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Simple Summary: Resting-state functional magnetic resonance imaging (rs-fMRI), a popular neu-
roimaging technique, can provide rich information about functional processes in the brain with a large
array of imaging parameters and is suitable for exploring the pathophysiological essence of gliomas.
In this study, by applying omics analysis strategy to rs-fMRI with exhaustive regional parameters,
we proposed a novel approach, named Regional Parameter of Resting-state fMRI-omics (RP-Rs-
fMRIomics), and further evaluated the diagnosis performance of the method on brain gliomas. We
found that the RP-Rs-fMRIomics, featuring entire investigation and high interpretability, presented
superior performance in prediction of tumor grade, IDH genotype and prognosis of brain gliomas.
This RP-Rs-fMRIomics not only contributed a new imaging method for brain glioma research, but
also expanded the clinical application of rs-fMRI.

Abstract: Rs-fMRI can provide rich information about functional processes in the brain with a large
array of imaging parameters and is also suitable for investigating the biological processes in cerebral
gliomas. We aimed to propose an imaging analysis method of RP-Rs-fMRIomics by adopting omics
analysis on rs-fMRI with exhaustive regional parameters and subsequently estimating its feasibility
on the prediction diagnosis of gliomas. In this retrospective study, preoperative rs-fMRI data were
acquired from patients confirmed with diffuse gliomas (n = 176). A total of 420 features were extracted
through measuring 14 regional parameters of rs-fMRI as much as available currently in 10 specific
narrow frequency bins and three parts of gliomas. With a randomly split training and testing
dataset (ratio 7:3), four classifiers were implemented to construct and optimize RP-Rs-fMRIomics
models for predicting glioma grade, IDH status and Karnofsky Performance Status scores. The
RP-Rs-fMRIomics models (AUROC 0.988, 0.905, 0.801) were superior to the corresponding traditional
single rs-fMRI index (AUROC 0.803, 0.731, 0.632) in predicting glioma grade, IDH and survival. The
RP-Rs-fMRIomics analysis, featuring high interpretability, was competitive for prediction of glioma
grading, IDH genotype and prognosis. The method expanded the clinical application of rs-fMRI and
also contributed a new imaging analysis for brain tumor research.

Keywords: resting-state fMRI; regional parameter; glioma; RP-Rs-fMRIomics

1. Introduction

Resting-state functional magnetic resonance imaging (rs-fMRI) has been increasingly
the most popular neuroimaging technique for investigating human brain function in phys-
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iological and pathological states [1]. By measuring low-frequency blood oxygen level
dependent (BOLD) fluctuations with a growing array of parameters, rs-fMRI provides rich
information for depicting features of spontaneous brain activity from connectivity and
regional aspects [2–4]. Connectivity measures interregional relationships and is dedicated
to the construction of functional brain networks [5,6]. On the contrary, regional parame-
ters, including amplitude of low-frequency fluctuation (ALFF) [7], regional homogeneity
(ReHo) [8,9], Hurst exponent (HE) [10] and time-shift-analysis (TSA) [11], voxel-wisely
describe the local brain activity in amplitude, frequency and temporal profiles.

Rs-fMRI has also been extensively applied to brain gliomas in clinics. The values of
rs-fMRI have been well established in mapping eloquent regions and estimating cognitive
function for presurgical planning [12,13]. Moreover, recent investigation has increasingly
expanded rs-fMRI to the pathophysiological essence of the tumors by taking advantage
of the features of rich information and versatile measures in the technique. In particular,
studies have applied rs-fMRI to classify gliomas through observing network characteris-
tics [5,12,14]. However, the network metrics, which measure signals mostly outside the
tumor at the whole brain level, might not be specific to the nature of gliomas under a
black-box model. A few of other studies observed regional parameters of rs-fMRI within
the tumor itself [14–16]. Metwali et al. [14] adopted ALFF to investigate tumor grades
and found that high-grade gliomas showed significantly higher amplitudes of fluctuation
compared with low-grade gliomas. Gupta et al. [16] combined the temporal shift, ALFF
and ReHo to characterize the BOLD signal in gliomas and found that the temporal shift
and ALFF were significantly distinguishable between high- and low-grade gliomas. These
phenotypes of regional parameters within the tumor have been illustrated as intratumoral
changes in oxygenation and hemodynamics caused by vascular dysregulation and venous
effects in gliomas [14,16–21], suggesting that BOLD signals could reflect the biological
characteristics of gliomas.

