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Microbial diversity studies based on metagenomic sequencing have greatly enhanced our knowledge of the
microbial world. However, one caveat is the fact that not all microorganisms are equally well detected,
questioning the universality of this approach. Firmicutes are known to be a dominant bacterial group. Several
Firmicutes species are endospore formers and this property makes them hardy in potentially harsh conditions,
and thus likely to be present in a wide variety of environments, even as residents and not functional players.
While metagenomic libraries can be expected to contain endospore formers, endospores are known to be
resilient to many traditional methods of DNA isolation and thus potentially undetectable. In this study we
evaluated the representation of endospore-forming Firmicutes in 73 published metagenomic datasets using
two molecular markers unique to this bacterial group (spo0A and gpr). Both markers were notably absent in
well-known habitats of Firmicutes such as soil, with spo0A found only in three mammalian gut microbiomes. A
tailored DNA extraction method resulted in the detection of a large diversity of endospore-formers in amplicon
sequencing of the 16S rRNA and spo0A genes. However, shotgun classification was still poor with only a minor
fraction of the community assigned to Firmicutes. Thus, removing a specific bias in a molecular workflow
improves detection in amplicon sequencing, but it was insufficient to overcome the limitations for detecting
endospore-forming Firmicutes in whole-genome metagenomics. In conclusion, this study highlights the
importance of understanding the specific methodological biases that can contribute to improve the universality
of metagenomic approaches.

© 2015 Filippidou et al.. Published by Elsevier B.V. on behalf of the Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Metagenomic studies have emerged as promising methods for the
collective study of microbial communities directly extracted from envi-
ronmental samples [1–3]. These approaches have been successfully ap-
plied to a variety of environments and have helped to unveil new
functional pathways and metabolic processes within the microbial
world [4–8].

Biases, however, can occur at all the steps involved in ametagenomic
workflow. They can be associated to the specific type of environment [9,
10], the DNA yields obtained [11], the DNA extraction method [12], the
amplification (for example in amplicon sequencing), but also in the
sequencing and the analysis of the sequences. These limitations have
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been highlighted in the recent literature and result in problems such as
low coverage of the less abundant taxa (the so-called “depth bias” for ex-
ample in the detection of ribosomal genes [13]), low reproducibility of
results [14] and underrepresentation of certain taxa, as discussed herein.
In order to overcome these limitations, new approaches have been de-
veloped including single-cell genomics or culture-dependent methodol-
ogies such as culturomics [15,16] which, in their turn, have their own
limitations.

Even though methodological bias of metagenomic diversity surveys
associated to particular types of environments such as soil has been
demonstrated experimentally [9,10], the specific coverage of individual
microbial groups within the community is still unknown. One example
of a bacterial group that can be used to test coverage bias in
metagenomic datasets is endospore-forming Firmicutes. Even though,
culturing of microorganisms is largely acknowledge to be biased,
according to previous research based on culture collections as well as
whole-genome sequencing, Firmicutes is the second most abundant
bacterial phylum [17]. Endospore formers live in a wide range of
environments on Earth's surface and subsurface [18,19]. The hardy
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outer cortex of endospores and the small acid–soluble proteins
stabilizing their DNA [20–22], allow these bacteria to be distributed
into every habitat on Earth [23]. However, a phylogenetic assessment
of the microbial communities in four metagenomic datasets has
revealed surprisingly few endospore formers [24]. This might appear
surprising considering their ubiquity, but endospores are known to
withstand many traditional methods of DNA isolation and are thus
potentially undetectable in a sample. Recently, a DNA extraction
method for the extraction of resistant structures such as endospores
has been developed by our group [12]. This DNA extraction method
was combinedwith amplicon sequencing of the gene coding themaster
regulator for the initiation of sporulation (spo0A gene) to demonstrate
an improved detection of endospore-forming Firmicutes in sediment
samples [12]. Our group has developed further methods to separate
endospores from vegetative cells, which has open the possibility to
carry out genomic studies only focused on endospores [12,25]. These
two studies demonstrate by amplicon sequencing that the diversity of
endospore-forming Firmicutes is far from uncovered. However, the
effectiveness of the improved DNA extraction method for whole-
genome metagenomic studies is unknown.

