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Commen t a r y

An article published in this issue (see Tsai et al.) pro-
vides important advances in our understanding of the 
gating mechanism of the CFTR, the chloride channel 
mutated in cystic fibrosis patients. Indeed, the rele-
vance of the conclusions goes beyond understanding 
CFTR, extending at least to the subfamily of ABC pro-
teins to which CFTR belongs, and perhaps also to the 
entire superfamily.

ABC proteins are found in all organisms from bacteria 
to human and mediate transmembrane export/import 
of a variety of substrates at the expense of ATP hydro-
lysis. The 48 human ABC proteins are mostly export-
ers involved in a wide variety of physiological processes, 
ranging from insulin secretion to antigen presentation, 
cholesterol and bile salt transport, and drug detoxi-
fication (Dean and Annilo, 2005). Despite the evolu-
tionary divergence reflected by the heterogeneity of 
transported substrates, the basic architecture and trans-
port mechanism of these proteins are highly conserved. 
The core structure of all ABC proteins is built from two  
homologous halves, each consisting of a transmem-
brane domain (TMD) and a cytosolic nucleotide binding  
domain (NBD). The TMDs form the pathway for uphill 
substrate translocation, energized by an ATP hydroly-
sis cycle catalyzed by the two NBDs. A vast body of bio-
chemical studies compiled over two decades, fertilized 
by recently obtained high-resolution crystal structures, 
has clarified the outlines of this process at a molecu-
lar level. At the heart of this functional cycle lies the 
formation of an intramolecular dimer by a head-to-tail 
association of the two NBDs. Dimerization is induced by 
interfacial binding of two ATP molecules that act as mo-
lecular glue; in the glued-together dimer, the ATPs are 
bound in composite sites formed between the “head” of 
one NBD and the “tail” of the other. Both the head and 
the tail side contain conserved sequence motifs impor-
tant for ATP binding and hydrolysis, such as the Walker  
A and B motifs (head) and the ABC signature motif 
(tail). In crystal structures of full-length ABC exporters, 
obtained in various conformations, a nucleotide-bound 
NBD dimer is always associated with an outward-facing 
TMD conformation, whereas separated monomeric 
NBDs (observed in structures devoid of ATP) go along 
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with an inward-facing TMD conformation (Hollenstein 
et al., 2007; Procko et al., 2009). Thus, flipping between 
outward- and inward-facing TMD conformations, a fun-
damental property of uphill transporters (Jardetzky, 
1966), is coupled to formation/dissociation of the NBD 
dimer. Because the dimer is very stable with two ATPs at 
the interface, dynamic cycling requires ATP hydrolysis 
to allow prompt dimer disassembly. An important ques-
tion under intense debate is whether NBD separation is 
a large-scale movement that disengages the entire dimer 
interface, or whether the two composite ATP binding 
sites open up one at a time to maintain a partial dimer 
conformation that continues to occlude one ATP.

In most ABC proteins, the two NBDs are either iden-
tical or highly conserved, allowing ATP hydrolysis to  
occur at both composite sites. Two models have been 
proposed for the catalytic cycle of such symmetrical 
ABC proteins. The “processive clamp” model (Janas  
et al., 2003) suggests that disruption of the NBD dimer 
requires hydrolysis of both ATP molecules, entailing 
complete separation of the interface to allow ADP–ATP 
exchange. In contrast, the “alternating catalysis” model 
(Senior et al., 1995) postulates that the two sites adopt 
alternating roles in consecutive cycles, such that in each 
cycle only one of the ATPs is hydrolyzed, followed by 
partial disengagement of the dimer sufficient to allow 
nucleotide exchange at only that site.

In a subset of ABC proteins, however, the two NBD  
sequences are highly divergent. The C subfamily of hu-
man ABC proteins, which includes the sulphonylurea 
receptors (SUR1 and SUR2) and the multidrug resis-
tance proteins, as well as CFTR, belongs to this subset. 
In these asymmetric ABC proteins, non-conservative 
substitutions adjacent to the Walker B motif of the  
N-terminal NBD (NBD1) and in the signature sequence 
of the C-terminal NBD (NBD2) render the composite 
binding site formed by these motifs (composite site 1) 
catalytically inactive (Procko et al., 2009). Moreover, 
photolabeling experiments using 8-N3-ATP suggest that, 
whereas ATP is turned over at a rate on the order of one 
per second at the active composite site 2 (formed by the 
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Carson et al., 1995); in the latter case, the long locked-
open events are due to formation of an NBD dimer in 
which ATP is bound in composite site 1, whereas AMP-
PNP or PPi is bound in composite site 2 (Tsai et al., 
2009). In the presence of P-ATP, not only were normal 
open times prolonged, but so were the durations of 
locked-open events—whether induced by NBD2 head 
mutations (Zhou et al., 2005) or by coapplication of 
AMP-PNP (Zhou et al., 2005) or PPi (Tsai et al., 2009).