However, previous studies have mostly adopted univariate analysis on one or several
imaging parameters separately, and the adopted parameters were all based on conventional
frequency bands (approximately 0.01–0.08 Hz) of BOLD signals. The operations would
fail to take full advantage of the fMRI nature with versatile measures and rich intrinsic
information [22]. Accordingly, a concept of biomedicine analysis strategy, omics, can
comprehensively measure the profiles of structure and functions of the whole makeup of a
given biological function by analyzing large amounts of data representing an entire set of
genes, proteins, metabolism, etc. [23]. Notably, a recent omics analysis method in medical
imaging, radiomics [24,25], can introduce thousands of high-throughput features at one
time, followed by various methods for feature selection and model building to seek the
best combination of features for clinical prediction, which has the advantage of making full
use of multiple indicators. However, feature extraction in radiomics is based on measuring
the intensity and morphological characteristics, and the data-driven nature of radiomics
inherently offers no insight into the biological underpinnings of observed relationships [26].
A few recent fMRI studies [27–30] innovatively borrowed tactics of radiomics analysis.
Features were extracted from parameters within multiple brain parcellations or based on
constructed connectivity between the brain parcellations. However, the parcellation-based
fMRI-radiomics analysis concerning spatial information of the whole brain characteristics
might be suitable for applying to diseases with overall brain changes, rather than the
gliomas with regional brain abnormality.

On the basis that rs-fMRI can provide a large number of imaging metrics describing
pathophysiological processes of gliomas, here we intended to propose a novel omics analy-
sis approach, named Regional Parameter of Resting-state fMRI-omics (RP-Rs-fMRIomics),
by employing exhaustive regional parameters in a spectrum of specific frequency bands.
Subsequently, we evaluated the diagnosis feasibilities of RP-Rs-fMRIomics in grading,
molecular typing and prognosis on gliomas. We hypothesized that, in comparison with
univariate analysis using single or finite imaging parameters [14–16], the RP-Rs-fMRIomics
would ensure more precise diagnosis through comprehensive data analysis. On the other
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hand, in comparison with traditional radiomics with parcellation-based analysis [24,25],
the RP-Rs-fMRIomics would be more readable with the explicit meaning of each feature as
a certain rs-fMRI parameter at a certain frequency.

2. Material and Methods
2.1. Patients Enrollment

This retrospective study was approved by the Affiliated Jinling Hospital, Medi-
cal School of Nanjing University Medical Research Ethics Committee (protocol code
2019NZGKJ-083 and date of approval 5 March 2019). From December 2015 to Febru-
ary 2020, 288 consecutive patients pathologically confirmed for supratentorial WHO II-IV
glioma were involved. Among them, 176 glioma patients who met the inclusion criteria
were enrolled in this study (Figure 1).
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Figure 1. Flowchart of the inclusion and exclusion criteria for patients.

2.2. Clinical Data

Glioma grades were diagnosed on histopathological examinations according to the
2007 or 2016 WHO classification criteria of central nervous system tumors [31,32]. High-
grade gliomas (WHO III-IV) were found in 113 cases and low-grade gliomas (WHO II)
were found in 63 cases. Isocitrate dehydrogenase (IDH) genetic diagnosis of gliomas was
performed in 150 cases out of the 176 patients, with DNA sequencing (n = 112, Sanger
sequencing or pyrosequencing) or immunohistochemistry (n = 38, antibody IDH1-R132H)
on tumor samples. IDH wild/mutation types were found in 94/56 cases. The patients
received partial (n = 86) or gross total (n = 90) resection followed by chemotherapy and
radiation. Karnofsky Performance Status (KPS) scores (binary, score >70 or ≤70) [5,33],
as a strong independent predictor of clinical outcome [34] determined by postoperative
treatment, were retrieved from their electronic medical records. The demographic and
clinical information are shown in Table 1.
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Table 1. Demographic and clinical data of glioma patients.