The aim of this study was to measure the level of detection of
endospore formers in metagenomic studies carried out so far, and to
evaluate the effect of an improved DNA extraction method on the
detectability of this group. To do this,we initially searched for functional
gene markers of endospore formation in metagenomic datasets using
profiles. We then applied a modified DNA extraction method that is
tailored to release DNA from resistant structures such as endospores
[12] in a selected environmental sample. Amplicon sequencing of the
16S rRNA and spo0A genes were performed on the sample in order to
assess the relative abundance and phylogenetic diversity of Firmicutes.
This was complemented by shotgun sequencing and classification of
the metagenome reads. Our results indicate that endospore-forming
Firmicutes are overlooked in environmental diversity surveys using
traditional whole metagenomic approaches.
2. Materials and Methods

2.1. Genome Sequence Retrieval

Complete and draft genome sequences of endospore-forming
Firmicutes were downloaded from the Comprehensive Microbial
Resource (CMR, 24.0 data release, cmr.jcvi.org) and IntegratedMicrobial
Genomes (IMG, 3.0, img.jgi.doe.gov) websites. Protein and nucleotide
sequences of spore-related genes were obtained by search for role
category/function sporulation and germination (CMR) and sporulating
(IMG). Additional information on all retrieved genomes was obtained
from the GenBank database (www.ncbi.nlm.nih.gov/genome).
2.2. Detection of Orthologous Sporulation Genes Common to All Endospore-
Formers

Orthologous groups were delineated based on best reciprocal
BLASTp hits [26]. BLASTp was used to align each sequence in the set
against all sequences except those of the same species (thus avoiding
paralogs). The best hit in each species was retained, and sequence
pairs, that were each other's best match, were defined as best reciprocal
hits (BRHs). Putative orthologous groups were defined using the
algorithm used by OrthoDB [27]. OrthoDB has data on Fungi, Metazoa,
and Bacteria. An early version of the BRHCLUS program (unpublished
at the time) was obtained from its author, Dr. Tegenfeldt (pers.
comm) and run according to the author's instructions. The program is
now available from http://orthodb.org/. To our knowledge, its utility
does not depend on the clade it is used for — OrthoDB uses the same
clustering program for all data in its scope.
2.3. Profile Construction and Validation

The genomic sequences were filtered in such as way as to keep only
one (randomly chosen) sequence per genus, thus reducing taxonomic
sampling bias. Multiple alignments of Spo0A and Grp were produced
with MAFFT [28]. Gribskov-style sequence profiles were constructed
with EMBOSS's prophecy program [29]. The profiles’ score cutoffs
were determined by searchingwith EMBOSS's prophet program against
the original Spo0A (resp. Gpr) sequence set as a positive control, and
against shuffled versions of the same as negative set.

2.4. Metagenomic Datasets Retrieval

The metagenome datasets (supplementary Table 1) were
downloaded from IMG, GOLD (genomesonline.org), or themetagenomes
subset of theWGS section of EMBL (ebi.ac.uk/genomes/wgs.html). These
datasets included all the metagenomic studies available at EMBL when
the profile analysis was performed. Only sequences or contigs of
N800 bp, which are slightly shorter than the full-length sporulation
genes, were kept for analysis.

