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Objective: This study aimed to examine the treatment-related changes of the fractional

amplitude of low-frequency fluctuations (fALFF) in the default mode network (DMN)

across different bands after the medication-free patients with bipolar II depression

received a 16-week treatment of escitalopram and lithium.

Methods: A total of 23 medication-free patients with bipolar II depression and 29 healthy

controls (HCs) were recruited. We evaluated the fALFF values of slow 4 (0.027–0.073Hz)

band and slow 5 (0.01–0.027Hz) band of the patients and compared the results with

those of the 29 HCs at baseline. After 16-week treatment of escitalopram with lithium,

the slow 4 and slow 5 fALFF values of the patients were assessed and compared with

the baselines of patients and HCs. The depressive symptoms of bipolar II depression in

patients were assessed with a 17-item Hamilton Depression Rating Scale (HDRS) before

and after treatment.

Results: Treatment-related effects showed increased slow 5 fALFF in cluster D (bilateral

medial superior frontal gyrus, bilateral superior frontal gyrus, right middle frontal gyrus,

and bilateral anterior cingulate), cluster E (bilateral precuneus/posterior cingulate, left

cuneus), and cluster F (left angular, left middle temporal gyrus, left superior temporal

gyrus, and left supramarginal gyrus) in comparison with the baseline of the patients.

Moreover, a positive association was found between the increase in slow 5 fALFF values

(follow-up value minus the baseline values) in cluster D and the decrease in HDRS

scores (baseline HDRS scores minus follow-up HDRS scores) at follow-up, and the same

association between the increase in slow 5 fALFF values and the decrease in HDRS

scores was found in cluster E.
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Conclusions: The study reveals that the hypoactivity of slow 5 fALFF in the DMN

is related to depression symptoms and might be corrected by the administration of

escitalopram with lithium, implying that slow 5 fALFF of the DMN plays a key role in

bipolar depression.

Keywords: fractional amplitude of low-frequency fluctuations, bipolar depression, resting state functional

magnetic resonance imaging, default-mode Network, escitalopram, lithium

INTRODUCTION

Depression is the most common manifestation of mood state in
bipolar disorder II, which is responsible for high suicide rates (1)
and significant functional impairment (2). The treatment effect of
bipolar depression is closely related to its prognosis. Medication
therapy is the most common treatment for bipolar II depression,
and although the functional and structural abnormalities of this
disease are revealed by a large number of MRI results (3, 4),
how the brain can be modulated by medication therapy and
the corresponding changes from the neuroimaging perspective
remains unclear.

The amplitude of low-frequency fluctuations (ALFF) is an
index of local spontaneous neural activity in the resting state
(5, 6) and reflects regional energy metabolism and activity of
chemical synaptic signaling in the brain. The ratio of the power
spectrum of low frequency to that of the entire frequency range is
defined as the fractional amplitude of low-frequency fluctuations
(fALFF). Compared with ALFF, fALFF can suppress non-specific
signal components in fMRI and is more sensitive and specific to
the detection of spontaneous brain activities (7). Recently, fALFF
has been used in investigating neurobiological mechanisms
and treatment effects in various psychiatric disorders [e.g.,
schizophrenia (8) and panic disorder (9)]. Several cross-sectional
whole-brain fALFF studies on bipolar depression have suggested
that when compared with healthy controls (HCs), patients
showed aberrant fALFF in the superior frontal gyrus (SFG) (10,
11) and precuneus (PCu) (12), which belong to the default mode
network (DMN). Treatment-related changes of escitalopram in
fALFF were observed in patients with panic disorder (9) and
major depression (13), and the changed brain region, including
the medial prefrontal cortex (mPFC), was located in the DMN.
However, treatment-related changes of fALFF within the DMN
on bipolar II depression still remain elusive.