Variables
Grading Model IDH Model Survival Model

All
Patients
(n = 176)

Training
Set

(n = 123)

Testing
Set

(n = 53)

p
Value

All
Patients
(n = 150)

Training
Set

(n = 105)

Testing
Set

(n = 45)

p
Value

All
Patients
(n = 176)

Training
Set

(n = 123)

Testing
Set

(n = 53)

p
Value

Age (±SD),
years

51.11 ±
13.74

51.67 ±
12.24

49.83 ±
16.77 0.474 50.65 ±

13.37
52.31 ±

14.53
50.44 ±

12.43 0.503 51.11 ±
13.74

50.97 ±
13.54

51.45 ±
14.32 0.830

Gender 0.019 * 0.390 0.008 *
male 96 60 36 82 55 27 96 59 37

female 80 63 17 68 50 18 80 64 16
WHO grade 0.992 0.682 0.308

II 63 44 19 53 36 17 63 47 16
III-IV 113 79 34 97 69 28 113 76 37

IDH status 0.242 0.941 0.528
Mutant 56 38 18 56 39 17 56 42 14

Wild type 94 72 22 94 66 28 94 66 28
Extent of
resection 0.070 0.669 0.107

gross-total 90 57 33 76 52 24 90 58 32
partial 86 66 20 74 53 21 86 65 21

KPS 0.198 0.001 * 0.619
>70 39 24 15 32 15 17 39 26 13
≤70 137 99 38 118 90 28 137 97 40

Abbreviations: WHO = World Health Organization, IDH = isocitrate dehydrogenase, KPS = Karnofsky Perfor-
mance Status. * represents the number of p-values < 0.05.

2.3. MRI Data Acquisition

All patients underwent preoperative MR examinations on a 3.0-T scanner (Discovery
MR750 System; GE Medical Systems, Milwaukee, WI, USA) with a 32-channel head coil.
They were instructed to keep their eyes closed and stay awake.

Rs-MRI data were acquired using a gradient-echo planar imaging sequence
(TR = 1000 ms, TE = 19 ms, FOV = 220 × 220 mm2, in-plane matrix = 64 × 64, flip an-
gle = 75◦, slice number = 20, slice thickness = 5 mm, interslice gap = 1.5 mm). Scan time
lasted 6 min 45 s, and a total of 405 volumes were acquired.

High-resolution 3D T1WI images were obtained using a 3D-BRAVO sequence after con-
trast enhancement: TR = 8.2 ms, TE = 3.2 ms, matrix = 256 × 256, slice thickness = 1.0 mm
and number of slices = 144. Moreover, routine MR images including pre- and post-enhanced
T1WI, T2WI, T2-FLAIR weighted imaging were acquired for radiological diagnosis. About
0.1 mmol/kg of gadolinium chelate contrast was injected for contrast-enhanced imaging.

2.4. Imaging Processing
2.4.1. Data Preprocessing

Rs-fMRI data were preprocessed using SPM 12 (http://www.fil.ion.ucl.ac.uk/spm
(access on 8 April 2021))-based toolkit of DPARSF toolbox (DPARSF_V2.3; www.restfmri.net
(access on 8 April 2021)) [35], including: (1) discarding the first 5 volumes; (2) slice timing
correction; (3) head motion correction; (4) registering to individual 3DT1-CE images;
(5) smoothing with a 6 mm FWHM isotropic Gaussian kernel (except for ReHo calculation;
for the calculation of Hurst and TSA, including smooth and non-smooth); (6) removing
covariates of head motion, white matter signal and cerebrospinal fluid; (7) considering the
physiological information contained in potential specificity in different frequency bands,
in addition to the frequency range (0.01–0.1 Hz) of BOLD fluctuation, we also divided
them into 9 narrow band bins, i.e., each narrow frequency band covered 0.01 Hz. Based
on these 10 frequency bands, we reckoned that the measures on the pinpoint frequency
fluctuation would increase as much of the information about the BOLD fluctuations and
find the optimal frequency sub-band of BOLD effects in gliomas

