literature concerning
NAFLD in T1D patients comes from ultrasound-based studies
alone, while the majority of GlyH reports are based on initial
ultrasound, followed by histology. One pediatric cross-sectional
study addressed this issue by using well-defined ultrasound
parameters in a cohort of 106 children with T1D. Twenty-one
percent of cases had abnormal liver ultrasounds (hepatomegaly or

hyperechogenicity) without underlying secondary causes of
hepatopathy (Al-Hussaini et al., 2012). Those with
hyperechogenicity had poorer glycemic control (mean HbA1c
12.14 vs 10.7%, p-value � 0.09), which is in line with the
hypothesis that fat and/or glycogen depositions are likely to be
causing the sonographic features, since their association with
glycemic control in T1D subjects. It should also be noted,
regarding the latter study, that both case and control groups
display very poor glycemic control, which is not in line with
current treatment standards (Lavens et al., 2021).

Whereas transaminase levels are often elevated in cases of
GlyH, NAFLD patients do not always display an elevation of liver
enzymes. One study compared T1D patients with and without
hepatopathy (based on imaging, not on histology) and did not
find significant correlations between ALT and AST levels and
aberrant ultrasonographic imaging, but hyperechogenicity was
indeed correlated to poor glycemic control (Aydın et al., 2019).
One pooled analysis of 192 documented cases of histologically

TABLE 2 | Clinical differentiation between NAFLD and GlyH in T1D.

NAFLD GlyH

Age group No specific age group Both children, adolescents and adults can be affected, although most
reported cases are in adolescents due to intrinsic difficulties of obtaining
metabolic control in this subgroup

Gender No known sex differences No known sex differences
Anthropometric
features

Metabolic syndrome often present, often abdominal adiposity. Metabolic
control is often poor, but not so distinctively deteriorated as in GlyH

There is a strong association with (often extremely) poor metabolic
control, but not with the presence of the metabolic syndrome nor
abdominal obesity

Abdominal
discomfort

Can be present due to liver capsule distention, but is rather uncommon Often described due to rapid liver capsule distention
Nausea and vomiting is described, often in cases were diabetic
ketoacidosis is present

Physical examination Signs of hepatomegaly may be present. Signs of liver cirrhosis might be
present in advanced NAFLD.

Tender hepatomegaly is described

Ascites May be present in NAFLD-cirrhosis. No reports of ascites in T1D patients
available

Rarely seen, due to sinusoidal compression by swollen hepatocytes due
to glycogen accumulation. No doppler studies available to evaluate the
presence of ultrasonographic features of sinusoidal obstruction

Liver enzymes Normal or mildly elevated Mild to moderate/severe elevation of ALT, AST, with predominant
elevation in AST levels, although a mixed or predominantly cholestatic
pattern can occur. Marked elevations in the range of 100-fold the upper
limit of normal are reported

Lactate levels Normal Elevation is described, often in patients with ketoacidosis, but also in
those without

Liver synthetic
function

Preserved Preserved

Ultrasonography Hyperechogenic compared to the right kidney parenchyma Hyperechogenic compared to the right kidney parenchyma.
Hepatomegaly is commonly presentSevere steatosis features echo-beam attenuation with loss of diaphragm

visibility and loss of peripheral portal vein visibility
Hepatomegaly is possible due to fatty infiltration, but usually less
pronounced compared to GlyH

CT Hypodense compared to the spleen, indicative of steatosis Hyperdense compared to the spleen, although co-existent steatosis can
attenuate this contrast effect. One case mentioned multiple arterial-
enhancing hepatic nodules (Hsu et al., 2021)

MRI Difference in the intensities of T1 weighted gradient-dual-echo MRI
images with in-phase and opposed-phase conditions indicative for
steatosis

No difference in the intensities of T1 weighted gradient-dual-echo MRI
images with in-phase and opposed-phase conditions indicative for GlyH

Biopsy Micro- or macrovesicular steatosis accompanied by inflammation,
ballooning and/or fibrosis in NASH.

Hematoxylin and eosin (HE) stain would show pale and enlarged
hepatocytes with prominent plasma membranes, increased cytoplasmic
volume, and numerous glycogenated nuclei, which are empty nuclei with
ring-like chromatin elements

Rarely a glycogenated nuclei can be observed, which is potentially
associated with progressive disease