Although low-frequency oscillations (LFO) ranging from 0.01
to 0.25Hz are physiologically relevant and related to neuronal
fluctuations, researchers found that LFOs with a range of 0.01–
0.073Hz (slow 4: 0.027–0.073Hz, slow 5: 0.01–0.027Hz) often
embody the spontaneous activities of neurons in the gray matter
and LFOs with a range of 0.073–0.025Hz (slow 3: 0.073–
0.198Hz; slow 2: 0.198–0.25Hz) are often detected within the
white matter (14, 15). Thus, fALFF with 0.01–0.08Hz frequencies
is often explored in the gray matter study of mental illness
(16, 17). Recent research further reported that the cortex and
subcortical nuclei signal different bands in slow 4 and slow 5.
Slow 4 is the most robust in the subcortical nuclei, such as the
basal ganglia, and the strongest signal of slow 5 is found in the
cortex, such as the mPFC in healthy people (15). Based on these

findings, slow 5 and slow 4 fALFF have been used in exploring
some psychiatric diseases, such as mild cognitive impairment
with mild depression (18), chronic primary insomnia (19), and
post-stroke depression (20) to improve precision. One cross-
sectional study displayed different results in slow 5 and slow
4 fALFF in psychotic bipolar disorder (21), suggesting that the
medication-related changes in fALFF in bipolar II depression
may also lead to different results in slow 4 and slow 5.

The DMN consists of the mPFC, PCC/PCu, inferior parietal
lobule (IPL), and lateral temporal cortex (LTC) (22, 23).
The DMN plays an important role in emotion formation
and processing, self-referential processing, and emotional
appraisal (24, 25). Previous studies identified aberrant functional
connectivity within and between DMN nodes (26–29) in patients
with bipolar or unipolar depression. This finding might prove
that a correlation exists between the DMN and the pathogenesis
of depression. As for themedication-related changes in theDMN,
some studies have been conducted on individuals with major
depressive disorder (30, 31) and healthy people (32), which
revealed that antidepressants changed the functional connectivity
(30) and network flexibility (31) of the DMN. However, the role
of the DMN in the treatment effects of bipolar II depression
remains unclear.

Some issues arising from the above discussion need to be
addressed. First, the fALFF change across different bands within
the DMN when patients with bipolar II depression achieve
remission through medicine therapy remains unclear. Second,
in case that some fALFF changes in the DMN after treatment
appear, the relation between these changes and depressive
symptoms is unknown. Third, changes that occur in the different
frequency bands of fALFF within the DMN are unknown.

Therefore, we carried out a longitudinal fMRI research on
medication-free patients with bipolar II depression to understand
fALFF changes across different frequencies after a 16-week
treatment course with escitalopram and lithium.

We hypothesized that (1) treatment with escitalopram and
lithium affects the fALFF in the DMN in bipolar II depression
patients, (2) a correlation exists between the change in fALFF
in the DMN and depression symptoms in bipolar II depression,
and (3) fALFF changes across different bands within the DMN
are different.

MATERIALS AND METHODS

Subjects
Our research was conducted in line with the Declaration of
Helsinki and approved by the Ethics Committee of the Second
Xiangya Hospital of Central South University (approval number:
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2019/004). Before the research, we explained the purpose and
procedure of the study to all the participants or the participants’
legal guardian and notified them that they could opt out any time.

Bipolar II disorder was diagnosed by two senior psychiatrists
(Chen X.G, Tang J.S). Patients who met the following criteria
were selected: (1) met the DSM-V (33) criteria for bipolar II
disorder, were currently depressed, and scored >17 in the 17-
item Hamilton Depression Rating Scale (HDRS) (34) and <7
in the Young Mania Rating Scale (YMRS) (35); (2) medication-
free; and (3) between 16 and 40 years of age. We set the
age criteria mainly because of the high incidence in the range
(36) and to exclude brain aging as a confounding factor (37).
HCs without history of psychiatric or neurological disease were
recruited from the local community through advertisements and
matched with patients in terms of age, education, and gender.
All the participants were Han Chinese and right-handed. The
exclusion criteria for all the subjects were as follows: (1) severe
head trauma with loss of consciousness lasting more than 5min,
(2) any neurological disorder or other chronic somatic diseases,
(3) alcohol or drug abuse, (4) history of a psychiatric disease or
receiving antipsychotic treatments, and (5) any contraindication
to MRI.