To comprehensively delineate the features of the BOLD signals within the tumor,
we calculated the regional rs-fMRI parameters as much as available currently, including
four main parameters: ReHo [8,9], ALFF [7], HE [10,36–38] and TSA [39]. Moreover,
fraction of ALFF (fALFF) [7,40] as a commonly used variant of ALFF was also calculated.
The definition of each parameter is presented in Supplementary Material S1. ReHo and
ALFF analyses were performed using rs-fMRI Data Analysis Toolkit (http://resting-fmri.

http://www.fil.ion.ucl.ac.uk/spm
www.restfmri.net
http://resting-fmri.sourceforge.net
http://resting-fmri.sourceforge.net
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sourceforge.net (accessed on 8 April 2021)), while HE and TSA were calculated using an in-
house toolkit in line with methods in Lei et al. [41] and Lv et al. [42]. Moreover, considering
the controversy about the physiological meaning of the global signal, we further calculated
the above parameters after global regression.

2.4.2. Tumor Segmentation and Feature Extraction

Blinded to all the information of patients, two experienced neuroradiologists manually
segmented the tumors into three subregions (enhancement, non-enhancement and peritu-
mor edema areas) slice by slice on 3DT1-CE images using MRIcron software
(http://www.nitric.org/projects/mricron (access on 5 February 2021)) (Figure 2). The
segmentation of these three subregions refers to the Multimodal Brain Tumor Image Seg-
mentation Benchmark [43]. Then, the regions of interest (ROIs) were co-registered with
functional data and normalized to MNI coordinates.
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Figure 2. The whole workflow of this study. RP-Rs-fMRIomics models were constructed for predicting
glioma grade, isocitrate dehydrogenase status and Karnofsky Performance Status scores, based on
the features extracted through measuring 14 regional parameters of rs-fMRI in 10 specific narrow
frequency bins and 3 parts of gliomas. Then, three radiomics feature selections and four classifiers
were implemented. The diagnostic performances of RP-Rs-fMRIomics models were compared with
conventional single-parameter fMRI analysis using Delong’s test.

Finally, we adopted 420 features at three levels: 14 parameters (ALFF, fALFF, ReHo,
HE, and TSA with and without global regression, and HE, TSA with and without smooth),
measured in 10 specific frequency bands, and the values extracted within 3 regions.

2.5. Statistical Analysis
2.5.1. Conventional rs-fMRI Analysis

We calculated the regional parameters in the conventional strategy within frequency
at 0.01~0.1Hz in order to perform prediction analysis of each rs-fMRI parameter on gliomas.
Receiver operating characteristic (ROC) analysis was performed to measure the diagnostic
performance of these indexes based on ROIs for tumor grading, IDH status and prognosis
in gliomas. According to the AUC, the best index was chosen for each task.

http://resting-fmri.sourceforge.net
http://resting-fmri.sourceforge.net
http://www.nitric.org/projects/mricron
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2.5.2. Feature Selection, RP-Rs-fMRIomics Model Construction and Validation

With 420 features extracted from rs-fMRI, we constructed RP-Rs-fMRIomics models
for (1) glioma grades, (2) IDH genotype and (3) prognosis. Our dataset was randomly
split into a training set and a testing set (ratio 7:3). A few multiple machine-learning
classifiers, including Logistic Regression (LR), Support Vector Machine (SVM), Random
Forest (RF), and Linear support vector classification (Linear SVC) were used. Firstly, we
used Spearman correlation analysis to alleviate the redundancy between the features. When
the linear correlation coefficient between any two independent variables on the training set
was greater than 0.9, a feature would be removed. The features which had a high linear
correlation coefficient with the dependent variables were preferentially retained. Then,
three feature selection methods of F-test, L1-based feature selection with linear models and
Tree-based feature selection were utilized for model building.

