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Abstract: The high human labor demand involved in collecting paired medical imaging data severely
impedes the application of deep learning methods to medical image processing tasks such as tumor
segmentation. The situation is further worsened when collecting multi-modal image pairs. However,
this issue can be resolved through the help of generative adversarial networks, which can be used
to generate realistic images. In this work, we propose a novel framework, named TumorGAN,
to generate image segmentation pairs based on unpaired adversarial training. To improve the quality
of the generated images, we introduce a regional perceptual loss to enhance the performance of
the discriminator. We also develop a regional L1 loss to constrain the color of the imaged brain
tissue. Finally, we verify the performance of TumorGAN on a public brain tumor data set, BraTS
2017. The experimental results demonstrate that the synthetic data pairs generated by our proposed
method can practically improve tumor segmentation performance when applied to segmentation
network training.

Keywords: medical image augmentation; generative adversarial network; brain tumor segmentation;
image-to-image

1. Introduction

An accurate tumor segmentation model is pivotal for early tumor determination and radiotherapy
arrangement [1]. Traditionally, tumor segmentation is performed by finding a mapping function
between a real medical image (e.g., an MRI image) and a semantic label image of a real tumor,
as depicted by medical professionals. With the rapid development of medical imaging equipment,
substantial effort has been directed towards the research of segmentation tasks using multi-modal
data pairs [2–5]. Generally, multi-modal data can lead to a better performance result, as compared to
approaches based on a single modality, because more information about the tumor could be captured
by different imaging methods [6]. Motivated by the success of deep learning, researchers soon
applied deep neural networks to solve various medical imaging-related problems [7–9]. However,
unlike classification, labeling medical images for segmentation is challenging, as it is time-consuming
and requires medical specialists [10]. Labeling multi-modal medical images further increases the
complexity of such a task. The lack of properly labeled tumor masks limits the potential of data-driven
medical image segmentation such as those involving deep learning-based methods. Data augmentation
(e.g., rotation, flipping) is one possible way to expand a data set with limited labeled samples. However,
these methods are insufficient to represent the variations of shape, location, and pathology.

Recently, many researchers have used generative adversarial networks (GANs) for image synthesis
and data augmentation. Although the earlier variants of GANs can only generate images from random
noise [11], conditional GAN-based image-to-image translation models provide new solutions for
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pixel-wise image augmentation [12]. Many powerful GAN-based image-to-image variants have been
proposed [13,14], which can generate realistic images by considering an input image and a given
condition. In fact, some popular image-to-image translation frameworks such as Pix2pix [15] or
CycleGAN [16] have already shown potential for pixel-wise image augmentation by converting an
image only including semantic information to a realistic image. However, we still need to address
two challenges before such methods can be applied to multi-modal medical image augmentation.
The first challenge is a lack of source data, which means that we need to generate reasonable semantic
labels first before feeding them into the image-to-image translation models. An incorrect lesion area
may lead to an useless augmentation output. Furthermore, we need to guarantee the quality of the
synthesized images without enough ground truth during the augmentation stage due to the absence
of image pairs. Hence, to obtain a realistic medical image at the pixel level, adversarial training is
necessary but requires further improvement.

To generate realistic paired data with limited source data for medical image augmentation,
we synthesize a pixel-wise semantic label image by combining the lesion area with the brain contour
from two real medical images. Then, we feed the virtual semantic label image with texture image from
patient A to generate the corresponding output, as displayed in Figure 1. By doing so, in an ideal case,
we can obtain n2 − n virtual samples from n patients for data augmentation. Furthermore, the validity
of the synthetic semantic label images can be guaranteed, as both the contour and lesion area come from
real samples. The synthetic semantic label image can also provide an attention region to help us build
a regional perceptual loss, as well as a regional L1 loss, in order to train the image-to-image translation
model with a regional ground truth and improve the generalization performance. To further enhance
the efficiency of adversarial learning, we include an additional local discriminator co-operating with
the main discriminator.
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Figure 1. An overview of TumorGAN-based medical image augmentation.

In this work, we have the following contributions:

• We propose an image-to-image translation framework called TumorGAN, which can synthesize
n2 − n virtual image pairs from n real data pairs for brain tumor segmentation. Our experimental
results show that TumorGAN is able to augment brain tumor data sets and can improve the
performance of tumor segmentation for both single-modality data and multi-modal data.