2.5. Environmental Sampling, DNA Extraction and Quantitative PCR

The sample was collected at Nea Apollonia (NAP) geothermal
spring (N 40° 39,191′ E 22° 56,707′), Greece, in June 2011. Geother-
mal reservoir was reached through a 120 m drilling pipe, used most-
ly for pumping 80 °C water for bathing purposes. Biofilm from the
pipe interior was collected and frozen within 2 h of collection.
Upon arrival at the laboratory, a tailored DNA extraction method
previously described [12] was applied to the sample. More precisely,
DNA was extracted using the FastDNA Spin Kit for Soil (MP Biomed-
icals, California), using a modified protocol in order to ensure that
DNA was not only extracted from vegetative cells but also from
spores and other cells difficult to lyse. These modifications were
(a) a separation of the biomass from the soil, using a Na-hexa-
meta-phosphate solution and (b) a sequential bead-beating step
(three times) to ensure mechanical disruption of cells. In total,
10ug of high molecular RNA-free DNA was obtained.

Moreover, 16S rRNA gene and spo0A gene copy numbers were
calculated using a quantitative PCR assay, as previously described [30].

2.6. Amplicon Sequencing of the 16S rRNA and spo0A Genes

In order to verify the presence and relative abundance of endospore
formers, 454 pyrosequencing of a fragment of the 16S rRNA and spo0A
genes was firstly applied to the sample NAP. Sequencing was done
using the services of Eurofins MWG Operon (Ebersberg, Germany).
For 16S rRNA amplicon sequencing, fragments of approximately
500 bp were retrieved using primers Eub8f (5′-AGAGTTTGATCCTGGC
TCAG-3′) and Eub519r (5′-GTATTACCGCGGCTGCTGG-3′), as previously
described [31]. 16S rRNA gene raw sequence data was analyzed with
QIIME [32], using the pipeline for de novo OTU picking. OTUs were
identified using a threshold of 97% sequence similarity. The sequences
were then clustered into putative OTUs with the pick_otus.py program
from the QIIME package using the Uclust method [32]. The single
sequence picked by the program as a representative of each OTU was
used to build a phylogeny.

For the spo0A amplicon sequening, a 602 bp sequence of the spo0A
gene was amplified using the degenerated primer spo0A166f (5′-GATA
THATYATGCCDCATYT-3′) and spo0A748r (5′-GCNACCATHGCRATR
AAYTC-3′) [12]. 42′151 sequences were received from the sample.
Sequences were then filtered according to Phred [33] quality score
(minimum of 30) and sequences of length shorter than 600 bp were
removed. Remaining sequences were translated to their amino acid
sequence; resulting full-length ORFs were then matched against the
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Table 1
Prevalence of Firmicutes in 16S rRNA gene amplicon sequencing and shotgun
metagenomic sequencing applied to the NAP sample. Different prediction tools were used
to establish the five most frequent Phyla in the samples. With the exception of the 16S
rRNA gene amplicon sequencing, the relative percentage indicated corresponded to the
fraction of the sequences that could be classified and not to the frequency of any of the
groups for the total reads generated after sequencing.

Prediction tool Top 5 Phyla Frequency Relative %

16S RNA gene amplicon
pyrosequencing (QIIME)

1 Firmicutes 41.70 41.70%
2 Proteobacteria 26.14 26.14%
3 Bacteroidetes 10.55 10.55%
4 Planctomycetes 5.35 5.35%
5 Chlorobi 3.88 3.88%

Kraken (mini database) 1 Proteobacteria 16644 82.71%
2 Actinobacteria 1744 8.67%
3 Firmicutes 322 1.60%
4 Bacteroidetes 298 1.48%
5 Cyanobacteria 192 0.95%

MetaPhlAn 1 Proteobacteria 82.01061 82.01%
2 Chloroflexi 9.24158 9.24%
3 Actinobacteria 2.32449 2.32%
4 Bacteroidetes 2.08071 2.08%
5 Acidobacteria 1.54098 1.54%

BWA 1 Proteobacteria 452 75.21%
2 Firmicutes 32 5.32%
3 Thaumarchaeota 28 4.66%
4 Actinobacteria 26 4.33%
5 Bacteroidetes 17 2.83%

LMAT 1 Ascomycota 425 35.68%
2 Cyanobacteria 385 32.33%
3 Proteobacteria 190 15.95%
4 Thaumarchaeota 145 12.17%
5 Basidiomycota 20 1.68%
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spo0A profile, in order to confirm that the primers actually amplified the
spo0A sequences.