All the participants underwent functional MRI scans at
baseline. The patients then received a 16-week treatment
course that consisted of administration of escitalopram (12.50
± 4.20mg, daily) and lithium (793.48 ± 144.05mg, daily).
Treatment regimen and duration were based on CANMAT
guidelines for the management of patients with bipolar disorder
(2013) (38), a previous study (39), and our clinical experiences
with bipolar II depression. After the 16-week treatment course,
the patients were scheduled for follow-up fMRI scans. Patients
with YMRS and HDRS scores of ≤7 were classified as
remission status.

Twenty-eight medication-free patients with bipolar II
depression were recruited from the outpatient clinic of the
Department of Psychiatry at Second Xiangya Hospital, China.

One patient’s fMRI data at baseline were excluded because
of excessive head movement during the MRI scan; three
patients’ escitalopram with lithium treatment was transformed.
Among these three, two patients presented with persistent side
effects, such as nausea, sedation, and vomiting, and the other
patient had no significant response. One patient refused to
perform follow-up MRI scan because of discomfort during
the test. Finally, 52 participants were included, 23 of whom
were medication-free patients with bipolar II depression and
29 were HCs.

Clinical and Neuropsychological
Measurements
All bipolar II depression patients (n = 23) were evaluated at
baseline and followed up with 17-item HDRS and YMRS. To
ensure consistency and reliability of the ratings, two psychiatrists
with over 5 years of clinical practice received a training session on
how to use the HDRS and YMRS before the study was conducted.
This procedure ensured that a correlation coefficient >0.8 was
maintained over repeated assessments across the study.

Image Acquisition
All MRI data were acquired using a 3T scanner (Siemens,
Skyra, Germany) in Hunan Children’s Hospital. Before the scan,
we instructed all the subjects to stop moving and thinking of
anything and to relax with eyes closed but not to fall asleep
throughout the scan. Foam paddings were wrapped around the
head to reduce head motion, and earplugs were used to attenuate
scanner noise.

Sequence parameters were as follows: 36 slices; repetition time
(TR)/echo time (TE) = 2,000/30ms; flip angle (FA) = 90◦; voxel
size= 3.4× 3.4× 3.4mm3; field of view (FOV)= 256× 256mm;
and slice thickness = 3.4mm. Each functional run consisted of
250 volumes and lasted for∼508 s. High-resolution T1-weighted
three-dimensional structural images were acquired using a high-
resolution sequence: 192 slices; TR/TE = 2,530/2.33ms; voxel
size = 1 × 1 × 1 mm3; FOV = 256 × 256mm; flip angle (FA)
= 7◦; and slice thickness= 1 mm.

Data Pre-processing
Data pre-processing was conducted with Data Processing
Assistant for Resting-State fMRI (DPARSF, http://www.restfmri.
net) (40), which is based on Statistical Parametric Mapping
(SPM, https://www.fil.ion.ucl.ac.uk/spm/). The first 10 time
points were removed for the reduction of the non-equilibrium
effects of magnetization. The remaining 240 scans of each
participant underwent slice timing, realignment, co-registration
with the participants’ own structural images, and segmentation.
Then, the resulting images were normalized spatially with the
standard Montreal Neurological Institute (MNI) EPI template in
DARTEL and resampled to 3 × 3 × 3 mm3. Any participant
with head motion of >1.5mm translation or >1.5◦ rotation
in any direction and mean FD Jenkinson of >0.2mm was
removed (41). No significant differences between the patients
with bipolar II depression and HC were observed at baseline
(t = −0.626, p = 0.534) and before and after treatment (t
= 0.502, p = 0.621) in mean framewise displacement (FD
Jenkinson). For the reduction of physiological noises, such
as heartbeat and respirations, the signals of the white matter
and cerebrospinal fluid and the 24 parameters of head motion
(42) were regressed from the data. Furthermore, we performed
scrubbing procedure (43) to eliminate the distance-dependent
artifact of head motion. Adopting a 2–3-voxel FWHM in the
smoothing process can produce objective results (44). Thus, we
used a 6-mmGaussian kernel to smoothen the generated images.
Finally, detrending was performed for the elimination of the
linear drift. We also performed the regression of global signals
analysis to process the data (the detailed results shown in the
Supplementary Material).

