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The middle ear is part of the ear in all terrestrial vertebrates. It provides an

interface between two media, air and fluid. How does it work? In mammals, the

middle ear is traditionally described as increasing gain due to Helmholtz’s

hydraulic analogy and the lever action of the malleus-incus complex: in

effect, an impedance transformer. The conical shape of the eardrum and a

frequency-dependent synovial joint function for the ossicles suggest a greater

complexity of function than the traditional view. Here we review acoustico-

mechanical measurements of middle ear function and the development of

middle ear models based on these measurements. We observe that an

impedance-matching mechanism (reducing reflection) rather than an

impedance transformer (providing gain) best explains experimental findings.

We conclude by considering some outstanding questions about middle ear

function, recognizing that we are still learning how the middle ear works.
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1 Introduction

The ear has evolved to what might be described as an impressive example of mechanical

engineering, transmitting air-borne sound via impedance-matching to the fluid-filled sensory

organ, the cochlea (Figure 1). In mammals, a concave conical-shaped tympanic membrane or

eardrum and three middle ear bones contribute to a wider bandwidth of hearing than other

vertebrates. Our understanding of how sound transmission and impedance-matching by the

middle ear works is informed by initial studies of anatomy in the 19th century, experimental

studies of mechanical function over the past 100 years, and modeling studies that attempt to

interpret the experimental findings. This paper reviews what we currently know about the

mechanical function of the middle ear. We begin by considering the anatomy of the middle

ear, then briefly address the effect of development on middle ear structure before introducing

the basis for quantifying sound transmission through themiddle ear.We are then in a position

to present the focus of this review, the mechanics of the middle ear in terms of experimental
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results and modeling. We conclude by considering some unsolved

questions on middle ear mechanics.

2 Anatomical aspects of the
middle ear

Before considering the focus of this paper, the mechanics

of the middle ear, a brief review of anatomy will provide a

basis for understanding the various structures of the middle

ear that contribute to sound transmission. The entrance to

the middle ear is a membranous structure that vibrates in

response to sound, termed the tympanic membrane

(eardrum). Medial to this membrane is an aerated cavity

that houses three ossicles (bones) communicating tympanic

membrane vibrations to a fluid-filled cavity, the cochlea.

Attached to the ossicles are various ligaments and muscles

that suspend the ossicles in the middle ear cavity and

influence sound transmission. Cochlear soft tissue

structures transform acoustically induced vibrations into

trains of action potentials (Hudspeth, 1989; Hudspeth,

2005; Dallos, 2008; Ashmore et al., 2010). Action

potentials then propagate as electrical signals along the

nerve to the central auditory centers in the brain, where

they are perceived as sound.

2.1 The middle ear cavity

The mammalian middle ear or tympanic cavity is an air-filled

space in the petrous part of the temporal bone, housing the three

ossicles, at least 13 ligaments, and two muscles. Subdivisions of the

middle ear have been defined by spatial planes relative to the plane of

the tympanic membrane: medially the mesotympanum, superiorly

the epitympanum, inferiorly the hypotympanum, anteriorly the

protympanum, and posteriorly the retrotympanum. The six

“walls” of the tympanic cavity are the tegmental roof, formed by a

thin bony plate covering the canal for the tensor tympani muscle and

the tympanic antrum. They separate themiddle cranial fossa from the

tympanic cavity. The superior bulb of the interior jugular vein is

inferior to the middle ear’s floor. The tympanic membrane and the

epitympanic recess lateral bony wall form the lateral wall. The middle

ear’s anteriorwall separates the cavity from the carotid artery. Thewall

has an opening inferiorly to the Eustachian tube, a connection of the

tympanic cavity to the pharynx. The epithelium near the Eustachian

tube carries motile cilia, with a middle ear clearing function similar to

the ciliary epithelium in the trachea. Disrupting the ciliary function

may cause fluid buildup in the middle ear and subsequent hearing

loss. The anterior wall also has a semicanal for the tensor tympani

muscle. The posterior wall separates the tympanic cavity from the

mastoid cells. The stapedius muscle enters through the posterior wall.

The cochlea forms the medial wall.

FIGURE 1
(A) Image of the ear in cross-section by Max Brödel. The outer ear consists of the pinna and the ear canal, the middle ear of the tympanic
membrane, the middle ear cavity, ossicles, and various ligaments and muscles. The three middle ear ossicles transmit the acoustic energy to the
cochlea, responsible for hearing. Nerve fibers connect the inner ear via the eighth cranial nerve to the brainstem. The eustachian tube ventilates the
middle ear. (B) Modified image by Bertolini and Leutert (1982), showing a magnified view of the middle ear. Essential to holding the chain of
ossicles in place are the ligaments. The image shows the lateral mallear ligament (LML), superior mallear ligament (SML), superior incudal ligament
(SIL), and the posterior incudal ligament (PIL).
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2.2 The tympanic membrane

The tympanic membrane (Figure 2) terminates the external ear

canal and forms the input to the middle ear. It can be directly

visualized with a suitable light source and magnifier, for example, an

otoscope. Already in 1832, Shrapnell described two parts of the

tympanic membrane, pars tensa, and pars flaccida. Pars tensa is

the stiff, inferiorly located section of the tympanic membrane

(Figure 2) and is responsible for transmitting sound vibrations.

The layers of this trilaminar membrane are the inner mucosal, the

intermediate fibrous, and the outer epidermal layer. Tension by the

middle ear ossicles and the ligamentous attachments to the ear canal

wall at the tympanic membrane’s periphery hold pars tensa in place.