Phylogenies were constructed from Phylip-formatted alignments
with PhyML [34], using default parameters. The trees were re-rooted,
condensed according to protocol, and displayed with the Newick
Utilities [64]. Each branch represents a cluster of OTUs of N 97% se-
quence similarity. Identification of the closest relatives of the environ-
mental sequences was done by protein BLAST [26] with the translated
protein sequences using a reference database of 581 spo0A protein se-
quences from the InterPro site [35].

All metagenomic sequences were submitted to GenBank. The 16S
rRNA amplicon sequencing data can be retrieved under the BioProject
ID PRJNA267761 and BioSample ID SAMN03198953 and the spo0A
amplicon sequencing data under the BioProject ID PRJNA276803 and
Biosample ID SAMN03392534.

2.7. Metagenomic Sequencing

Once high prevalence of endospore formers was confirmed in the
16S rRNA pyrosequencing data (41% of total bacterial community),
whole-metagenome sequencing of NAP was performed on a full plate
of a GS FLX platform, followed by de novo assembly using the services
of GATC- biotech (Konstanz, Germany). The metagenome dataset can
be retrieved from GenBank under the BioProject ID PRJNA271123 and
BioSample ID SAMN03273062.

2.8. Metagenome Data Annotation

Several tools were used to produce the read-based metagenomic
analysis of NAP metagenome dataset. GOTTCHA [36] was run using
BWA [37] against 4 databases consisting of Phylum, Genus, Species
and Strain-level unique signatures. MetaPhlAn v1.7.7 [38] was run
using BowTie2 [39] with default parameters against its clade-specific
maker genes database. Kraken was run with its reduced taxonomic-
specific 31-mer database (mini-database). BWA v0.7.4-r385 used as a
stand-alone tool was run locally using BWA-backtrack algorithm to
map reads against a custom database of bacterial, archaeal and viral
complete genomes retrieved from NCBI RefSeq database [40]. The
mapped reads were subsequently assigned to organisms by mapping
the GI numbers of aligned references to NCBI taxonomic ID and rolled
up to higher ranks. mOTUs v1.0 [41] was run with the database com-
posed of 10 universal marker genes and LMAT v1.2.1 [42] was run
with the pre-computed reference search database (kML.18mer.16bit.
reduced.db) with default parameters. Since BWA (standalone), Kraken
and LMAT only reported read counts of taxonomies, the relative abun-
dances were represented by the portion of total classified reads in
these tools. While each tool tries to identify similarities among the
reads and the databases used, each tool is centered around a different al-
gorithmic approach to solve this complex challenge, using either a
unique search algorithm, a uniquely designed database, or both. The in-
terpretation of the results from each tool should thus be takenwithin its
own context. For example, mOTUs and MetaPhlAn use pre-selected
marker genes to perform the analysis, however different marker genes
are used and different methods are used to identify reads that are sim-
ilar to these marker genes. Kraken and LMAT both use subsequences
within reads (k-mers) and match k-mers observed within the reads
with those observed within known reference genomes. Meanwhile
BWA is a read-mapping tool that we use against the refseq database
to report matching reads.

3. Results and Discussion

3.1. Selection of Functional Markers for Endospore-formation

We recently identified functional marker genes involved in endo-
spore formation in endospore-forming Firmicutes [12]. Bidirectional
BLAST of the genes annotated as part of the cellular function of sporula-
tion allowed to select six highly conserved orthologous genes as part of
the endospore-forming Firmicutes proteome. Among those, spo0A and
gpr, were selected for the construction of profiles based on their consis-
tent phylogenetic reconstruction with the 16S rRNA gene phylogeny.
These two genes represent significant stages of the endospore-
formation process, namely the commitment to enter sporulation
(spo0A) and the proteolytic activity on acid-soluble spore proteins
(SASPs) during germination (gpr) [43]. In recent studies analyzing the
minimal set of endospore-formation genes required by endospore-
formers had indicated that spo0A is indeed one of the most conserved
genes almost exclusively found among this bacterial group [44–46]. In
the case of gpr, it has been shown that it belongs to a category of
genes present in Bacillus and Clostridium without any known ortholog
in Gram-negative Proteobacteria or Cyanobacteria [21].
3.2. Profile Analysis of Sporulation Genes in Metagenomes