Addition of diastase to the Periodic-Acid Schiff stained specimen causes
enzymatic breakdown of glycogen in the hepatocytes
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proven GlyH showed that both ALT and AST are moderate-to-
severely elevated in 78 and 76% of cases, with an AST-
predominant pattern and improvement when glycemic control
was obtained (Haffar et al., 2021). In this pooled analysis, the
median HbA1c was 12% and median BMI 21 kg/m2, stressing the
correlation with extremely poor glycemic control, which is hardly
seen any longer in current practice, but not necessarily with
abdominal adiposity. To our knowledge, no published
comparisons of transaminase levels are made between
histology-proven NAFLD versus GlyH patients. The problem,
therefore, remains that currently, liver biopsy is the only reliable
way to differentiate between NAFLD or GlyH. However, it is
known that GlyH is associated with extremely poor metabolic
control, and is reversible when glycemia ameliorates, making it
self-limiting. Therefore, physicians prefer to try to ameliorate the
metabolic control and wait for the clinical image to recover,
instead of performing liver biopsy. This makes the exact
prevalence of GlyH extremely difficult to assess. Furthermore,
especially inWestern countries, due to the introduction of several

technologies such as intermittent or continuous glucose
monitoring devices and insulin pumps, the majority of T1D
patients will not reach such dramatic glycemic control leading
into GlyH. Finally, the ethical limitations of liver biopsy pose the
same challenge to determine the exact prevalence of NAFLD. To
date, there are no large epidemiological studies or meta-analyses
available assessing the prevalence and incidence of GlyH in T1D.
We have summarized all relevant case series and studies focusing
on GlyH in T1D in Table 1.

Glycogenic Hepatopathy: Pathophysiology
Asmentioned above, it can be hypothesized that fatty liver disease
in T1D originates partly from conversion from excess
carbohydrates into fat. Therefore, it can be anticipated that
glycogen metabolism is affected too. Indeed, glycogen
accumulation is described in T1D, especially in younger
patients with poor glycemic control.

Hepatocytes take up glucose, independently of insulin, by the
low-affinity, high-capacity glucose transporter GLUT2, which

FIGURE 1 | Histology features of GlyH and liver steatosis. Caption: (A) The liver parenchyma in GlyH is composed of enlarged, swollen hepatocytes with a pale
cytoplasm due to the accumulation of glycogen. In the center a hepatocyte with a glycogenated nucleus can be observed (black arrow) (HE, 40x). (B) The liver
parenchyma shows several steatotic hepatocytes, corresponding to macrovesicular steatosis (HE, 20x). A steatotic hepatocyte has a compressed nucleus, surrounded
by an “empty” cytoplasm. The empty appearance of the cytoplasm is due to the dissolution of the fatty acids in the cytoplasm during the technical process (white
arrow) (HE, 40x).

FIGURE 2 | Ultrasonographic features seen in both GlyH and liver steatosis. Caption: (A) A greyscale ultrasound image of the liver parenchyma compared to the
kidney will show hyperechogenicity of the liver in both GlyH and fatty liver disease, as seen in this 40-year old patient with T1D and NAFLD from our clinic. (B) In a normal
liver, the echogenicity of liver and kidney parenchyma is similar, as seen in this 42- year old patient with T1D from our clinic.
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facilitates the entry of glucose in the presence of high
concentrations of glucose in liver sinusoidal blood. Glucose is
then rapidly phosphorylated to glucose-6-phosphate by the
hepatic hexokinase isoform glucokinase. From glucose-6-
phosphate, glycogen is produced by the enzyme glycogen
synthase, via the precursor uridine diphosphate (UDP)-
glucose. Glycogen synthase exists in an active
dephosphorylated, and active phosphorylated form. The active
dephosphorylated structure of glycogen synthase is produced by
the action of a phosphatase enzyme, which is stimulated by
elevated glucose and insulin levels. (Roden and Bernroider,
2003; Regnell and Lernmark, 2011; Han et al., 2016; Petersen
et al., 2017; Sherigar et al., 2018). In T1D, insulin deficiency leads
to low hepatic glucokinase levels resulting in a decrease in
glucose-to-glycogen shunting. This, together with elevated
glucagon levels, will stimulate glycogenolysis and
gluconeogenesis as mentioned above. The balance between
hepatic glucose production and uptake will tilt towards output,
unless insulin is administered, which leads to a normalization of
glucose uptake by the hepatocyte and a rise in glycogen content,
which will persist even when blood glucose levels shift again. As a
result, hepatocyte glycogen accumulation is promoted by high
cytoplasmatic glucose concentration in the presence of insulin. Of

FIGURE 3 | CT imaging features of liver steatosis. Caption: Transverse
CT image of the liver showing decreased density of the liver compared to the
spleen in this 38-year old patient with NAFLD. In GlyH, the inverse image can
be witnessed with increased density compared to the spleen, but due to
concomitant steatosis, this contrast is potentially attenuated in metabolic
patients.