Furthermore, smooth muscle arrays within the peripheral rim may

have a role in maintaining the tension of the membrane (Henson

et al., 2005). Superior to the manubrium (Figure 2), a flaccid section,

pars flaccida, moves with pressure changes at frequencies well below

the hearing range (Shrapnell, 1832a; Shrapnell, 1832b). Among

mammals, pars flaccida varies in size. It is large in sheep, mice,

and gerbils. In humans and cats, pars flaccida is relatively small and

absent in guinea pigs (Decraemer and Funnell, 2008).

The tympanic membrane is shaped like a conical horn and

presumably acts as a waveguide, improving high-frequency

sound transmission (Fay et al., 2006; Fields et al., 2018).

Helmholtz suggested that middle ear structures pulling the

tympanic membrane inwards explain its conical shape

(Helmholtz, 1868). It is worth noting that this conical horn

shape in mammals is more pronounced than in other vertebrate

species (Fields et al., 2018). The shape of the tympanic membrane

may also explain the larger bandwidth of mammalian hearing

compared to other terrestrial vertebrates (Fields et al., 2018). As

indicated by the sketch in Figure 3, radial and deeper

circumferential fibers within the intermediate fibrous layer

form the tympanic membrane’s conical feature (Locke, 2013).

Radial fibers are predominant at the center of the eardrum, while

circumferential fibers get denser towards the periphery (Fay et al.,

2006). The fibers are made of collagen types I, II, and III

(Stenfeldt et al., 2006) and provide structural integrity.

In 1949, von Békésy assessed the tympanic membrane’s

stiffness using static bending tests with a calibrated probe (thin

hair), reporting Young’s modulus to be 20 MPa (Von Békésy,

1949). Subsequent studies applied longitudinal tensile tests

(Kirikae, 1960; Decraemer et al., 1980; Cheng et al., 2007;

Luo et al., 2009) and nanoindentation testing on the

tympanic membrane tissue sections to assess its stiffness

(Huang et al., 2008; Daphalapurkar et al., 2009) or tested the

whole membrane. Values of the tympanic membrane stiffness

varied significantly (i.e., whole tympanic membranes, ranging

from 2.1 to 300 MPa (Fay et al., 2005; Gaihede et al., 2007;

Aernouts et al., 2012; Rohani et al., 2017), even when using the

same testing method (i.e., longitudinal tensile tests:

0.4–58.9 MPa). This variability was due to different testing

methods, specimen preparations, inter-specimen variation,

and heterogeneity of the tympanic membrane and where the

tested tissue samples were harvested (Rohani et al., 2017).

However, measurements of the quasi-static regime (Cheng

et al., 2007) and dynamic regime (Zhang and Gan, 2013)

indicate that Young’s modulus of the tympanic membrane

FIGURE 2
This figure was previously published in Brister et al. (2020a).
The image of themiddle ear is taken from the tympanicmembrane
of a right ear. Above the solid black line is pars flaccida, and below
pars tensa. The umbo forms the tip of the manubrium. The
reflection called the cone of light points toward the nose.

FIGURE 3
The skin of the ear canal forms the outer layer of the eardrum,
and themucous lining of the middle ear cleft forms the inner layer.
The ultrastructure of the tympanic membrane shows the
superficial radial and deeper circumferential fibers (Locke,
2013) made of collagen types I, II, and III (Stenfeldt et al., 2006).
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FIGURE 4
(A) Human malleus, (B) incus, and (C) stapes (D) Schematic representation of the attachment of the major middle ear ligaments.
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increases with increasing stress and increasing frequency

(Lobato et al., 2022).

2.3 The ossicles and ligaments

Mammals have three middle ear ossicles: the malleus, incus,

and stapes (Figure 4). The shape and size of the middle ear and its

ossicles vary considerably among mammals and can be based on

phylogeny, body size, and acoustic environment.

Phylogenetically, mammals can be subdivided into

monotremes, which lay eggs to replicate (e.g., Platypus),

marsupials, which give birth to barely developed offspring

(e.g., kangaroo), and placentals, where much of the

development of offsprings occurs in-utero (e.g., humans). To

functionally categorize the middle ears of mammals, Fleischer

suggested six functional types: monotreme ears, therian ancestral

ears, microtype ears, transitional type ears, freely mobile ears, and

cetacean ear types (Fleischer, 1978; Mason, 2013). In the

following, we focus on the freely mobile type found, for

example, in humans, rabbits, guinea pigs, and chinchillas.

Notably, a significant amount of recent data on the

micromechanics of the middle ear originate from mice, which

are consideredmicrotype ears (Fleischer, 1978; Zhang et al., 2003;

Mason, 2013). While mammals have three middle ear ossicles,

the incus and malleus are fused in chinchillas and guinea pigs.

Birds have a single middle ear ossicle. As discussed by several

authors in the literature, the number of ossicles affects the

animal’s hearing range, being largest in the animals with three

middle ear ossicles (Fleischer, 1978; Puria and Steele, 2010;

Mason, 2013; Fields et al., 2018).