Profiles of Spo0A and Gpr were constructed and compared to
metagenomic datasets to find sequences of high similarity with spo0A
and gpr. Profiles aremodels of conserved sequences built from an align-
ment and aremore sensitive than BLASTor other pair-wise comparisons
especially for protein searches [47]. The sequence profileswere generat-
ed based on 14 aligned sequences. They were validated on genomes
of known endospore-forming and non-sporulating bacteria (Fig. 1A).
A single positive hit was found in the genome of each endospore-
forming bacterium, while no hits were found in the negative controls.
This result also allowed determining a score cut-off for spo0ASpo0A
(2000) and Gpr (2500) profiles to distinguish between positive and
negative hits. Using this cut-off value one orthologous sequence of
each of the two genes could be detected in a further 59 genomes of
endospore-formingbacteria (Fig. 1B) reported in the genomic databases
of the Comprehensive Microbial Resource (CMR) and IntegratedMicro-
bial Genomes (IMG) (Supplementary Table 1).



Fig. 1. A. Validation of the profiles created for the genes spo0A and gpr compared to a selection of genomes of endospore-forming Firmicutes (blue bars) and non spore-forming genomes
(red bars). In endospore-forming Firmicutes a single hit with a score above 2000 (Spo0A) and 2500 (Gpr) distinguish between positive and negative hits. Strco= Streptomyces coelicolor;
Rhime= Rhizobiummelliloti; Nosaz:Nostoc azollae; Lacac= Lactobacillus acidophilus; Escco= Escherichia coli; Desre=Desulfotomaculum reducens; Desha=Desulfitobacteriumhafniense;
Clobo= Clostridium botulinum; Bacha= Bacillus halodurans; Aliac= Alicyclobacillus acidocaldarius. B. The same analysis was repeated using all 59 endospore-forming genomes retrieved
from IMG and CMR databases (see supplementary Table 1).
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The profile analysis was then used to detect Spo0A or Gpr in publicly
available environmental metagenomes. For this, 73 microbial meta-
genomic datasets (Supplementary Table 2) from a total of 25 publications
or direct submissions were retrieved. The datasets consisted of 6,220,494
sequences of average length of 957 bp and represented different environ-
ments, including marine, fresh- and ground-waters, acid mine drainage,
compost, hypersaline environments, hot springs, soils, sludge, food and
organism-associated environments (ant fungus garden, coral, fish and
human gut).

The profile analysis revealed only three sequences with a score
above the cutoff of the Spo0A profile in all metagenomic datasets
(Fig. 2A). All three metagenomes (AAQL, BAAY, BAAZ) originated from
human gut [48,49], in which Firmicutes are known to be one of the
dominant bacterial groups [50,51]. For the gpr gene profile
(Fig. 2B), no sequences were found with a similarity score above
the cutoff value. These results are surprising considering that some
of these metagenomes were sampled in environments with high
abundance of endospore-forming Firmicutes (e.g. gut or soil; [52,
53]). These results showed that these two genes from endospore-
forming Firmicutes are underrepresented in metagenomes. This had
been alluded to earlier by von Mering et al., [24], and is now
confirmed here.