Calculation of fALFF
fALFF analysis was performed with the DPARSF software. We
computed fALFF values based on the method of previous studies
(7, 18). The previous study demonstrated that the full fALFF
frequency range (0.01–0.25Hz) encompasses four bands: slow
5 (0.01–0.027Hz), slow 4 (0.027–0.073Hz), slow 3 (0.073–
0.198Hz), and slow 2 (0.198–0.25Hz) (45). The fALFF of
the slow 5 and slow 4 bands were calculated in our study.
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Firstly, we calculated the fALFF values of the slow 5, and
we set the bands with 0.01–0.027Hz; then, we set the bands
with 0.027–0.073 in the DPARSF to calculate the slow 4
fALFF values.

Statistical Analysis
The fALFF maps were estimated within the regions of the DMN
template built in the GIFT toolbox (46). By subtracting the mean
from the value of each voxel of the raw fALFF and then dividing
by the standard deviation, we obtain a Z-standardized fALFF
map of participants for the following statistical analysis. Voxel-
wise independent two-sample t-test and paired t-tests in SPM8
were employed to compare the difference of fALFF between
the patients and controls as well as before and after treatment
in bipolar II depression patients, respectively. Age, gender,
and educational years were considered covariates. Family-wise
error (FWE) correction was utilized for multiple comparisons
with a significance threshold of <0.025 and cluster size
(CZ) of 100.

To examine the associations between the fALFF values and
depressive symptoms, fALFF values in the baseline and follow-
up patient groups were acquired from abnormal brain regions.
Firstly, we picked every abnormal cluster as images, respectively;
then, the fALFF values of every subject were calculated with
“ROI signal of extractor” of DPARSF with this image as masks.
In addition, the longitudinal changes in fALFF values (follow-
up value minus baseline values) and decreased HDRS (baseline
HDRS scores minus follow-up HDRS scores) were identified as
changes in brain activity and clinical symptoms, respectively.
Spearman correlation analysis was used in computing the
correlation between the fALFF values and HDRS scores at
baseline and between the changes in fALFF values and decreased
HDRS scores.

Given that two comparisons (patients vs. controls at baseline,
baseline patients vs. after-treatment patients) and four brain
regions were included, for correlation analysis, the Bonferroni
correction p < 0.006 (four regions, two stages, p < 0.05/4× 2).

Clinical and demographic data were performed with SPSS
(version 17.0). Mann–Whitney U-test was used in comparing
differences between the patients and HCs in terms of age, marital
status, and years of education. Differences in terms of gender and
tobacco use were assessed using chi-square tests. In addition, to
analyze the patients’ longitudinal changes of HDRS, theWilcoxon
test was used. These statistical tests were two-tailed, and a p-value
of <0.05 was considered statistically significant.

RESULTS

Demographic and Clinical Characteristics
A total of 52 participants were included, comprising 23
medication-free patients with bipolar II depression and 29 HCs.
The demographic and clinical characteristics of the patients
and HCs are shown in Table 1. The two groups did not differ
significantly in terms of gender (p = 0.829), age (p = 0.934),
tobacco use (p = 0.764), marital status (p = 0.577), and years of
education (p= 0.118).

TABLE 1 | Demographic and clinical characteristics of medication-free patients

with bipolar II depression and HCs.

Variables Bipolar II

depression

(N = 23)

HCs (N

= 29)

χ
2/Z p-value

Gender—male/female, case 12/11 13/16 0.046 0.829a

Married (married/living as

married)/non-married (widowed,

divorced, separated, single),

case

8/15 8/21 0.312 0.577a

Age—median (range), years 19 (16–39) 21

(15–32)

−0.083 0.934b

Education duration—median

(range), years

14 (9–19) 14 (9–16) −1.562 0.118b

Tobacco use—case 4 6 0.090 0.764a

Duration of illness—median

(range), months

12 (1–96) / /

Number of depressive

episodes—median (range), times

2 (0–8) / /

Number of hypomania

episodes—median (range), times

1 (1–8) / /

Age of onset—median (range),

years

16 (10–38) / /

HCs, healthy controls.
aThe p-values for sex distribution, marital status, and tobacco use were obtained

by chi-square-tests.
bThe p-value was obtained by the Mann–Whitney U-test applied.