2.3.1 The malleus and its ligaments
Figure 4A shows a human malleus. The thick rounded head

and thinner manubrium are the two major bony landmarks. The

neck of the malleus is the contraction between the head and the

manubrium. The back of the head forms the facet for the

incudomalleolar joint. While Dahmann (1929) and Frank

(1923) suggested a functional role for this joint, Bárány (1910)

and Von Békésy (1939) assumed that no articular movement

occurs at the incudomalleolar joint with the heads of the incus

andmalleus moving together as a rigid block. Just below the neck,

at the beginning of the manubrium, two processes originate, the

long process (anterior process or processus Folianus or processus

gracilis) and the short process (lateral process or processus

brevis) (Helmholtz, 1954). The long process points anteriorly

and is covered by ligaments, while the short or lateral process

attaches to the tympanic membrane (Figure 4D). The ligaments

of the malleus are shown in Figure 4D. De Greef described

13 ligaments in human middle ears, of which seven attach to the

malleus (De Greef et al., 2015). They are the anterior (AML),

medial anterior (M-AML), superior anterior (S-AML), lateral

(LML), posterior (PML), anterior superior (A-SML), and

posterior superior (P-SML) mallear ligaments (De Greef et al.,

2015). Ligaments surrounding the long process separate into the

anterior mallear ligament (AML), which forms the anterior

portion and attaches to a bony spine of the osseous tympanic

ring (Helmholtz, 1954; De Greef et al., 2015). Thin portions of the

ligament, which are not always present, are the S-AML or

suspensory mallear ligament and the M-AML (De Greef et al.,

2015). The posterior portion of the same ligament forms the PML

and appears as an extension of the tympanic ring (Helmholtz,

1954; De Greef et al., 2015). PML and AML keep the malleus in

position even after removing the other middle ear ossicles

(Helmholtz, 1868). From axial compression tests, Young’s

modulus of the human malleus and incus was 3.8 ± 0.5 GPa

(Speirs et al., 1999). Micro-indentation testing of the rabbit caput

malleus resulted in a stiffness of 16 ± 3 GPa, and of the rabbit

collum malleus of 15.6 GPa, (Soons et al., 2010). Uniaxial tensile

tests on the quasi-static regime revealed that the AML has

Young’s modulus of ~6 MPa at 0.5 MPa stress (Cheng and

Gan, 2007; Cheng and Gan, 2008a; Cheng and Gan, 2008b).

PML and AML also form a rotational axis for the malleus. The

A-SML and P-SML prevent the malleus head from turning too

far (Helmholtz, 1954; De Greef et al., 2015). The malleus attaches

to the tympanic membrane with the manubrium, from the

manubrium’s tip, the umbo (Figure 4A), to the lateral process.

2.3.2 The incus and its ligaments
Figure 4B shows the incus. Anatomical landmarks of the

incus are the short process, the long process, and the lenticular

process. The latter attaches to the long process of the incus via a

thin bony pedicle and articulates with the stapes at the

incudostapedial joint. The head of the malleus articulates with

the body of the incus. The incudomalleolar joint is a curved

depression resembling a saddle (Helmholtz, 1868; Puria and

Steele, 2010). It is biaxial, allowing movements in two planes.

Lauxmann et al. (2012) determined the load-deflection

curves in humans in the lateral-medial and anterior-posterior

directions. The results showed, on average, a rupture force of

894 mN in the anterior-posterior and 695 mN in the lateral-

medial direction. Lauxmann et al. (2012) also measured micro-

rupture forces with average values of 568 mN in the anterior-

posterior and 406 mN in the lateral-medial direction. Short-term

maximum forces with increased displacement were considerably

larger (Lauxmann et al., 2012). Young’s modulus of the corpus of

the rabbit incus was determined by micro-indentation and was

16.8 ± 3 GPa and 17.1 GPa for the crus of the incus (Soons et al.,

2010). The ion composition of a gerbil incus showed spatial

distribution patterns of chloride, calcium, potassium, and zinc

specific for a gerbil at postnatal day 5 (Brister et al., 2020b).

Biological key elements such as zinc indicate areas of active

ossification (Brister et al., 2020b).

In humans, the average synovial-fluid-filled gap between the

malleus and incus is 40–320 µm (Marquet, 1981; Sim and Puria,

2008; Puria and Steele, 2010). Four ligaments attach to the incus:
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the medial incudomalleolar ligament (MIML) and the posterior,

medial, and lateral incudal ligaments (PIL, MIL, and LIL,

respectively). The PIL is a short and strong ligament attaching

the incus to the posterior wall of the middle ear cavity

(Figure 4D). The PIL and AML also form the “axis of

rotation” described by Helmholtz (1868), which we will

present later in section 4.

2.3.3 The stapes and its ligaments
Structures identified at the stapes are the head, the neck, the

anterior and posterior crus, and the base (stapes footplate;

Figure 4C). The stapes footplate inserts into the cochlear oval

window and is sealed into it by the annular ligament (AL;

Figure 4C), a ligament mechanically described as a viscoelastic

material with nonlinear characteristics (Gan et al., 2011).

Figure 4D shows the two ligaments attaching to the stapes,

the superior stapedial ligament (SSL) and the annular

ligament (AL).

Mechanical properties of the AL vary among different

sources and tests (Lynch et al., 1982; Waller and Amberg,

2002; Lauxmann et al., 2014; Zhang and Gan, 2014; Kwacz

et al., 2015) with Young’s modulus of the ligament being

0.01 MPa under uniaxial tensile stress (Lynch et al., 1982),

0.031 MPa at 1 kHz under shear deformation in dynamic

conditions (Zhang and Gan, 2014), and 1.1 MPa using atomic

force microscopy (Kwacz et al., 2015). The AL bridges the gap

between the stapes footplate and the bony margin of the oval

window, the opening to the fluid-filled scala vestibuli of the

cochlea, and forms the stapediovestibular joint (SVJ, Figure 5).