Fivefold cross-validation and a grid search with F1 score as the optimization goal were
carried out on the training set to tune the model hyperparameters, and the performances
were tested on the testing set. Considering the area under the receiver operating character-
istic (AUROC) [44] and precision−recall curves (AUPRC) [45] could display the accuracy,
precision and recall of the model in a more comprehensive way with varying thresholds,
an optimal model with the top AUROC and the highest AUPRC was selected for each
prediction task. We also performed comparisons of diagnosis performance between each
optimal model of conventional rs-fMRI and RP-Rs-fMRIomics using the Delong’s test [46].

3. Results
3.1. Patient Characteristics

There was no significant difference in age, histopathologic grade, IDH status and
extent of resection between training and validation sets in the three models (grading, IDH
and survival model). The gender of the IDH model and the KPS of the grading and survival
models were not statistically different in the training and validation sets (all p > 0.05).

However, the validation set showed a higher proportion of male patients in the grading
and survival model (p = 0.019, 0.008) and a higher proportion of patients with KPS > 70 in
the IDH model (p = 0.001) (Table 1).

3.2. Performance of Conventional rs-fMRI Analysis

The AUROCs of five conventional indexes based on three ROIs were calculated to
quantify the predictive performance of these indexes (Figure 3). According to the AUROC,
fALFF, TSA and ReHo based on enhancement ROI achieved slightly higher AUCs of
0.803, 0.731 and 0.632 in tumor grading, IDH status and progression models, respectively.
However, there was no statistical significance of the improvement in AUCs above compared
with other indexes based on different ROIs (p > 0.0036 for all). The specific p value was
shown in Supplementary Materials Table S2. This might be related to our limited amount
of data. Therefore, we still chose fALFF, TSA and ReHo based on enhancement ROI as
the best models for predicting tumor grading, IDH status and progression, and the ROC
curves are presented in Figure 4.

3.3. Performance of RP-Rs-fMRIomics Models

The optimal model for each task was chosen on the training set and validated on the
testing set. The RP-Rs-fMRIomics with the optimal hyperparameter configuration showed
outstanding performance to predict grading (AUROC 0.988, AUPRC 0.971), IDH (AUROC
0.905, AUPRC 0.824), and survival (AUROC 0.801, AUPRC 0.667) (Table 2). The grading
and IDH models combining RF and F test and the survival model combining LR and F
test achieved the best classification performances. The hyperparameters search ranges and
optimal sets in each model are presented in Supplementary Material S3. The ROC curves
of the three models are presented in Figure 4.
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Table 2. Prediction performance of grading, IDH and survival models.

Optimal Model Grading Model IDH Model Survival Model

Classifier Random Forest Random Forest Logistic Regression

Feature Selection F Test F Test F Test

Training set

AUROC 0.999 1.000 0.706
ACC 0.984 0.991 0.642

AUPRC 0.987 1.000 0.667
SEN 0.987 1.000 0.667
SPE 0.977 0.985 0.635

F1 score 0.987 0.987 0.450

Testing set

AUROC 0.988 0.905 0.801
ACC 0.943 0.867 0.698

AUPRC 0.971 0.824 0.667
SEN 0.971 0.824 0.667
SPE 0.895 0.893 0.707

F1 score 0.957 0.824 0.500
Abbreviations: AUROC = area under the receiver operating characteristics; ACC = accuracy; AUPRC = area under
the precision−recall curve; SEN = sensitivity; SPE = specificity.