FIGURE 4 | MRI-imaging features of liver steatosis. Caption: MRI proton chemical shift imaging with (A) in-phase T1-weighted gradient-echo image showing
normal signal intensity of the hepatic parenchyma and (B) opposed-phase T1-weighted gradient-echo image showing a marked drop in signal intensity of the hepatic
parenchyma, indicating diffuse hepatic steatosis. In contrast, MRI proton chemical shift imaging with (C) in-phase and (D) opposed-phase T1-weighted gradient-echo
image showing normal signal intensity of the hepatic parenchyma indicating the absence of steatosis. In GlyH, as described by Saikusa et al., there is no drop in
intensity either between in- and out-of-phase images.
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note, the insulin dose is often injected in order to correct the overt
hyperglycemia, but is often not sufficient to restore adequate
glycemic control. Additionally, hepatic glycogenolysis is inhibited
in hyperglycemic conditions (Petersen et al., 1998). As seen in
Table 1, a large proportion of GlyH cases occur during childhood
or adolescence. This may be due to compliance issues in the early
phases of therapy, often characterized by insufficient or absent
insulin doses, leading to hyperglycemia, leading to correction
efforts shifting towards supraphysiological insulin doses
(Carcione et al., 2003). Furthermore, α-cell disturbances are
associated with T1D, making individuals more prone to
hypoglycemia due to compromised glucagon secretion. This
might contribute to difficulties in maintaining glycemic
control and tailoring insulin therapy as well (Yosten, 2018).
The pivotal factor in the pathogenesis of GlyH is therefore a
combination of severe fluctuation in levels of glucose and
administration of infra- and supraphysiological levels of
insulin to try and control the glycemia. It is unknown why
only a small subset of patients develops GlyH, since glycemic
fluctuations are so common in T1D patients. It is possible that the
introduction of long-acting insulin has dramatically decreased
the incidence of GlyH, due to its stabilizing effects (Sherigar et al.,
2018). Another hypothesis is genetic variation in the genes that
code for glycogen synthase, glucose-6 phosphatase activity or
glycogen phosphorylase kinase such as PHKG2, which is
described in Mauriac syndrome (MacDonald et al., 2016).

Clinical Practice Recommendation
Since GlyH presents itself mostly with elevated liver enzymes,
abdominal discomfort or clinical signs in the presence of very
poor glycemic control, most cases will be discovered and
referred to the pediatrician/hepatologist (Sherigar et al.,
2018). However, on the one hand, as seen above, raised ALT
and AST is not necessarily present, and, on the other hand,
elevated liver enzymes can have many causes. Therefore, several
authors recommend systematic screening for GlyH by means of
abdominal ultrasound, but general guidelines are lacking (Al-
Hussaini et al., 2012; Aydın et al., 2019). At present,
international guidelines do not recommend standardized
screening, with ultrasound or risk scores, for NAFLD in
subjects with T1D (Leoni et al., 2018). Furthermore, it is
generally accepted, that screening for NAFLD solely based on
elevation of liver enzymes is futile, since even NASH can feature
normal liver enzymes (Leoni et al., 2018; Ma et al., 2020). To
date, there are no serological tests available to screen for NAFLD
or for GlyH, nor to distinguish them. Therefore, regular
ultrasound (e.g. very 2–3 years, based on NAFLD screening
in general (Marchesini et al., 2016; Berzigotti et al., 2021))
screening could aid in timely discovery of hepatopathy, since
both NAFLD and GlyH have similar ultrasound features. The
discovery of a bright, hyperechogenic liver on a standard
abdominal ultrasound would justify further work-up to
differentiate between the two conditions. GlyH is considered
benign and reversible upon amelioration of glucose control, but
there are no pooled data concerning long-term outcomes.
NAFLD is increasingly studied in T1D, and links are
progressively made with an increased risk of cardiovascular

and renal disease (Targher et al., 2010; Targher et al., 2012a;
Targher et al., 2012b; Targher et al., 2014; Mantovani et al.,
2016). Furthermore, the hepatic burden of NAFLD in T1D,
including advanced fibrosis and hepatocellular carcinoma is
largely unexplored as mentioned above. As proposed by several
authors, magnetic resonance imaging could have a place in the
work-up of hepatopathy in T1D, since it can distinguish
between GlyH and NAFLD, and simultaneously grade the
amount of fat accumulation sensitively (Sweetser and
Kraichely, 2010; Murata et al., 2012; Saikusa et al., 2013; Gu
et al., 2019). The problem with MRI is its costs and its
availability. A promising novel asset is the controlled
attenuation parameter (CAP), which is a continuous steatosis
index based on TE, available on the Fibroscan© device
(Echosens, Paris, France), with good overall sensitivity and
specificity (Myers et al., 2012; de Lédinghen et al., 2016).
Although a recent analysis showed that it cannot be used to
grade steatosis accurately, theoretically, CAP might be able to
distinguish GlyH and NAFLD in cases of bright liver on
ultrasound, but this is not yet studied (Petroff et al., 2021).
Further research is therefore needed to determine distinct
characteristics of GlyH or NAFLD in T1D, ideally
noninvasively, to distinguish them easily and to avoid
extensive workup including liver biopsy and associated costs.
The potential of systematic screening of T1D patients, or
selected screening based on the presence of the metabolic
syndrome or poor metabolic control, with a combination of
ultrasound and TE must be prospectively evaluated in
longitudinal research, whether it could be of value to detect
early hepatopathy.