Figure 5 shows the convex lenticular process of the mouse

incus and the concave stapes head, forming the smallest joint of

the body, the incudostapedial joint (ISJ) (Karmody et al., 2009). It

is a synovial joint with a joint capsule, cartilage, and synovial fluid

(Ohashi et al., 2005; Wang et al., 2006). Reported mechanical

properties of the human ISJ included Young’s modulus in

uniaxial tension and compression, stress relaxation, and

failure tests. Young’s modulus of the incus and stapes head

were 1.41*1010 Pa (Zhang and Gan, 2011), 1.0*107 Pa for the

cartilage (Funnell et al., 2005). The synovial fluid had a bulk

modulus of 2.2*109 Pa and a viscosity of 0.4 Ns/m2 (Sasada et al.,

1979; Fung, 1993). The failure force of the ISJ was, on average,

465 mN, the failure displacement 0.291 mm, the failure stress

3.19 MPa, and the failure stretch ratio 2.04 (Zhang and Gan,

2011). After modeling the data using the Ogden model to

describe the nonlinear behavior of the joint capsule, Zhang

and Gan concluded that the ISJ is a viscoelastic structure with

a nonlinear stress-strain relationship.

Compression tests of the entire ISJ resulted in a complex

modulus of about 1.17 MPa in the quasi-static regime (Zhang

and Gan, 2013) and about 1.14 MPa at 1 Hz in the dynamic

regime (Jiang and Gan, 2018). Dynamic studies suggest that the

complex modulus of the ISJ and the stiffness of the AL increase

with stimulation frequency (Zhang and Gan, 2014; Jiang and

Gan, 2018).

Most middle ear ligaments have been described in the

previous sections, but more may exist. Middle ear ligaments

are not consistently present or identifiable in all species because

they are often embedded by larger mucosal folds and stands.

Their number also varies among mammals. Of the thirteen, the

six primary middle ear ligaments in humans holding the chain of

middle ear ossicles in place are the ALM, LML, A-SML, P-SML,

the PIL, and the AL (Ludwig, 1852; Gray, 1878; Decraemer and

Khanna, 1994; Gan et al., 2007a; Dai et al., 2007). Across most

mammalian ears, the PIL and the AML, or a thin, bony analog for

the AML, are the two major attachments consistently present

(Kobayashi, 1955b; a; Mason, 2013). They have been suggested to

limit the direction of motion and define the rotational axes of the

ossicular chain (Fleischer, 1978; Lavender et al., 2011; Mason,

2013). However, published experimental data has not historically

supported this putative role. The severing of one of these

ligaments did not substantially change the middle ear transfer

function (Hato et al., 2001; Gan et al., 2007a; Dai et al., 2007).

However, a recent study showed that severing more than one of

the suspensory ligaments produced a static shift in the position of

the ossicles and reduced sound transmission to the cochlea

(Brister et al., 2021).

2.4 The middle ear muscles and tendons

Two muscles, the tensor tympani and the stapedius muscle

(Figure 4D) attach to the ossicles and reduce sound transmission

through the middle ear when contracted (Wever and Vernon,

1955; Galambos and Robert, 1959; Simmons et al., 1959; Hilding

FIGURE 5
Synchrotron x-ray microtomography image from the left
ear’s incudostapedial joint (ISJ) and stapediovestibular joint (SVJ) in
a mouse. It shows the stem and cap of the lenticular process, the
long process, and the head and neck of the stapes.
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and Fletcher, 1960; Terkildsen, 1960; Klockhoff, 1961;

Djupesland and Zwislocki, 1973). The tensor tympani muscle

originates from the cartilaginous portion of the auditory tube and

the sphenoid and inserts at the neck of the malleus. Neurons near

the trigeminal motor nucleus innervate the muscle (Strutz et al.,

1988). Studies on the cat’s middle ear show that the tensor

tympani muscle can pull about 3.5 g (~34 mN, Wever et al.,

1955). Contraction of the tensor tympani muscle pulls the TM

and malleus into the middle ear air space, increasing the stiffness

of the TM (Nuttall, 1974) and the static pressure within the

middle ear.

The stapedius muscle, whose exact role is not fully

understood, originates from the pyramidal eminence, a conical

projection in the middle ear behind the oval window, and inserts

at the neck of the stapes. Some studies show that it contracts in

response to vocalization and swallowing, reducing the

transmission of internal noises to the cochlea. It also contracts

in response to loud noises and likely reduces sound transmission

to the cochlea by up to 15 dB. The reduction in response

amplitude depends on the stimulation frequency (Borg, 1968;

Borg and Møller, 1968). Experiments in cats showed that the

stapedius muscle pulls about 1.6 g (~15.7 mN, Wever et al.,

1955). The onset time of this response in the contralateral ear

is about 15 ms (Galambos and Robert, 1959; Simmons et al.,

1959), which means that the reflex does not protect from high-

level impulse noises such as gunshots. The duration of the

acoustic reflex is about 300 ms, which means that the reflex

provides limited protection for extended noise exposures

(Djupesland, 1964). Nerve fibers running along the facial

nerve, originating outside the traditionally facial nucleus,

innervate the stapedius muscle (Strutz et al., 1988).