• We design a region perceptual loss and an L1 loss based on attention areas provided by the
semantic labels to preserve the image details.

• We included an extra local discriminator co-operating with the main discriminator, in order to
increase the efficiency of the discriminator and help TumorGAN to generate medical image pairs
with more realistic details.
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2. Related Work

2.1. Brain Tumor Segmentation

Brain tumor segmentation is a challenging task, due to the structural complexity of brain
tissue [17]. Many brain tumor segmentation approaches have been proposed. Researchers have
earlier developed brain segmentation approaches based on contours [18], regions [19], statistics [20],
and some traditional machine learning models [21]. As deep learning approaches have become more
popular, more and more deep learning-based brain tumor segmentation methods have also been
presented [22,23]. As an increasing number of multi-modal data sets, like BraTS challenge [24], have
been released, several deep learning based multi-modal medical image segmentation methods [25,26]
have also been proposed. As image-to-image translation frameworks have become popular for
segmentation tasks, GAN-based image-to-image translation provides another solution for brain tumor
segmentation. In this paper, we take advantage of a GAN-based image-to-image framework for
multi-modal brain tumor processing. Differing from previous approaches, we aimed at applying the
framework to the pre-processing stage for multi-modal brain tumor data augmentation. Our main aim
is to use the augmented data to improve the robustness and performance of the segmentation model.

2.2. Generative Adversarial Network Based Medical Image Augmentation

Collecting and labeling medical images is a difficult task, due to the lack of experts and privacy
concerns, thus limiting the application of supervised deep learning approaches [27]. Typically
insufficient numbers of medical images requires the development of medical image augmentation
methods. Earlier simple geometric deformation methods, including scaling, rotation, and flipping,
have been employed to increase the variety of data sets [28]; however, such augmentation methods
cannot represent the variations in the shape, location, and pathology of a brain tumor.

The success of generative adversarial networks (GANs) has provided a general solution for image
augmentation [29]. A straightforward way of applying a GAN to medical image argumentation is to
use the noise-to-image structure, which originates from the vanilla GAN and some variants [11,14,30],
generating images from one-dimensional vectors [31]. However, these approaches cannot obtain a
pixel-wise matching between two images. Another way is to take the advantage of the image-to-image
translation framework for medical image augmentation. Earlier image-to-image translation models
such as Pix2pix [15] need paired training data, which are expensive to obtain for medical images.
CycleGAN, which can translate images from one domain to another with unpaired data [16],
is more popular in solving medical image augmentation problems. Unpaired image-to-image
translation models can even translate medical imaging across different modalities, such as MRI
to CT translation [32–34]. Image-to-image frameworks have also been widely used for medical image
quality enhancement or denoising [35,36]. Unlike the methods for medical image processing mentioned
above, which attempt to build a mapping function between two modalities, our proposed method,
TumorGAN, aims to build a mapping function between an edited semantic label image and a modality
(flair, t1, t1ce, and t2).

3. Method

In the following, we introduce a brain data augmentation approach called tumorGAN, followed
by a graphical description shown in Figure 2.
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Figure 2. TumorGAN architecture. We use one generator G and two discriminators Dg and Dl .
The output of G is entered into the different discriminators in different ways to determine whether
it is real or fake; sab is a semantic segmentation label corresponding to y and sb is a semantic label
corresponding to xb.

3.1. Synthesis of Semantic Label Image

The contour and shape of brain tumor areas are complicated, due to the underlying pathology
and anatomy. Thus, it would be difficult to synthesize a reasonable tumor image directly. Instead,
we developed a way to design the tumor image from existing tumor shapes. Let x denote a brain image
from a given imaging modality (i.e., FLAIR, T1, T2ce, and T2), and xa and sa denote a brain image and
the corresponding semantic label for patient A, respectively. We can create a new virtual semantic label
image sab by combining the tumor area from sa and the brain background from sb (Figure 3). In other
words, our virtual semantic label image tries to mimic a case in which patient B has the same lesion as
patient A.