Baseline and Longitudinal Changes in
fALFF
At baseline, the patients displayed significantly lower fALFF
values in clusters A and B than those of HCs in slow 5 band
(p < 0.025, FWE corrected, CZ = 100). Cluster A included the
bilateral medial SFG and bilateral anterior cingulate (ACC), and
cluster B included bilateral PCu, left PCC, bilateral paracentral
lobule, bilateral middle cingulum, and bilateral supplementary
motor area (p < 0.025, FWE corrected, CZ = 100) (Figure 1
and Table 2). We also found that the patients had higher slow
5 fALFF values in cluster C (left caudate) than the HCs (p
< 0.025, FWE corrected, CZ = 100) (Figure 2 and Table 2).
However, no significant difference between the patients and HCs
in the slow 4 band was observed (p < 0.025, FWE corrected,
CZ= 100; Table 2).

After the 16-week treatment, fALFF increased in clusters D,
E, and F compared with the baseline in the slow 5 band (p <

0.025, FWE corrected, CZ = 100; Figure 3 and Table 2). Cluster
D included the bilateral medial SFG, bilateral SFG, bilateral
ACC, and right middle frontal gyrus, and cluster E included the
bilateral PCu, bilateral PCC, and left cuneus. Cluster F included
the left angular gyrus, left middle temporal gyrus (MTG), left
superior temporal gyrus (STG), and left supramarginal gyrus
(SMG). None of the regions demonstrated decreased fALFF after
treatment. There was no significant difference in slow 4 fALFF
in the patients after treatment (p < 0.025, FWE corrected, CZ =

100; Table 2).
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FIGURE 1 | At baseline, patients exhibited lower slow 5 fALFF in bilateral SFGmed and bilateral ACC (cluster A) and bilateral PCu, left PCC, bilateral PCL, bilateral

MCC, and bilateral SMA (cluster B) when compared with healthy controls (p < 0.025, FWE corrected, CZ = 100). SFGmed, medial superior frontal gyrus; ACC,

anterior cingulate; PCu, precuneus; PCC, posterior cingulate; PCL, paracentral lobule; MCC, middle cingulum; SMA, supplementary motor area.

After the 16-week treatment, no significant differences
between the patients and HC were observed (p < 0.025, FWE
corrected, CZ= 100) in the slow 5 and slow 4 bands (Table 2).

Longitudinal Alterations of Clinical
Symptoms
The median (range) of the HDRS is 23 (29, 19) at baseline. After
the 16-week treatment course, the HDRS was reduced to 3 (6, 0).
HDRS decreased to 21 (26, 13). The Wilcoxon test revealed that
the HDRS scores of patients were significantly higher than those
of patients in the medication-free phase (Z =−4.202, p= 0.000).
The median (range) of YMRS in the patients was 3 (4, 0) and 2 (3,
0) at baseline and follow-up, respectively.

Relationships of Baseline and Longitudinal
Alterations of fALFF and Clinical Variables
Relationships of Baseline and Longitudinal

Alterations of fALFF and HDRS Scores
The baseline HDRS score was negatively correlated with the
slow 5 fALFF of cluster A (r = −0.549, p = 0.000) at baseline
(Figure 4). No correlation between the baseline of HDRS and
cluster B (r = −0.509, p = 0.013) as well as cluster C (r = 0.094,
p = 0.669) was found. The decrease in HDRS scores (baseline
HDRS scores minus follow-up HDRS scores) was positively
correlated with the increased values in slow 5 fALFF (follow-up
minus baseline) in cluster D (r = 0.782, p = 0.000) and cluster
E (r = 0.606, p = 0.002) at follow-up (Figure 4). No correlation

between the decreases in HDRS scores and the increased values
in slow 5 fALFF was found (r = 0.311, p= 0.149) in cluster F.

Relationships of Baseline fALFF and Other Clinical

Variables
No correlation between the duration of illness and the slow 5
fALFF values in cluster A (r = −0.293, p = 0.174), cluster B (r
= 0.259, p = 0.233), and cluster C (r = −0.090, p = 0.683) was
found, respectively. Also, there was no correlation between the
age of onset and the slow 5 fALFF values in cluster A (r = 0.142,
p = 0.517), cluster B (r = −0.137, p = 0.534), and cluster C (r =
0.159, p= 0.470) respectively.