Uniaxial tensile tests on the quasi-static regime revealed that

the stapedial tendon and tensor tympani tendon showed a

stiffness of 6 MPa at 0.5 MPa stress, similar to that of the

AML (Cheng and Gan, 2007; Cheng and Gan 2008b; Cheng

and Gan 2008a).

3 Effects of development on middle
ear structure

Studies of the development of the middle ear examine

how the structures form over time until they reach maturity

(Dreyfuss, 1893; Broman, 1899; Jenkinson, 1911; Goodrich,

1915). Early experimental results on the middle ear ossicle

development suggested that the stapes originates from the

hyoid arch’s upper end (Dreyfuss, 1893; Broman, 1899;

Jenkinson, 1911; Goodrich, 1915). Histological studies of

the early 20th century continued to clarify the developmental

stages of the ossicles without reaching a consensus (Anson,

1942; Cauldwell and Anson, 1942; Anson et al., 1948;

Richany et al., 1954a; Richany et al., 1954b). More recent

work suggests a dual origin for the stapes (Thompson et al.,

2012; Anthwal and Thompson, 2016), with the head, crura,

and inner footplate originating from the neural crest of the

second arch; the outer footplate having a mesodermal origin

(O’gorman, 2005; Thompson et al., 2012). The malleus and

incus originate from the Meckel’s cartilage and separate later

during development (Anthwal and Thompson, 2016; Powles-

Glover and Maconochie, 2018).

Unlike the rest of the bones in the body, in humans, the

middle ear ossicles are full size at birth (Powles-Glover and

Maconochie, 2018). Once completely ossified, their high stiffness

makes the ossicles more brittle than the skeletal bones of the

skeleton (Currey, 1999a; Currey, 1999b; Kuroda et al., 2021).

However, their location within the skull protects them from

impact trauma. Their high stiffness benefits sound conduction

(Currey, 1999a; Currey, 1999b), as minimal energy is lost in

elastic deformations. Auditory osteoblasts, a novel osteoblasts

subtype, produce collagen type I and type II as scaffolding for

their bone matrix (Kuroda et al., 2021)- a phenomenon only

found in the middle ear ossicles - have been recently considered

the responsible cells for the ossicles high mineralization (Kuroda

et al., 2021). The ossicles’ bone tissue presents both empty and

abnormal levels of hyper-mineralized lacunae already at early

ages (Rolvien et al., 2018). The early degeneration of the

osteocytes without subsequent bone remodeling is a

remarkable phenomenon of the ossicles (Marotti et al., 1998;

Palumbo et al., 2012; Rolvien et al., 2018) and might be

responsible for the hyper-mineralization of the empty lacunae.

The lack of bone remodeling in the ossicles is thought to be a

mechanism of the ear bones to preserve their structure, which

would otherwise go through shape adaptation as a response to the

mechanical stimuli (Duboeuf et al., 2015; Rolvien et al., 2018). In

the spiral ligament and inner ear space, elevated osteoprotegerin

(OPG) levels (>1000 x long bone levels) (Zehnder et al., 2005;

Bloch and Sørensen, 2010) have been found and suggested to

diffuse into the otic capsule and propagate to the ossicular chain

(Bloch and Sørensen, 2010). OPG, a powerful inhibitor of bone

turnover (Theoleyre et al., 2004), has been termed

audioprotegerin for its suggested role in maintaining the

integrity of the ossicular chain and otic capsule by

suppressing osteoclast survival and activation (Kanzaki et al.,

2006).

4 Middle ear function and sound
transmission

Sound propagates in the air via the continuous exchange of

kinetic and potential energy. At constant temperature and air

pressure, the sound wave will propagate without reflection due to

the homogeneous nature of the medium. The sound velocity is

sufficient that the transfer of sound is considered adiabatic. For a

sound initiated with a force denoted by a sound pressure, P, the

flow of the sound wave (volume velocity), U, produced by this
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sound pressure depends on the acoustic impedance, Z, of the

medium, i.e.,

U � P

Z
(1)

this being the familiar Ohm’s Law expressed in acoustico-

mechanical terms. The characteristic impedance of air, Z0, is

given by

Z0 � ϱpc (2)

where ρ is the density of air and c is the velocity of sound.

A change in the properties of the medium, through which

sound transfers, constitutes an acoustic impedance change,

resulting in sound being reflected at the boundary of this

impedance change. The amount of reflection calculates

according to Fresnel (1823) as follows:

R � (Z2 − Z1)
(Z2 + Z1) , (3)

where R is the pressure reflectance, Z1 is the acoustic

impedance of the first medium, and Z2 is the acoustic

impedance of the second medium, with Z1 ≤Z2. R ranges

in value from 0 to 1, with 0 being no reflection and 1 being

total reflection.

Thus, a system with significantly different Z1 and Z2 (i.e., the

impedance mismatch between air and fluid) would exhibit more

than 99.9% energy losses due to reflections at their interface

(Wever et al., 1954; Wever and Lawrence, 1954; Killion and

Dallos, 1979). Killion and Dallos (1979) computed the

impedance mismatch to be larger than 50 dB at 100 Hz. The

semi-rigid ossicular chain connects the large tympanic and small

oval window membranes. The surface area ratio between these

two membranes is the basis for a purported hydromechanical

transformer that decreases the sound-induced displacements at

the oval window membrane while increasing the sound pressure

(Wever et al., 1954; Killion and Dallos, 1979; Rosowski, 2010).