Pragmatically, when faced with a T1D patient with suspected
hepatopathy, a combination of clinical signs and imaging studies
(see Table 2) could aid the hepatologist or endocrinologist to
further determine the underlying condition. Based on this
information, the likelihood for one or the other can be
determined. Patients that are referred with elevated liver
transaminases, certainly when accompanied with poor
metabolic control, should be screened for concomitant liver
disease (viral hepatitis, autoimmune hepatitis, Wilson’s
disease) using laboratory tests and both ultrasound and TE, to
determine the possibility of GlyH and/or NAFLD and to look for
other potential structural abnormalities. When hepatopathy is
present, we would suggest to invest in intensive education and
insulin therapy in order to retain metabolic control, followed by a
repeat control imaging study. Since CT features of steatosis may
be distinctively different from features of GlyH, low dose CT
could be beneficial to differentiate between the two entities, but
further studies are needed to validate this proposition (Glushko
et al., 2018; Hsu et al., 2021). Furthermore, steatosis is often
present in GlyH, possibly mitigating the discriminative power.

In case of remaining abnormalities or when in doubt, and after
careful discussion with the patient, liver biopsy should be
considered since this is still the golden standard to determine
the cause of hepatopathy in T1D. Besides, when thinking of other
concurrent liver conditions also leading to steatosis, e.g.,
alcoholic, auto-immune or viral hepatitis, a liver biopsy could
be of added discriminative value.
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Conclusions in Key Points
NAFLD is very common in T2D, while its prevalence in T1D
is still uncertain, although it seems more frequent than
initially anticipated. The impact of NAFLD on the
cardiometabolic risk profile of individuals merits further
investigation.

T1D and T2D have a different physiopathology, however,
there is increasing overlap between both entities. T1D patients
are therefore not protected from the effects of overweight and/
or insulin resistance. Patients with T1D and the metabolic
syndrome pose the biggest risk of metabolic-associated
hepatopathies and screening is recommended for these
patients.

Fluctuations in glycemia and insulinemia are important
factors in T1D-related liver steatosis. HbA1c is a good
indicator of metabolic control, but does not evaluate large
bidirectional excursions of glycemia. Intermittent and
continuous glucose monitoring devices could aid in addressing
this research question, since they can evaluate time spent in ideal
range and glycemic variability.

Non-invasive diagnostics, including imaging studies and
biomarkers, are largely unexplored to address NAFLD and the
metabolic syndrome in individuals with T1D.

To date there is no licenced therapy for NAFLD or liver
steatosis. Insight in the pathophysiology of diabetes-
associated liver damage is needed to further expand
therapeutic options.

GlyH is infrequent but likely underdiagnosed in T1D, is more
benign than NAFLD, and both are associated with poor glycemic
control. It is associated with extremely poor metabolic control,
which is seen less in Western current practice, but it is not
extinct. There are several clinical differences between both
conditions that can aid the physician, but to date, liver biopsy
remains the most accurate option to distinguish between both
illnesses.

Knowledge Gaps
Whether insulin resistance (and NAFLD) play a role in the
pathogenesis of T1D, or vice versa, is unexplored. Longitudinal
studies of new-onset patients with T1D are needed to evaluate the
influence of metabolic disturbance on β-cell function and
survival.

The possibility of selective insulin resistance at the level of the
liver in patients with T1D is unaddressed.

Exact prevalence, incidence and (long-term) consequences of
GlyH are unknown.

The burden of NAFLD and its hepatic and systemic
consequences are largely unexplored in T1D.

The paradigm shift from NAFLD to MAFLD is not evaluated
in T1D cohorts. Furthermore, no consequence is given to the
interfering and potentially confounding role of GlyH in this shift,
since imaging studies are sufficient according to the new
definition to identify patients with MAFLD.

The effects of additive therapies focusing on components of
the metabolic syndrome e.g., weight loss and insulin resistance
are unexplored in T1D.

The role of glucometrics including time-in-range and glucose
variability, in contrast to HbA1c, to evaluate metabolic burden
including NAFLD in patients with T1D (and by extension T2D)
needs to be explored.
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