Figure 3. Composition of the label sab.
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3.2. Architecture

Similar to most GAN implementations, TumorGAN includes two parts: a generator G and a pair
of discriminators, Dg and Dl . We follow our previous work [37] to build the generator G and inherit
the discriminator structure from Pix2pix [15] to form the global discriminator Dg. As shown in Figure 2,
the generator G is fed a segmentation label image sab concatenated with a brain image xa from a given
modality (i.e., flair, t1, t1ce, or t2) to generate a synthetic image y. The segmentation label provide
the outline information include brain background and tumor, and the brain image provide concrete
tumor information.We can obtain a brain image xa from a slice of a patient A, and we synthesize a
segmentation label image following the method described in Figure 3. Another brain image xb from
patient B is used for adversarial and local perceptual loss calculation. To make the y fit the semantic
label image sab, we designed a regional L1 loss, as well as regional perceptual loss Lrp. Inspired by the
local–global discriminator framework [38], we included an additional discriminator, Dl , to improve
the generation performance in terms of fine details. The input size of Dl is a 64× 64 image cropped
from y or xb. The flow chart of our method is shown in Figure 4.
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Figure 4. Flow chart of the proposed method.
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3.3. Formulation

To generate a realistic brain image for each modality, we need to handle the generation task of
brain tissue area and the tumor area simultaneously. To achieve this goal, we developed a regional
perceptual loss from the perceptual loss [39], as follows:

Lrp = λ1E[φ3,4(ytis)− φ3,4(xtis
b )]2+

λ2E[φ4,4(ytis)− φ4,4(xtis
b )]2+

λ3E[φ4,4(ytum)− φ4,4(xtum)]2,

(1)

ytis = y · Rtis
b , (2)

ytum = y · Rtum
a , (3)

where ytis and ytum are the tissue region Rtis
b and the tumor region Rtum

a of the output image y,
respectively; and φ3,4 are the feature maps obtained by the fourth convolutional layer before the
third max-pooling layer in VGG-19 [40]. The parameters of λ are set as λ1 : λ2 : λ3 = 1 : 100 : 100.
The implementation details of the point multiplication operation can be found in Figure 5.

Perceptual Loss

L1

Perceptual Loss

Figure 5. Computation details of the perceptual loss and L1 loss. Rtum
a is a mask for the x tumor; Rtis

b is
a mask of the xb tissue, except for the xb and xa tumor sites.

As the healthy tissue area usually occupies a large area, as compared to the tumor lesion, we adopt
a regional L1 loss to improve the tissue texture:

L1 = E[‖ytis − xtis
b ‖1]. (4)

Finally, an extra local discriminator was introduced, which co-operates with the vanilla
discriminator (Figure 6) and encourages the generator to generate more realistic images. We designed
our local–global adversarial loss function based on the least squares adversarial loss [41]:

Ladv = Lg + Ll , (5)
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Lg(Dg, G) = E[(Dg(xb, sb))− 1)2]

+E[(Dg(y, sab))
2],

(6)

Ll(Dl , G) = E[(Dl(xlocal
b ))− 1)2] +E[(Dl(ylocal))2], (7)

where Lg and Ll are the adversarial losses of the global discriminator and the local discriminator,
respectively; xb, sb is the concatenation of the xb and the corresponded semantic label sb; and ylocal is
the randomly cropped region of y.

random crop

64*64

Figure 6. Details of the generator and discriminator structures. Dg is the global discriminator and Dl is
the local discriminator. The input of Dl is a randomly cropped section of y.

The total loss function can be given as:

L = λLrp + µL1 + γLadv, (8)

where λ, µ, and γ denote the objective weights; in our experiment, we used a ratio of 1:1000:1000
for these.

4. Experiment

To prove the efficiency of the proposed TumorGAN, we first applied TumorGAN on the BraTS
2017 data set to increase the sample number. Then, we validated the usefulness of the synthetic data
by using them as part of the training data for several segmentation models, including the cascade
model [42], U-Net [43] and deeplabv3 [44].

4.1. Implementation Details

The generator structure was derived from CycleGAN, which consists of nine residual blocks in
the bottleneck. The local–global discriminators are similar, but with one less convolutional layer due
to the reduced size of the input image. The detail of the structure are as follows:

Generator: CIR64F7−CIR128F3−CIR256F3− Res256− Res256− Res256− Res256− Res256−
Res256− Res256− Res256− Res256− DCIR128F3− DCIR64F3− C1F7;

Global discriminator: CLR64F4 − CILR128F4 − CILR256F4 − CILR512F4 − CILR512F4 −
CILR512F4− C1F4; and

Local discriminator: CLR64F4− CILR128F4− CILR256F4− CILR512F4− CILR512F4− C1F4,
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where CIRmFn in the generator means the Convolutional–InstanceNorm–ReLU layer with
m n × n filters, Res256 means a residual block with 256 3 × 3 filters, and the last layer of the
generator uses Sigmoid as the activation function. CILRjFk in the discriminator means the
Convolutional–InstanceNorm–LeakyReLU layer with j filters of k× k.