DISCUSSION

In the study, we explore treatment-related changes in fALFF
within the DMN in patients with bipolar II depression who
received a 16-week treatment course of escitalopram and
lithium. The results confirm our hypothesis that treatment-
related change in fALFF in the DMN can be corrected by
escitalopram with lithium in patients with bipolar II depression.
A correlation was observed between the change in fALFF in
the DMN and depression symptoms in patients with bipolar
II depression. fALFF changes across different bands within the
DMN were different.

First, we will discuss the possible reasons for the increase
in fALFF and reduced depressive symptoms after the treatment
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TABLE 2 | Baseline and longitudinal alterations of fALFF in bipolar II depression patients.

Cluster Brain region Brodmann

area

MNI coordinates Voxels Peak T-value p (FWE corrected)

X Y Z

Patients at baseline vs. controls

0.01–0.027 band (slow 5 band)

Cluster A Bilateral medial superior frontal gyrus

Bilateral anterior cingulate

9/10/32 −3 48 15 181 −8.8003 <0.025

Cluster B Bilateral precuneus

Left posterior cingulate

Bilateral paracentral lobule

Bilateral middle cingulum

Bilateral supplementary motor area

5/6/7/31 0 −54 45 536 −10.4495 <0.025

Cluster C Left caudate 24 −3 15 6 128 9.3419 <0.025

0.027–0.073 band (slow 4 band)

None

Patients at follow-up vs. baseline

0.01–0.027 band (slow 5 band)

Cluster D Bilateral medial superior frontal gyrus

Bilateral superior frontal gyrus

Bilateral anterior cingulate

Right middle frontal gyrus

9/10 24 54 24 344 17.0949 <0.025

Cluster E Bilateral precuneus

Bilateral posterior cingulate

Left cuneus

7/31 0 −66 33 181 13.0121 <0.025

Cluster F Left angular

Left middle temporal gyrus

Left superior temporal gyrus

Left supramarginal gyrus

39/40 −42 66 21 138 11.1745 <0.025

0.027–0.073 band (slow 4 band)

None

Patients at follow-up vs. HC

0.01–0.027 band (slow 5 band)

None

0.027–0.073 (slow 4 band)

None

FIGURE 2 | At baseline, patients exhibited higher slow 5 fALFF in left caudate (cluster C) when compared with healthy controls (p < 0.025, FWE corrected, CZ = 100).
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FIGURE 3 | After treatment, fALFF increased in bilateral SFGmed, bilateral SFG, bilateral ACC, and right MFG (cluster D); bilateral PCu, bilateral PCC, and left cuneus

(cluster E); and left ANG, left MTG, left STG, and left SMG (cluster F) in comparison with the baseline of the patients in the slow 5 band (p < 0.025, FWE corrected, CZ

= 100). SFG, superior frontal gyrus; MFG, middle frontal gyrus; ANG, angular; MTG, middle temporal gyrus; STG, superior temporal gyrus; SMG, supramarginal gyrus.

of bipolar II depression with escitalopram and lithium.
Escitalopram is a selective serotonin reuptake inhibitor (SSRI)
that increases serotonergic activity in the central nervous system
by inhibiting 5-HT reuptake (47). Previous studies showed that
serotonin (5-HT) has a role in long-term memory regulation
(48, 49) and emotional regulation (50), and this role might be
related to the pathogenesis of depression. The effective treatment
of SSRI is related to the increase in circulation in 5-HT (51) and
the concentration of 5-hydroxytryptamine in the serotonergic
system including the prefrontal cortical area (52). A previous
study has suggested that serotonergic effects on neurophysiology
mainly occur at synaptic connection sites (53). When patients
receive escitalopram treatment, changes in synaptic connections
may be a cause of changes in spontaneous brain activity (54). As
in our findings, one study reported escitalopram increased brain
activities in the mPFC, LTC, and cuneus (55). Another research
demonstrated the presence of a relationship between serotonin
transporter occupancy and DMN connectivity (56). Serotonergic
neurotransmitter system might play a role in modulating the
spontaneous activity of the DMN and alleviating depression
during escitalopram treatment.