Killion and Dallos (1979) concluded that the middle ear alone

could not compensate for the losses; rather, it is the combined

action of the outer ear resonance and the middle ear. In the

human hearing system, the pressure reflectance is close to 1 at

low frequencies but becomes much lower at frequencies around

1–4 kHz and increases once again at higher frequencies

(~1 above 10 kHz). The middle ear most efficiently transmits

acoustic energy at these intermediate frequencies, where human

hearing is most sensitive.

5 Kinematics of the middle ear

5.1 The incudomalleolar joint

Helmholtz, while manipulating themanubrium with a needle

tip, suggested that the middle ear is a system of levers that rotates

around a single axis formed on one side by the AML and the

dorsal fibers of the LML and on the other side by the PIL

(Figure 6). It was von Békésy who demonstrated the ability of

FIGURE 6
Panel (A) shows the incudomalleolar joint and articulating surfaces of a mouse ear. A synovial-fluid-filled gap between malleus and incus exists
(Ihrle et al. (2017). Panels (B) and (C) were taken from (Rosowski et al., 2020) and modified. The malleus (M), incus (I), stapes (S), anterior mallear
ligament (AML), and posterior incudal ligament (PIL) are shown. The dotted lines show two axes of ossicular rotation, one in panel (B) and one in panel
(C). The axis in (B) is axis 1 at low frequencies in the freely-mobile ear (Helmholtz, 1868; Fleischer, 1978; Puria and Steele, 2010); panel (C) shows
the freely-mobile ear with the high-frequency axis 2 of rotation.
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the incudomalleolar joint to move the incus biaxially (Von

Békésy, 1960). Specifically, at physiological sound levels at the

tympanic membrane, IMJ motion changes with frequency. While

at frequencies at the low end of the hearing range, rotations occur

around axis 1, at frequencies at the higher end of the hearing

range, rotations are around axis 2 (Figure 6).

The faces of the incudomalleolar joint are medial and

superior to the joint’s rotational axes (Figure 6), and one can

infer that the incus slides up and down relative to the malleus.

Small inside-outside (direction of the manubrium tip movement)

and front-to-back (direction of the stapedius muscle) movements

may also occur. Upward movement of the incudomalleolar joint

tilts the incudal body around the posterior incudal ligament,

rotating the lenticular process anteriorly and superiorly, leading

to a reversal of the movement at the incudomalleolar joint. This

also uncouples the incudostapedial joint from large movements

caused by pressure changes originating from events such as

atmospheric elevation changes, sneezing, and swallowing,

maintaining the input of the sound energy to the ear under

varying environmental conditions and perhaps protecting the

inner ear.

5.2 The incudostapedial joint

Karmody et al. (2009) showed that the motion of the

incudostapedial joint depends on the sound intensity level.

The incus and stapes move synchronously in a lateral to

medial motion at low-intensity sounds. In contrast, the

motion of the joint at high-intensity sounds is mainly dictated

by the stapedial muscle pulling the stapes posteriorly and perhaps

protecting the inner ear from hazardous sound (Karmody et al.,

2009).

5.3 The stapediovestibular joint

Sound energy is transmitted to the fluid-filled cochlea at the

stapediovestibular joint by the piston-like stapes movements at

the low-frequency end of the hearing range (Von Békésy, 1960;

Gyo et al., 1987; Suzaki et al., 1997). For frequencies at the upper

end of the hearing range, the stapes movements adopt lateral

components resulting in complex rocking, hinge-like motions

(Suzaki et al., 1997).

In addition to the described malleus movement induced by

large mechanical displacements with high-pressure changes or by

needle manipulation of the manubrium, other modes of

vibrations exist as have been demonstrated with more

sensitive methods, lately with optical coherence tomography

(OCT). The ossicular chain moves along a circular path with

a center of rotation above the ossicles resulting in a piston-like

umbo and stapes movement. On the other hand, such a pattern

would require the middle ear ossicle joints to be fixed, and no

gain would be obtained from the lever action. Consequently, the

middle ear could be replaced by a single ossicle, as is done in

many middle ear replacement surgeries.

6 Middle ear mechanics explained by
experiments

The motion of the tympanic membrane in response to sound

has been studied using various measurement techniques,

FIGURE 7
This plot is from Cheng et al. (2013), showing the change in
vibration patterns and phase of vibrations of the tympanic
membrane obtained with holographic measurements.
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FIGURE 8
Three ossicular motion modes are described by Rosowski et al. (2020); reprinted with permission. (A) lateral and (B) posterior view of the
anterior-posterior rotational axis (C) lateral and (D) posterior view of the whole-body translation, and (E) lateral and (F) posterior view of the superior-
inferior rotational axis.
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including capacitive probes (Von Békesy, 1941; Von Békésy,

1960), laser doppler velocimetry (LDV) (Schops et al., 1987;

Stasche et al., 1994; Goode et al., 1996; Aarnisalo et al., 2009;

Szymanski et al., 2009; Aarnisalo et al., 2010; Kunimoto et al.,

2014; Wang et al., 2016; Jiang et al., 2019), speckle contrast

interferometry (Lokberg et al., 1980; Wada et al., 2002),

holography (Tonndorf and Khanna, 1970; Tonndorf et al.,

1971; Tonndorf and Khanna, 1971; Furlong et al., 2009;

Rosowski et al., 2009; Cheng et al., 2010; Cheng et al., 2013;

Khaleghi et al., 2013; Dobrev et al., 2014; Khaleghi et al., 2015a;

Khaleghi et al., 2015b; Tang et al., 2019; Tang et al., 2021), and

optical coherence tomography (OCT) (Subhash et al., 2012;

Chang et al., 2013; Burkhardt et al., 2014; Dobrev et al., 2016;

Park et al., 2016; Razavi et al., 2016; Jeon et al., 2019a; Jeon et al.,

2019b). More details about the methods are reported in the

appendix.