3.4. Key Imaging Features in RP-Rs-fMRIomics Models

In the grading model, IDH model and survival models, 59 features, 73 features and
4 features were selected, respectively. A detailed feature list of each RP-Rs-fMRIomics
model can be found in Supplementary Material Table S4. Figure 5 shows the top 10 importance
ranking of RP-Rs-fMRIomics features in both the grading model and IDH model, and 4
importance ranking of RP-Rs-fMRIomics features in the survival model. In terms of pa-
rameters, what stood out in the result was TSA-based RP-Rs-fMRIomics features, and they
had a large proportion in each model (61.02%, 67.12%, 50.00%). In terms of space, the
features of the enhancement area accounted for a large proportion in each model (62.71%,
53.42%, 50.00%). In terms of frequency, RP-Rs-fMRIomics features in the grading model
and IDH model were relatively balanced in ten specific frequency bands. However, the
high-frequency features distributed between 0.08–0.10 Hz were useful for predicting the
prognosis of glioma patients.

3.5. Comparisons of Prediction Performance between Conventional rs-fMRI and
RP-Rs-fMRIomics Model

The AUROC of each optimal RP-Rs-fMRIomics model out-performed the correspond-
ing best conventional rs-fMRI index for three prediction tasks (p < 0.0001 in grading model
and IDH model, p = 0.0044 in survival model). For tumor grading, two of the first three
features of RP-Rs-fMRIomics model were derived from the fALFF parameter, which also
performed superiorly in conventional rs-fMRI. In terms of space, whether in the conven-
tional rs-fMRI or RP-Rs-fMRIomics model, the features of the tumor enhancement area
were very important for each clinical task.
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4. Discussion

In this work, based on a large number of regional parameters of rs-fMRI comprehen-
sively and meticulously extracted in specific parts of gliomas, we innovatively introduced
omics analysis and proposed a novel concept of RP-Rs-fMRIomics analysis. With a pilot
study by applying the method to prediction diagnosis of brain gliomas, we found that the
method presented superior performance in tumor grade, molecular type and prognosis of
brain gliomas, with significant improvement relative to the conventional rs-fMRI methods.
Featuring high interpretability, this RP-Rs-fMRIomics contributed a new method for brain
tumor research and also expanded the clinical application of rs-fMRI.

By proposing a novel technique of RP-Rs-fMRIomics, we extract comprehensive rs-
fMRI features for clinical prediction. Many previous studies [5,14,15,47] have adopted
only limited parameters in specific frequency bands, according to the researchers’ best
prior knowledge, inevitably neglecting other potentially useful information. On the other
hand, our RP-Rs-fMRIomics has the advantage of full coverage of rs-fMRI indexes, in-
cluding parameters, frequency and space information, and can reflect rich physiological
information. Moreover, in previous studies [48–50], the common radiomics analysis strat-
egy was making various clinical predictions based on tumor attributes and engineering
complex image descriptors inside or nearby the tumors. It is difficult to fully understand
the biological meaning of the numerical data derived from the analysis, such as texture
features [51] and wavelet transform features [52]. Compared with radiomics, the features
of RP-Rs-fMRIomics are more interpretable, which can well define the specific parameter
in a specific frequency band and lesion area. Recently, functional connectomics, based
on the combination of radiomics and functional connectivity, has been used to predict
individualized overall survival time of glioma patients [27]. However, to some extent, the
network metrics at the whole brain level lack a certain logic in reflecting the attributes of the
tumor itself because of spatial heterogeneity in gliomas. In contrast, our RP-Rs-fMRIomics
would be more logical for using regional parameters within the tumor to construct models.
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Of note, as a prediction study, our RP-Rs-fMRIomics has achieved excellent perfor-
mance in predicting tumor grade, molecular type and prognosis in gliomas, compared
with conventional rs-fMRI. Several rs-fMRI studies [14–16] showed that quantification of
spontaneous fluctuations—such as parameters power spectra, signal intensity correlation,
ALFF, fALFF and TSA—had the potential for distinguishing between high- and low-grade
gliomas (AUROC:0.67–0.89). These results were similar to our conventional rs-fMRI, but
the AUROCs were significantly lower than those of our RP-Rs-fMRIomics. Additionally,
Englander et al. [47] observed greater vascular dysfunction outside the identifiable margins
in IDH wide-type tumors than in IDH mutant tumors, and showed that rs-fMRI was highly
predictive of the IDH mutation. Petridis et al. [18] used rs-fMRI to measure asynchrony
in vascular dynamics measured to quantify the tumor burden and infiltration degree in
IDH-mutated gliomas. In accordance with previously reported research, patients with
high postoperative KPS (KPS > 70) had longer survival times. Daniel et al. [5] and Liu
et al. [27] have highlighted that the rs-fMRI and the strength of functional connectivity
have prognostic value and can predict the overall survival time of gliomas. Relative to the
previous studies [53–59], our RP-Rs-fMRIomics models for predicting tumor grading and
IDH status presented comparable or even better performances to the radiomics models.
Hence, our study indicated that RP-Rs-fMRIomics could be a promising application in
various clinical predictions of gliomas.