Having characterized channel gating under condi-
tions in which both composite sites are loaded with the 
same type of nucleotide (i.e., either ATP or P-ATP), in 
the present study Tsai et al. (2010) designed a clever  
ligand exchange protocol to study the gating properties 
of single CFTR channels with a different nucleotide 
bound at each of the two composite sites. Their idea is 
based on the very different nucleotide release rates of 
the two sites suggested by the biochemical experiments. 
Exploiting this anticipated difference, the authors mon-
itor the pattern of gating of single CFTR channels inter-
mittently exposed to either ATP or P-ATP, and extract 
mean open and shut times over consecutive short time 
windows. They find that the pattern of gating changes 
in two clearly separable steps in response to a rapid  
ligand exchange. Upon replacing ATP with P-ATP, they 
find that the opening rate increases instantaneously, 
whereas the prolongation of open times follows only 
with an 30-s delay. In the interim, the channel per-
forms 20–30 gating cycles with unchanged open time. 
Similarly, when they replace P-ATP with ATP, the open-
ing rate decreases instantaneously, whereas the pro-
longed open times characteristic of P-ATP persist for 
another 30–50 s. During this interval, the channel pro-
duces some dozens of long openings before reverting to 
the briefer openings characteristic of ATP. This two-step 
adaptation is also reflected by the time course of macro-
scopic current increase upon an ATP→P-ATP switch, 
which is bi-exponential, with a rapid (<1 s) and a slow 
(50 s) time constant. Moreover, when they remove  
P-ATP after a brief exposure, they obtain a fast current 
decay like that upon the removal of ATP, whereas the 
removal of P-ATP after a prolonged exposure is fol-
lowed by a slower current decay signaling prolonged 
channel open times. So, clearly, while opening rate is an 
instantaneous reflection of the type of nucleotide pres-
ent in the bath, channel closing rate has a long-term 
“memory” dissipated over a time course orders of mag-
nitude longer than the cycle time.

The obvious interpretation is that this memory is pro-
vided by the nucleotide occluded in the inactive com-
posite site 1. If so, then the time course of the slow 
kinetic change is a measure of the speed at which this 
site is vacated, confirming that nucleotide remains 
bound here for many gating cycles. To test whether this 
is indeed the case, Tsai et al. (2010) remove an aromatic 
side chain in the NBD1 head, which in crystal structures 

NBD2 head and NBD1 tail), ATP remains stably bound 
to the NBD1 head for up to several minutes without  
being hydrolyzed (Szabó et al., 1999; Ueda et al., 1999; 
Gao et al., 2000; Aleksandrov et al., 2002; Basso et al., 
2003). The intriguing question is whether this “occluded”  
ATP must be trapped between the NBD1 head and 
NBD2 tail of a formed composite site 1—as might be 
expected for a cycle that alternates between a full NBD 
dimer and a partial dimer—or whether ATP occlusion 
is an intrinsic ability of the NBD1 head by itself; the 
latter would leave room for the possibility of complete 
dimer separation in each catalytic cycle.

In their present article, Tsai et al. (2010) convincingly 
answer this question for the model ABC-C family mem-
ber, CFTR. CFTR is unique among ABC proteins in that 
its TMDs form a pore that is permeable to chloride ions 
(Riordan et al., 1989). From an evolutionary perspec-
tive, CFTR is a broken ABC transporter in which the  
inward-facing TMD conformation represents the closed, 
and the outward facing conformation represents the 
open, chloride permeation pathway. On the other hand, 
gating of the CFTR chloride channel uses the funda-
mental mechanisms shared by all asymmetric ABC pro-
teins driven by formation/dissociation of the NBD1/ 
NBD2 heterodimer. Using the exceptional power of 
real-time recording of ion channel gating transitions, 
the authors tackle the fundamental question of whether 
the NBD dimer fully dissociates in each gating cycle; 
and they provide strong evidence that it does not.