A methodological bias during the DNA extraction of resistant
structures such as bacterial endospores has been suggested as the
origin of an underrepresentation of microbial groups producing
this structure [24]. Indeed, independently of the methodological
approach taken (i.e. whole genome shotgun analysis, activity- or
sequence-driven screening), the first and most crucial step in any
metagenomic project is the extraction of nucleic acids. The isolated
DNA should be representative of all cells in the sample and of
sufficient quality and amount for subsequent sequencing [54].
Clearly, not all microbial species are equally amenable to the DNA
extraction methods used today [9,10], especially considering the
diversity of morphological and physiological states in which
microbes can be found in environmental samples. Therefore,
complementary information, in particular concerning the method
used for DNA extraction of the metagenomes was thus considered.
The described DNA extraction methods (Supplementary Table 2)



Fig. 2. Profile similarity hits for Spo0A andGpr protein profiles inmetagenomes fromdifferent origins. The color code identifying different environments is presentedunder the results. The
genomes included in profile testing (see Fig. 1A) were also included in the analysis and are presented in white (endospore-formers) and gray (non-spore formers).
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consisted of enzymatic or chemical protocols (18 datasets) or me-
chanical procedures of cell lysis (8 datasets). Sequences associated
to Firmicutes are reported for some of the analyzed metagenome
projects regardless of the DNA extraction protocol. For example,
sequences of Clostridia (30%) and Bacilli (1%) were reported in the
wallaby gut extracted enzymatically [55]. Also, in the compost
metagenome extracted by bead beating, more than 13% of sequences
were reported as members of endospore-formers Bacillus spp. or
Paenibacillus spp. [56]. Our profile analyses however, do not show
positive hits for Spo0A and Gpr in either of these metagenomes.
Whether this is due to the extraction method applied, to the depth
of sequencing or to other specific bias is hard to establish.

We have developed a tailored DNA extraction method that allows a
better assessment of the abundance and diversity of endospore-formers
in environmental samples for amplicon sequencing [12,57]. There-
fore, we next evaluated if using this extraction protocol in an environ-
mental sample could improve the detection of endospore-formers in a
metagenome.
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3.3. Amplicon Sequencing of an Environmental Sample With High
Prevalence of Endospore-forming Firmicutes

We performed amplicon sequencing from a sample in which high
prevalence of endospore-forming Firmicutes was suspected from the
ratio of 16S rRNA (bacterial) and spo0A (endospore-formers) gene
numbers measured by quantitative PCR [58]. This ratio was obtained
from DNA extracted using our modified protocol. Sequencing of the
16S rRNA and spo0A gene amplicons was conducted and revealed not
only a high prevalence of endospore-forming Firmicutes, but also a
high diversity of endospore formers (Fig. 3).

In the amplicon sequencing of the 16S rRNA gene, Firmicutes
accounted for 41.70% of the total bacterial community. The abundance
of 16S rRNA amplicons corresponding to Firmicutes was nearly double
the amount of Proteobacteria, whichwas the secondmost abundant bac-
terial Phylum (26.14%). Among the endospore-formers observed in the
pyrosequencing results, the genera Clostridium and Desulfosporosinus
dominated the community in the sample, indicating a clear dominance
of anaerobic endospore-formers [59] as could be expected considering
the temperature and other environmental conditions at this geothermal
Fig. 3. Analysis of pyrosequencing results obtained from 16S rRNA gene and spo0A
amplicons, from an environmental sample with high prevalence of endospore-forming
Firmicutes (Nea Apollonia, NAP). (A) Total 16S rRNA gene community composition to
the phylum level. (B) Firmicute fraction of the total community (16S rRNA gene) to the
genus level. (C). Cladogram representing the community composition of Firmicutes
using the spo0A gene. Sequences color coded by genus.
spring. Amplicons affiliated to Clostridium and Desulfosporosinus were
also dominant in the spo0A amplicon sequencing, which also showed
the dominance of anaerobic endospore-formers. Even though spo0A
sequences related to aerobic endospore-formers (e.g. Geobacillus and
Bacillus) were also obtained, the classification of the spo0A from aerobic
endospore-formers was ambiguous as shown by the existence of, for
example, clades related to Anoxybacillus but placed at different positions
in the phylogeny (Fig. 3C). In fact, only recently environmental spo0A
sequences have started to be obtained [12], and the phylogenetic
assignment needs to be refined.