With significantly increased prediction accuracy of tumor grading, IDH status and
KPS, we can further analyze which RP-Rs-fMRIomics features could contribute to these
predictions and why. Our results showed that TSA-based RP-Rs-fMRIomics features and
enhancement region-based features were more prominent in various prediction models. As
previous studies reported, BOLD signals contain not only information about local blood
flow but also oxygen consumption [60], which can be used to evaluate the damaged hemo-
dynamic status or severity [61]. TSA has recently been used to assess pathophysiological
events related to hemodynamics [42,61,62] and provides a high spatial correspondence
with the hypoperfusion area defined by DSC-PWI on the individual level. Gupta et al. [16]
tried to use TSA to characterize tumor vascularity in gliomas by observing the aberrant
dynamics of tumor vascular and corresponding blood perfusion. They found that TSA
was significantly different between high-grade and low-grade, with advanced TSA in
high-grade gliomas. Because the increase in tumor vascularization and the decrease in
microvascular blood flow resistance may advance hemodynamics, TSA plays an important
role in tumor grading, IDH status and prognosis prediction. Many studies [63–65] have
revealed the microenvironmental heterogeneity in gliomas, such as histologic heterogeneity
composed of tumor cells and different stromal cells, and cell heterogeneity with extensive
genetic and epigenetic variations. Recent studies [56,66–68] have highlighted the value of
multiregional image analysis. Li et al. [57] found that, for predicting glioblastoma IDH1
status, the multiregional model built with all region features outperformed the single region
models. However, in the single region model, the model constructed by enhancement area
achieved the highest AUROC in the primary cohort. The result of this part is consistent
with that of our research. The contrast enhancement indicates an interruption and leak-
age of the blood−brain barrier, which is mainly found in the area of a highly vascular
tumor [69,70]. Compared with other regions, the enhancement area may better reflect the
pathophysiological mechanism of the tumor and is conducive to clinical evaluation.

Several limitations should be noted. First, our study only employed a single-center
dataset. Independent data from multiple centers were warranted for external validation.
Second, the ten specific frequency divisions for BOLD signals were arbitrary. Third, we
only employed the regional parameters of rs-fMRI that were commonly used and were
within the reach of our ability. Finally, this was a pilot application study, and further studies
are needed to better understand this disease.
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5. Conclusions

Based on exhaustive regional parameters of rs-fMRI and by adopting an omics analysis
tactic, we proposed an RP-Rs-fMRIomics analysis. With an entire investigation of the data
and the high interpretability of the results, the RP-Rs-fMRIomics outperformed traditional
rs-fMRI in the prediction of tumor grade, molecular type and prognosis of gliomas. The
RP-Rs-fMRIomics expanded the clinical application of rs-fMRI and could be used as a novel
strategy for the diagnosis of gliomas.
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