4.2. Data Set Pre-Processing and Data Augmentation

The Multi-modal Brain Tumor Segmentation (BraTS) Challenge provides an annotated 3D MRI
data set. In this work, the experiment was conducted on the BraTs 2017 data set, consisting of four MRI
imaging modalities with different characteristics, including FLAIR, T1, T1CE, and T2. The BraTS 2017
data set provides 285 labeled patients, from which we used 226 patients (HGG(high-grade gliomas):
166, LGG(low-grade gliomas): 60) as a training set to train TumorGAN, as well as the segmentation
network. The remaining cases (HGG: 44, LGG: 15) were used as the testing set, in order to evaluate the
algorithm’s performance. We normalized all input images according to the following equation:

IN = (I − Imin)/(Imax − Imin), (9)

where Imin and Imax are the minimum and maximum pixel values of the input image, respectively.
The image size for a patient was 240 × 240 × 155. As the tumors were always located

in the brain tissue, we took slices from 30 to 110 from each patient and resized them to
256 × 256. We used the pre-trained TumorGAN to generate synthetic brain images as well as
semantic labels. The augmentation details are shown in Table 1. Theoretically, we can generate
226× 225 = 50, 850 virtual samples with 226 real samples in the training data set. Considering the
computing time issue, we generated 226 virtual samples—the same amount of samples—for the
training data set, in order to support the semantic segmentation task.

Some synthetic examples are shown in Figure 7. We can observe that the synthesized images
are well-matched to the semantic labels. Furthermore, different modality brain images have different
features. For example, the T1-CE (t1-weighted contrast-enhanced) modality can ensure that the tumor
core is brighter, in order to distinguish the tumor core and edema regions. This can also been seen in
our augmentation data.

semantic label flair t1 t2t1ce

i

ii

iii

iv

Figure 7. Examples of synthetic images from one patient. i–iv represent slices 52, 58, 66, and 73 from
this patient, respectively. Images from the left to the right are the corresponding semantic labels and
four synthetic modality images (i.e., flair, t1, t1ce, and t2).
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4.3. Qualitative Evaluation

Ablation Study

We designed an ablation study based on the flair modality, in order to demonstrate the efficiency
of each component in our proposed TumorGAN, as shown in Figure 8. The i–v lines denoted the
samples from slices 50, 60, 70, 80, and 90, respectively. The first column shows the semantic label;
the last column includes the results obtained from TumorGAN; and the forth and the fifth columns
contain synthetic images from TumorGAN without regional perceptual loss and local discriminator,
respectively. It can be observed that, when we removed the regional perceptual loss, the synthetic
image was lacking in detail and became blurred. Many artifacts appeared when we removed the local
discriminator (see, e.g., Figure 8 w/o d_local).

CycleGAN w/o per w/o d_local ours

i

ii

iii

iv

semantic 
label Pix2Pix

V

Figure 8. Examples generated from different methods. i–v represent slices 50, 60, 70, 80, and 90 from this
patient, respectively. Images from the left to the right are the corresponding semantic label, CycleGAN,
Pix2Pix,TumorGAN without regional perceptual loss, TumorGAN without the local discriminator, and
TumorGAN.
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Table 1. Data split.

Data Sets All HGG LGG

Total 285 210 75
Train 226 166 60

Augmentation 226 166 60
Test 59 44 15

We used a traditional grid search method [45] to obtain the optimal values for λ, µ and γ in
Equation (8). Take λ as an example, we searched a possible set {0.001, 0.01, 0.1, 1, 10, 100, 1000} for λ

and finally choose λ = 1 for the rest of this study. Although we found that all choices of λ produce
similar images, it was noticed λ = 1 provide better contrast in the generated tumor as shown in
Figure 9ii. The procedure for selecting µ and γ is similar to that of λ. Since we treat λ, µ and γ as hyper
parameters, identifying the optimal value of these hyper parameters requires re-train the network on
the same training dataset many times. Hence, the computational burden is high and we cannot explore
a large candidate set for these hyper parameters. It would be possible to obtain a better value for these
parameters given enough computational resources.

i

ii

iii

iv

(ours) real_image

Figure 9. The synthetic image examples using different λ value.