6.1 Biomechanics of the tympanic
membrane

Early holographic measurements suggested the tympanic

membrane vibrations to be simple at low frequencies and

become complex, with quasi-independent vibration patterns

occurring across the membrane at higher frequencies

(Tonndorf and Khanna, 1970). Holography also revealed that

the tympanic membrane moves less at the attachment to the

manubrium of the malleus than at other locations (Figure 7).

However, it is not clear how these localized vibrations relate to

sound transfer to the middle ear.

At the time of writing, there is some dispute regarding the

location on the eardrum where the motion is most representative

of sound transmission. A parsimonious explanation would be

that the focal point is at the location of the umbo, the location

that would represent the throat of the conical horn, and the point

of maximum displacement of the eardrum. Note that the

ligament that surrounds the eardrum and attaches to the ear

canal wall has elasticity, so the eardrum is not rigidly attached to

the canal wall. Contrary to this explanation are eardrum motion

measurements, showing multiple local vibrations across the

membrane (Figure 8) that do not propagate across the surface

(Cheng et al., 2010; Cheng et al., 2013).

6.2 Biomechanics of the middle ear
ossicles

As described above, an early understanding of middle ear

mechanics is based on the assumption that a rotational axis exists

parallel to a line through the AML, the incus, malleus, and PIL

(Figure 6B). The ossicles rotate around this axis and result in a

piston-like movement of the stapes footplate, transmitting the

acoustical energy to the fluid-filled scala vestibuli. The length of

the manubrium and the long process of the incus would

introduce lever action in addition to the surface differences of

the tympanic membrane and the stapes footplate. The existence

of this rotational axis was confirmed inmultiple measurements of

middle ear vibration in humans, cats, gerbils, and chinchilla at

stimulation frequencies at the lower end of the hearing range

(Helmholtz, 1868; Dahmann, 1929; Von Békesy, 1941; Von

Békésy, 1960; Guinan and Peake, 1967; Hüttenbrink, 1992;

Rosowski et al., 1999; Decraemer and Khanna, 2004;

Decraemer et al., 2014; Rosowski et al., 2020). As shown in

Figures 8A,B, in chinchilla, the middle ear ossicles move in phase

on one side of the rotation axis for stimulus frequencies below

2 kHz, and the displacement of the ossicles increases with the

distance from the rotational axis (Rosowski et al., 2020). The

movement patterns are complex for higher frequencies, with an

additional axis of vibration emerging (Figures 8E,F). Fleischer

(1978) was a strong proponent of additional axes of rotation and

proposed two major axes, perpendicular to each other, for the

incudomalleolar joint. In his view, the rotation around axis 1

(Figure 6B) determines the ossicle rotation at low frequencies,

where the stiffness of the ossicular support limits the motion.

However, in species such as mice and rats, he proposes a second

axis of rotation (axis 2, Figure 6C) perpendicular to axis 1,

running through the incudomalleolar joint producing an out-

of-phase movement of the manubrium of the malleus and the

incus. The results obtained from mouse middle ears with

capacitive probes (Saunders and Summers, 1982) and laser

doppler velocimeter (Dong et al., 2013) and from chinchilla

middle ears using OCT (Rosowski et al., 2020) supported this

view. On top of the rotation around axis 1, a whole-body

translation of the ossicles was observed in the chinchilla

between 3 and 8 kHz (Figures 8C,D) (Rosowski et al., 2020).

A similar whole-body translation has been described for cats and

humans at frequencies above 1–2 kHz (Decraemer and Khanna,

1994).

An additional mode of vibration relates to the bending of the

manubrium (Rosowski et al., 2020), which was identified by the

phase differences and vibration amplitudes along the

manubrium. Bending of the manubrium has been explained

by the distributed mass and stiffness along the manubrium

and has also been identified in cats (Funnell et al., 1992;

Decraemer and Khanna, 1995).

As described above, measurements of the middle ear revealed

no simple malleus or incus movements around a simple axis but

rather complex vibrations, including translations of the entire

ossicular chain, which change with the frequency of the stimulus.

It remains unclear how the stapes couples the complex vibrations

to the fluid-filled cochlea. Studying stapes micromechanics is

challenging because of the limited access to the ossicle: only a

small portion of the crura, the neck, and the head can be imaged

for measurements. Typically cadaveric preparations were used

for the measurements. Such measurements revealed that stapes

vibrations were driven by a piston-like motion at the low end of
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the hearing range, while rotary motions along the short and long

axis of the footplate predominate at higher frequencies. Those

patterns were found in all the animal species examined, such as

humans (Heiland et al., 1999; Hato et al., 2003), cats (Guinan and

Peake, 1967), and gerbils (Decraemer et al., 2007).

7 Middle ear function explained by
models

7.1 Lumped-parameter models of the
middle ear

Mathematical models have been used to further understand

how the middle ear works. The simplest of these models are

lumped-parameter models where the function of the middle ear

is modeled by an electrical equivalent circuit, with the electrical

circuit parameters defined in terms of their acoustic impedance

properties. For this model type, inductors represent acoustic

mass, capacitors represent acoustic compliance, and resistors

represent acoustic resistance.