Lithium is anothermedication used in our treatment program;
it is effective in treating bipolar depression (57, 58). The several
mechanisms of lithium, such as neurotransmitters, neuronal
plasticity, and energy metabolism, possibly play a role in its
therapeutic effects (59). Lithium may function in the prefrontal
(60) and cingulate cortices (61) by regulating synaptic activity

and energy metabolism. Synaptic activity and energy metabolism
might be related to change in spontaneous brain activity.
However, Vargas et al. (62) found that lithium has no effect on
brain activation in euthymic patients with type I bipolar disorder.
The reason for this difference may include the state of disease,
study design, and sample size (only including 10 cases taking
lithium). Given the inconsistent result, the change in the DMN
by lithium in bipolar II depression needs further confirmation.

In our study, changes in fALFF after treatment with lithium
and escitalopram in the DMN mainly occurred in the mPFC
(bilateral medial SFG, bilateral ACC), PCU/PCC, left LTC (left
MTG, left STG), and left IPL (left angular, left SMG) in bipolar II
depression. In the subsequent texts, we discuss the possible role
of these brain regions in the pathogenesis and treatment effect of
bipolar II depression.

The first altered area was the mPFC, which is the core region
of the DMN, after treatment of lithium and escitalopram. The
slow 5 fALFF in these regions increased and were positively
correlated with the decrease in HDRS. By using task-related and
resting-state functional neuroimaging methods, some scientists
reported that the mPFC is strongly related to self-referential
thought, emotion regulation (63), maintaining spontaneous
optimistic self-evaluative tendencies (64), and cognitive flexibility
(65). Abnormal resting-state brain function in the mPFC was
observed in individuals with bipolar disorder. One study reported
reduced DMN connectivity and activation in the vmPFC in
bipolar disorder patients with acutemanic episodes (66). Another
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FIGURE 4 | The baseline HDRS scores were negatively correlated with the slow 5 fALFF in bilateral SFGmed and bilateral ACC (cluster A) (r = −0.549, p = 0.000) at

baseline. Decrease in HDRS scores (baseline HDRS scores minus follow-up HDRS scores) was positively correlated with the increased values in slow 5 fALFF

(follow-up minus baseline) in bilateral SFGmed, bilateral SFG, bilateral ACC, and right MFG (cluster D) (r = 0.782, p = 0.000) and bilateral PCu, bilateral PCC, and left

cuneus (cluster E) (r = 0.606, p = 0.002) at follow-up.
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research showed decreased connectivity between the left crus
II and bilateral mPFC in unmedicated patients with bipolar
II depression (67). A recent fALFF study revealed fALFF
values of bilateral superior frontal gyrus changed in bipolar
depression (68). The mPFC is an area with strong serotonergic
projections (69), and the SSRI increases the concentration of 5-
hydroxytryptamine by increasing the excitability of interneurons
in the PFC (52) and regulates the bold signal of mPFC (69).
Chakroborty et al. (70) reported that escitalopram changed
the spontaneous activity of the brain of rats. Evidence showed
that escitalopram can increase sensitivity to positive words
and decrease responses to self-referential words in the mPFC
(50, 55). Lithium also exerts an effect on the mPFC. It
modulates synaptic plasticity on PFC (60, 71) and increases
the level of N-acetylaspartate in PFC, which participates in
neuronal metabolism (72). Patients with bipolar disorder taking
lithium showed increased spontaneous brain activity (73) and
increased concentration of glutamate and glutamine (61) on
ACC. Combining our findings and the findingsmentioned above,
we found that escitalopram and lithium might have an effect on
the fALFF of the mPFC and depressive symptoms by modulating
neurotransmitters, neuronal metabolism, and synaptic plasticity
in bipolar II depression.