Comparison with Baseline

TumorGAN obtained the best qualitative results, when compared to the baseline CycleGAN (see
Figure 8). We used the same data (slices 30–110) as for TumorGAN in the 226 patients as the training
data set to train CycleGAN. We created a semantic label image by combining the tumor area and the
brain background from the same brain image; in this way, we could acquire the paired data to train the
Pix2pix model. We also used the same data in CycleGAN.
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To measure the quality of the generated images, we used the Fréchet inception distance (FID) [46]
to evaluate the similarities between the real images and the generated samples. TumorGAN obtained
FIDs that were favorable, as compared to the baselines (see Table 2). This shows that the proposed
method can generate images that closely match the real data distribution. We can see that, compared
with the score of CycleGAN (baseline), the FID score of our method was reduced by 50%.

Table 2. FID (lower is better). TumorGAN generates diverse and real images that compare favorably to
those of the state-of-the-art baselines.

CycleGAN (Baseline) Pix2Pix w/o per w/o d_lcoal TumorGAN

FID 154.86 (0%) 126.42 (18.36%) 87.75 (43.34%) 145.67 (5.93%) 77.43 (50%)

4.4. Tumor Segmentation Using Synthetic Data

Cascaded Net Wang et al. proposed a cascaded network and acquired the top rank in the BraTS
2018 challenge [42]. Cascaded Net segments the tumor following three stages: In the first stage,
the Cascade Net locates and picks out the whole brain tumor area. In the second stage, it removes
the useless surrounding tissue area and crops a square tumor region as the input to the next network,
in order to segment the tumor core. In the third stage, the third network divides the tumor core into an
enhanced region and a non-enhanced region. Finally, multi-view fusion is employed to combine the
results from each stage. In our experiment, we only used the axial data for data synthesis. Due to the
limited GPU memory, we changed the batch size to 3.

U-Net U-Net is a popular deep neural network for medical image segmentation [43]. U-Net has
an encoder–decoder structure with several skip connections. Following the structure mentioned in [43],
we used four times down-sampling and four times up-sampling to build the U-net in our experiment.

DeeplabV3 Deeplab and its variants have achieved a great of success in many common semantic
segmentation tasks [47,48]. In this work, we used DeeplabV3 as another benchmark for the tumor
image segmentation task. DeeplabV3 includes multiple dilated convolutional layers, which expand the
field-of-view, and apply a pre-trained network. Furthermore, it augments the Atrous Spatial Pyramid
Pooling module proposed previously. In this work, we used resnet50 as the backbone network to
implement DeeplabV3.

All the three segmentation models were used for evaluation. The data split for each model is
given in Table 1:

The dice score [49] was employed to evaluate the tumor segmentation performance on the testing
set. The score is defined as follows:

Dice(ptrue, ppred) =
2 ·∑ ptrue · ppred

∑ ptrue + ∑ ppred + ε
, (10)

where ppred is the output and ptrue is the segmentation ground truth. The summation is voxel-wise
and ε is a very small constant to prevent divsion by zero.

4.4.1. Training on Multi-Modal Dataset

The performance of the segmentation networks on multi-modal BraTS data included the original
data and the augmented data, as shown in Table 3:
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Table 3. Dice score comparison of different segmentation networks trained on “Train” and
“Train + TumorGAN Augmentation”. All networks were trained without usual data augmentation
techniques (e.g., flip, crop, rotation, and so on). The best mean dice scores are highlighted bold.

Networks Whole Core en Mean

Cascaded Net Without augmentation 0.848 0.748 0.643 0.746

With TumorGAN augmentation (ours) 0.853 0.791 0.692 0.778

U-Net Without augmentation 0.783 0.672 0.609 0.687

With TumorGAN augmentation (ours) 0.806 0.704 0.611 0.706

Deeplab-v3 Without augmentation 0.820 0.700 0.571 0.697

With TumorGAN augmentation (ours) 0.831 0.762 0.584 0.725

Table 3 shows that the dice score of all the three models with data augmentation outperformed
the cases without augmentation. The average dice scores were improved by 2–3% for each of the
segmentation models. All three models had a large improvement in tumor core segmentation.
The performance of the whole-tumor and enhanced region segmentation tasks were also improved.