The present work builds on tools developed over the 
past five years. Previous work by the same group has 
identified and characterized N6-(2-phenylethyl)-ATP  
(P-ATP) as an ATP analogue that opens CFTR channels 
with 50-fold higher affinity (K1/2 of 1.6 µM) than 
ATP. Open probability is also higher in saturating P-ATP 
than in saturating ATP due to both faster channel open-
ing and slower closing (Zhou et al., 2005). Because in 
the continued presence of P-ATP both composite sites 
likely become loaded with this analogue, an obvious 
question to ask is whether the latter two effects on gat-
ing can be associated with P-ATP occupancy of one or 
the other composite binding site. Two lines of evidence 
suggested that prolongation of open times is due to 
binding of the analogue to composite site 1. First, the 
effect on the open times has a higher affinity than the 
effect on the closed times (Zhou et al., 2005), and bio-
chemical experiments have identified composite site  
1 as the higher-affinity site. A second hint was provided 
by the effect of P-ATP on “locked-open” events. Block-
ing hydrolysis at composite site 2 is known to prolong 
the lifetime of open events by approximately two orders 
of magnitude. This can be achieved either by mutating 
catalytically important residues in the NBD2 head, or  
by applying mixtures of ATP and a nonhydrolyzable  
ATP analogue like AMP-PNP or pyrophosphate (PPi) 
(Gunderson and Kopito, 1994; Hwang et al., 1994;  
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What might be the reason for this discrepancy?  
Certainly, the presence of the azido group required for 
labeling cannot be the culprit, because Tsai et al. (2010) 
show that 8-N3-ATP occluded at site 1 is exchanged at a 
similar rate as ATP. Potential pitfalls of the biochemical 
experiments are limited time resolution and the diffi-
culty of quantifying the efficiency of labeling. Because 
these signals are normalized to the apparent “0 time” 
signal, it is conceivable that they might miss the most 
relevant part of a time course that has a 30-s time con-
stant, and instead report on a small fraction of channels 
in which, for some reason, occlusion persists for longer 
time periods. In any case, future studies will be needed 
to identify the functional relevance of such longer-term 
nucleotide binding and the structural correlate of the 
corresponding occluded state.
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of NBD1 stacks against the adenine base of ATP. As  
anticipated, this perturbation dramatically speeds mem-
ory dissipation; the two-step character of kinetic changes 
upon ligand exchange is no longer resolvable in single-
channel recordings, and, accordingly, the slow time 
constant of the macroscopic response is shortened to 
2 s. Thus, when nucleotide binding at the NBD1 head 
is destabilized, channel closed and open times both 
change almost instantaneously upon ligand exchange.

The stage is now set to pose the main question: Does 
nucleotide occlusion at site 1 require structural contri-
butions from the NBD2 tail? To answer this question, 
the authors introduce mutations into the NBD2 signa-
ture sequence—the part of the NBD2 tail that com-
pletes composite site 1 in a formed NBD1-NBD2 dimer. 
The clear-cut result is that several of these NBD2 tail 
mutations dramatically speed memory dissipation, just 
the same way as the removal of the conserved aromatic 
side chain in the NBD1 head. Thus, the nucleotide that 
is stably occluded at site 1 for several gating cycles clearly 
interacts with both the NBD1 head and the NBD2 tail. 
This is an elegant and irrefutable demonstration that 
during a typical gating cycle, the NBD dimer interface 
remains closed around composite site 1, and opens up 
only partially at the hydrolytically active composite  
site 2, to allow ADP–ATP exchange there. This lack of 
movement at composite site 1 provides a satisfying ex-
planation for the generally small effects on gating of 
perturbations at this site (Powe et al., 2002; Csanády  
et al., 2005; Zhou et al., 2006; Muallem et al., 2008), and 
is an important revelation of the catalytic mechanism of 
all asymmetric ABC proteins.

As a further step, the authors study the rare instances 
of separation of composite site 1. Clearly, this must  
occasionally occur to allow ligand exchange there. By 
analyzing state dependence of the speed of ligand ex-
change at site 1, they show that this ligand is exchange-
able only while the channel is shut, but not while it is 
open. The implication is that in a closed channel, in 
which the NBD2 head and the NBD1 tail are already 
separated, this separation will occasionally spread to 
composite site 1 and result in full separation of the  
dimer. However, such full separation is a rare event, and 
the authors provide evidence that once this happens, 
reformation of an occluded site 1 might require prior 
closure of composite site 2.

Questions remain. The inferred 30–50-s time con-
stant for nucleotide exchange at site 1 falls short of ex-
plaining at least 20-fold longer lifetimes of 8-N3-ATP 
occlusion at NBD1 suggested by biochemical experi-
ments (Aleksandrov et al., 2002; Basso et al., 2003). 
And the clear requirement of the NBD2 tail for this 
occlusion seems difficult to reconcile with apparently 
unaltered retention of 8-N3-ATP by NBD1 of a trun-
cated CFTR construct lacking NBD2 (Aleksandrov  
et al., 2008).
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