3.4. Metagenomic Sequencing

In addition to pyrosequencing, the same sample was also subjected
to metagenomic sequencing. It is worth mentioning that in whole-
genome metagenomics a PCR amplification bias does not apply and
thus we did not necessarily expect to find the same groups or the
same frequency detected in the amplicon sequencing. However, the
results of the qPCR quantification and the amplicon sequencing were
taken as an indication of the prevalence of Firmicutes in this specific en-
vironmental sample. The NAP dataset consisted of a total of 481,810
sequences of average length of 330 bp.When the Spo0A and Gpr profile
analyses were conducted on this metagenome, none of the two genes
were detected. However, looking only at two specific genes could be
an issue, since those could be, for various reasons, underrepresented
in the sequences. Therefore, an extended search for reads that could
be assigned to Firmicutes using different prediction tools on the
assembled metagenome was also carried out.

Relative abundances from classified reads were considered to estab-
lish the five most prevalent Phyla present in the sample (Table 1).
Firmicutes appear in the topfive Phyla only for two of the four prediction
tools used. In the case of Kraken, Firmicutes reads corresponded to 1.60%
of the classified data, being the third most abundant phylum (the most
abundant onewas Proteobacteriawith 82.71%). BWApredicted 5.32% of
the classified sequences as to belong to Firmicutes (second most
abundant phylum after Proteobacteria with 75.21%). Firmicutes were
not listed after classification with MetaPhlAN and LMAT. Likewise,
when reconstruction of full bacterial genomes was attempted for the
NAP metagenome using MetaPhlAn, none of the top 5 microorganisms
was assigned to Firmicutes (data not shown).

Thus, even though amplicon sequencing revealed a large fraction of
the community as belonging to Firmicutes, this was not observed in the
shotgun metagenome. There are several possible explanations for these
results. Oneof those is the fact that the ribosomal (rrn) operon is normally
found in several copies and thus the representation of a microbial
community based on 16S rRNA gene sequencing is skewed. Furthermore,
the average number of rrn operon copies depends on the group of bacte-
ria. An average value of 7.01 copies of 16S rRNA genes was found for the
phylum Firmicutes in the rrnDB [60], which implies that this group can be
overrepresented in 16S rRNA gene amplicon libraries. In addition, it
should be noted that for all the tools used, classification was poor and
only a very small fraction of the sequences could be actually assigned to
a particular taxonomic group. Therefore, the lack of detection of Firmicutes
could be due to the current limitations of the analysis tools. In fact, recent
sequencing technologies generate such large quantities of data as to bring
along a new set of challenges in data analysis, the so-called bioinformatics
bottleneck [61]. On the level of interpretation of metagenomic data there
is still an important amount of unexplored information available from the
results, simply because the advances in sequencing technologies are
greater than the complementary progress in annotation, data inventory
and standardization of metadata [14].

4. Conclusions

Since Staley andKonopka introduced the “great plate count anomaly”
[62,63], revealing that only a small fraction of the microbial community
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can be cultured in the laboratory, one of the great challenges in environ-
mental microbiology is the understanding of the diversity andmetabolic
capabilities of microbes in a culture-independent manner. That bias was
partly overcome by moving into the direction of directly extracting
genetic material from environmental samples. However, our results
reveal that for specific microbial groups, we are still in a phase in
which, similar to a percentage of the community being not culturable in
culture-based approaches, a fraction of the genomes of the community
might be considered as not detectable for culture-independent
approaches. Nonetheless, profiling of the taxonomic and phylogenetic
composition of microbial communities is at the heart of many
metagenomic studies, and it is an obligatory step to draw conclusions
on the role of microorganisms in the environment based on
metagenomics. Our results suggest that in the case of endospore-
forming Firmicutes, classification by various methods still lags behind.
However, starting from samples such as NAP, in which evidence for
high frequency of this bacterial group exists, could be the first step
towards developing improvedmethods of classification and phylogenet-
ic assignment of metagenomic data.
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