PCC/PCu is another important area of change in slow 5 fALFF
within the DMN after treatment with escitalopram and lithium in
patients with bipolar II depression. Slow 5 fALFF in these regions
increased and were positively correlated with the decrease in
HDRS. PCC/PCu plays an important role in making inferences
regarding the mental states (74) and perceiving and processing
psychosocial stress (75). Some scientists reported decreased
fALFF of PCu in psychotic bipolar disorder by means of fMRI
(21). Consistent with our results, some studies showed that
escitalopram and lithium act on the cingulate gyrus: escitalopram
can reduce posterior cingulate activity in healthy people (55), and
lithium increased relative glucose metabolic rates of the posterior
cingulate (76). Machado-Vieira et al. (77) reported that lithium
achieves therapeutic effects by reducing lactate concentrations in
the cingulate cortex in patients with bipolar I or II depression.
Based on the above discussion, we explain why slow 5 fALFF in
the cingulate cortex during bipolar depressive episodes can be
corrected by escitalopram and lithium and why the depressive
symptoms such as lower self-evaluation and reduced ability to
cope with stress were alleviated.

We found that the lower fALFF value in the left IPL and left
LTC can be corrected by escitalopram and lithium. Structural
and functional abnormalities in the IPL and LTC in patients with
bipolar disorder have been observed. Compared with the HC
group, the bipolar depression group showed decreased fALFF
in the left IPL (12), and the bipolar I disorder group displayed
large temporal lobe white matter (78) and small volumes of STG
(79). Both lithium and escitalopram have effects on the superior
temporal gyrus. Escitalopram enhanced regional homogeneity
in the superior temporal lobe in patients with panic disorder
(80), and lithium treatment can increase superior temporal gyrus
volume in bipolar I disorder (79). However, in the present study,
we did not find a significant correlation between increased slow
5 fALFF in the left IPL and left LTC and a decrease in HDRS.

The possible causes of these results were that the functions of
these brain regions were mainly involved in cognition, auditory,
and language function: the IPL is mainly related to cognitive
functions, including memory retrieval and bottom-up attention
(81); the MTG mainly takes part in motor skill learning (82)
and short-term verbal memory (83); and the STG is generally
considered a part of the high-order auditory cortex (84).

Finally, our study suggested that slow 5 fALFF better
embodied the low-frequency amplitude of the cortex (i.e., mPFC,
PCC) than slow 4 fALFF in patients with bipolar II depression.
These findings are consistent with some previous studies (20, 45).
Zuo found that the slow 4 fALFF showed the strongest signal
in the basal ganglia thalamus, but slow 5 had the strongest
signal in the cortex, particularly the mPFC (15). A resting-
state study in post-stroke depression showed that fALFF only
decreased in slow 5 band, but did not change in the slow
4 band (20): the changed brain region was observed in the
cortex, including the right precentral gyrus and supplemental
motor/middle frontal cortex. Another study in MDD suggested
that alterations of slow 5 fALFF are more obvious than the slow
4 fALFF in cortical areas, such as the mPFC, ITG, and IPL
(45). The neural mechanisms of the different frequency bands
have not been elucidated yet, and some researchers proposed
that neuronal oscillations are related to the activity of chemical
synaptic signaling, input selection plasticity of neuron, and the
connected neuron networks (85), which differ in the cortex and
subcortex, and the information mentioned above may shed some
light on our result that the cortex and subcortex have different
fALFF bands.

LIMITATION

The present study has some potential limitations. First, the
sample size of our study is relatively small. Studies with larger
sample sizes are needed to confirm these results in the future.
Second, we adopted the combination of therapeutic regimens of
escitalopram and lithium in line with the CANMAT guidelines
for the management of patients with bipolar disorder (2013)
and our clinical experience instead of the 2018 edition, which
suggested the use of quetiapine as first-line treatment for
medication-naive patients with bipolar II depression. In the
future, monotherapy with quetiapine can also be used to prove
the results. Third, the impact of comorbidity of patients was
not taken into account in our study, which could be considered
a limitation. Lastly, the HCs only had MRI at baseline, and
thus, the effect of time on the brain may be biased as a
confounding factor.

CONCLUSIONS

Three main findings were obtained in this study. First, the
hypoactivity of slow 5 fALFF in the DMN might be corrected by
escitalopramwith lithium. Second, a positive correlation between
increased fALFF values and the improvement of depressive
symptoms in the mPFC and PCu/PCC was found during follow-
up. Finally, the experiment confirmed that the fALFF changes in
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patients with bipolar II depression are more sensitive to slow 5
band and the slow 5 fALFF might better embody the signal of the
cortex when compared with slow 4 band.
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