4.4.2. Training on Single Modality Data of U-Net

Table 4 shows the efficiency of TumorGAN-based augmentation in single modality data-based
segmentation tasks. Without the support from other modalities, the scores provided in Table 4 were
lower than that reported in Table 3. Based on the results of Tables 3 and 4, we can conclude that the
TumorGAN-based augmentation method can enhance the dice scores for most segmentation tasks,
in the case of single modality inputs.

We evaluated the performance of various data augmentation methods on the brain tumor
segmentation tasks with U-Net (See Table 4). The comparison analysis was done between our proposed
TumorGAN and Pix2pix on four modalities (flair, t2, t1, and t1ce). In practical application, synthetic images
are used to improve the segmentation accuracy. Obviously, most of the images generated by CycleGAN
shown in Figure 8 do not have a clear tumor area. Thus, it would be meaningless to consider images
generated by CycleGAN for comparison. It can be observed that augmenting dataset with both TumorGAN
and Pix2pix generated images can enhance the segmentation performance in modalities including flair, t1
and t1ce. The performance obtained with TumorGAN was higher than that of Pix2pix, indicating that the
images generated with the proposed TumorGAN can aid the segmentation task by providing more realistic
tumor images as compared to Pix2pix. We also found that both TumorGAN and Pix2pix cannot improve
the segmentation performance in t2. To investigate the cause regarding the performance degradation on
t2, generated t2 images from both TumorGAN and Pix2pix and their ground truth segmentation label
were shown in Figure 10. It can be observed that tumor regions including the “whole”, “core” and “en”
can be clearly seen in flair, t1 and t1ce, and the boundary between “core” and “en” is also clear in these
three modalities. However, the region of “en” can not be clearly visualized on the t2 images. Similarly, the
synthesis t2 images from Pix2pix and TumorGAN also had a vague boundary between the “core” and
“en”. Hence, the blurred boundary found on t2 images may cause performance to degrade when we use an
image-to-image based augmentation method, as reflected on the poor segmentation performance on “en”.

flair t1 t1ce t2 Pix2pix_t2 TumorGAN_t2 label

Figure 10. From left to right is the flair, t1, t1ce and t2 modality brain image from the real data.
The pix2pix_t2 is the t2 modality image synthesized by the Pix2pix according to the same tumor.
The TumorGAN_t2 is generated by TumorGAN. The last column is the segmentation label.
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Table 4. Dice score comparison of U-Net trained on single modality “Train”, “Train+Augmentation”
and “Train + Pix2pix augmentation”. The best mean dice scores are highlighted bold

Modality Whole Core en Mean

flair
without augmentation 0.754 0.513 0.286 0.518

with pix2pix augmentation 0.745 0.527 0.214 0.495

with TumorGAN augmentation 0.765 0.522 0.289 0.525

t2
without augmentation 0.743 0.577 0.335 0.552

with pix2pix augmentation 0.729 0.593 0.220 0.514

with TumorGAN augmentation 0.750 0.572 0.321 0.548

t1
without augmentation 0.628 0.422 0.199 0.416

with pix2pix augmentation 0.635 0.489 0.106 0.410

with TumorGAN augmentation 0.628 0.467 0.235 0.443

t1ce
without augmentation 0.597 0.534 0.570 0.567

with pix2pix augmentation 0.659 0.673 0.545 0.626

with TumorGAN augmentation 0.671 0.681 0.589 0.647

5. Conclusions and Future Work

In this paper, we proposed a novel GAN-based image-to-image framework called TumorGAN
for brain tumor image augmentation. By combining the brain tissue area and the tumor area from
two different patients, the proposed method can create n2 − n virtual data pairs from the data of n
patients. To further improve the generation performance, we introduced a regional perceptual loss
and a regional L1 loss with a local discriminator. Compared with other GAN-based image-to-image
translation frameworks, our method can create high-quality image pairs from limited paired data.
As proved by the experimental results, the synthesis image pairs from TumorGAN can practically help
to improve tumor segmentation in both multi-modal and single-modality data sets.

In our work, we note that reasonable virtual semantic labels are the key to generating realistic
synthesized samples and, so, we tried to obtain a reasonable tumor region from the existing samples,
providing more possible combinations between tumors and healthy tissue. However, our method
cannot provide an unseen tumor label, which restricts the diversity of the virtual semantic labels.
Fortunately, multiple GAN-based studies have indicated that the generated shape or style can be
controlled by latent codes [13,50], which may help us to control the generated tumor shape and increase
the diversity of the virtual semantic labels. We leave this for a future work.
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