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The Gram-positive bacterium Bacillus subtilis is widely used for studies of cellular and molecular processes. We announce the
complete genomic sequences of strain AG174, our stock of the commonly used strain JH642, and strain AG1839, a derivative that
contains a mutation in the replication initiation gene dnaB and a linked Tn917.
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Bacillus subtilis is a soil bacterium studied in many laboratories
and used commercially. It serves as a model for related Gram-

positive pathogens. Many cellular processes are studied in B. sub-
tilis, including transcription, translation, replication, metabolism,
biofilm formation, sporulation, and horizontal gene transfer.

We report the genome sequence of B. subtilis subsp. subtilis
strain AG174, our stock of strain JH642 (1). This widely used
strain contains known point mutations conferring auxotrophy for
tryptophan and phenylalanine and cold sensitivity (2, 3). We also
report the sequence of AG1839 (also known as KPL69), a deriva-
tive of AG174 used in studies of replication initiation (4). It con-
tains a mutation in the replication initiation gene dnaB, confer-
ring a temperature-sensitive phenotype, and a linked Tn917
insertion.

For AG174, 7.9 million 36-bp Illumina HiSeq reads and 0.88 mil-
lion 150-bp paired-end reads were aligned to the AG1839 sequence
(see below). The final circular sequence was 4,188,369 nucleotides
(nt), with 98� mean coverage. Comparison of the finished AG174
genome to the previously reported JH642 genome (GenBank acces-
sion number CM000489.1 [3]) using Mauve (5) indicated that the
genomes were 99.6% identical, with ~400 indels and ~30 point mu-
tations. The vast majority of these differences appeared to be due to
sequencing or alignment issues with the previously reported se-
quence. In addition, 269 unknown nucleotides (Ns) in the
CM000489.1 sequence were resolved.

For AG1839, we used Bowtie (6) to align 15.8 million 40-bp
reads to the previously sequenced version of JH642 (3). We used
three rounds of alignment and refinement, followed by de novo
assembly (7) to place the Tn917 insertion in ydbT. PCR and con-
ventional sequencing were used to determine the junctions of a
10.8-kb deletion that fuses ppsC and ppsD (encoding plipistatin
synthetase). AG1839 differed from the parental AG174 by the ex-
pected point mutation in dnaB and the linked Tn917. Two addi-
tional point mutations were also present, in thrS (T85A) (4 kb
upstream of dnaB linked to Tn917) and in ytnA (M105I) (60 kb
downstream of dnaB). The final circular sequence was
4,193,640 nt, with 151� mean coverage.

Initial gene sets were predicted using Prodigal (8). The genome
sequence of B. subtilis 168 (GenBank accession no. NC000964 [9,
10]) was aligned with those of AG174 and AG1839 using NUC-
MER (11). Coordinates from the alignments were used to add
gene models missed by Prodigal and to map gene names and sym-
bols to the new annotations. Gene models with potential problems
were corrected or dropped if necessary, resulting in 4,227 and
4,231 predicted protein-coding genes for AG174 and AG1839,
respectively. For both genomes, 86 tRNA genes were predicted
using TRNASCAN (12) and 10 rRNA operons were predicted us-
ing RNAmmer (13).

AG174 differs from PY79, another commonly used laboratory
strain (14). AG174 contains ICEBs1 and SP beta. There are 1,734
single-nucleotide polymorphisms (SNPs) in a 71-kb hypervari-
able region from panB to hepT and 35 SNPs distributed over the
rest of the genome.

Nucleotide sequence accession numbers. The complete ge-
nome sequences are in GenBank, accession numbers CP007800
(AG174) and CP008698 (AG1839). AG174 and AG1839 are avail-
able from the Bacillus Genetic Stock Center.
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