One of the earliest and most cited models of this type was

reported by Zwislocki (1962). This model represents the acoustic

input impedance of the middle ear and includes elements for the

middle ear cavities (antrum and tympanum), and for the

tympanic membrane, ossicles, and cochlea, respectively, and

the two shunts representing sound reflected back to the ear

canal without reaching the cochlea due to non-ossicular coupling

or an impedance discontinuity (Figure 9). This model reasonably

describes the acoustic input impedance of the normal human ear

up to about 2 kHz (Zwislocki, 1962).

Kringlebotn (1988) extended Zwislocki’s model by

incorporating the ear canal as a rigid-walled tube, a lossy

transmission line terminated by a load impedance (the middle

ear model), and by adding circuit elements to represent the

attachment of the eardrum to the walls of the ear canal, primarily

an elastic attachment. Withnell and Gowdy (2013) found

Kringlebotn’s model to reasonably describe experimental data

from six human ears up to 6 kHz (the upper frequency limit of

their study). Lumped parameter models have a limited frequency

range of operation and cannot describe the frequency range of

human hearing. Extending the frequency range requires

incorporating transmission lines (Puria and Allen, 1998;

O’connor and Puria, 2008; Fields et al., 2018).

7.2 Distributed parameter models

Distributed parameter systems have long described middle

ear function, with the earliest studies dating back to the late 20th

century (Funnell and Laszlo, 1978; Rabbitt and Holmes, 1986;

Lesser et al., 1988; Wada et al., 1992). Unlike lumped parameter

models described by ordinary differential equations, distributed

parameter models predict the behavior of state variables in

several independent coordinates using sets of partial

differential equations (PDEs), boundary conditions, and initial

conditions, characterizing the motion of complex, more realistic

geometries and anatomical structures (Wouwer, 2009), thus

overcoming the limitations of the lumped parameter models

(Parent and Allen, 2007).

Most models at the time were in the frequency domain

(Funnell and Laszlo, 1978; Rabbitt and Holmes, 1986).

However, Parent and Allen implemented a remarkable

distributed parameter model of the cat tympanic membrane

in the time domain (Parent and Allen, 2007). This model

simulated the frequency-independent delays of the ear canal

FIGURE 9
Electric analog of themiddle ear; reprinted with permission from Zwislocki (1962). Electric elements are L for inductance, R for resistance, and C
for capacitance. Elements with subscripts a, p, m, and t represent themiddle ear cavities, thosewith d represent a portion of the tympanicmembrane,
and those with o represent the mallear complex.
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and tympanic membrane observed in previous studies (Puria and

Allen, 1998) as well as the propagating wave on the tympanic

membrane surface. Shortly after, Goll and Dalhoff (2011)

modeled the tympanic membrane of the guinea pig as a string

with distributed force. They suggested that the effective area of

the tympanic membrane depends on the frequency and is

different for forward and reverse transduction (Goll and

Dalhoff, 2011).

In their first finite element (FE)-based middle ear models,

Funnell and Laszlo (1978) investigated the effects of the curved

conical shape of the tympanic membrane of cats. In the following

years, others assessed the effects of their elastic modulus changes

on vibration shapes (Lesser et al., 1988), vibration patterns at

different frequencies (Williams and Lesser, 1990; Wada et al.,

1994), and predicted membrane rupture (Stuhmiller, 1989). The

assumptions made experimentally by Tonndorf and Khanna in

the 70s (Tonndorf and Khanna, 1970) were supported by these

models in the 90s, confirming that the vibration patterns of the

eardrum at low frequencies are simple but become complex with

increasing frequency (Williams and Lesser, 1990). Wada et al.

(1992) included the ossicles and cochlear impedance when

modeling the tympanic membrane. Similarly, Ladak and

Funnell (Ladak and Funnell, 1996) added explicit

representations of the ossicles and cochlear load to the model

implemented by Funnell and Laszlo (Funnell and Laszlo, 1978).

Blayney et al. (1997) further modified the model to simulate the

mechanics of sound transmission following stapedotomy by

introducing a prosthesis to the model and adding pathological

conditions. A significant improvement of these models came

when Koike et al. (2002) further added anatomical structures

such as tendons, ligaments, the incudostapedial joint, cochlear

load, the external auditory canal, and themiddle ear cavity, which

allowed simulating complex ossicular vibrations (Koike et al.,

2002). As a result, they observed that the middle ear cavities

suppressed the tympanic membrane’s vibration amplitude at low

frequencies (below 1.5 kHz) but did not alter the tympanic

membrane’s vibration modes.

Gan et al. (2002) similarly added these structures to their FE

model. They reported that the maximum displacements of the

eardrum and stapes footplate happened at 3 and 4 kHz when

applying the sound pressure at the entrance of the auditory

meatus.

Until 15 years ago, the middle ear and inner ear mechanics

were modeled separately, with those modeling the middle ear

adding solely the cochlear load to the stapes (Koike et al., 2002;

Gan et al., 2004; Gan et al., 2006), and those modeling cochlear

mechanics isolating the inner ear from the middle ear (Kolston

and Ashmore, 1996; Böhnke and Arnold, 1999). Gan et al.

FIGURE 10
(A) Finite elementmodel (FEM) of themiddle and inner ear. Developed by Gan et al. (2007b). (B)Connection of themiddle ear with the inner ear.
Model derived pressure gain of Gan et al. (2007b) compared with others in the literature, showing (C)magnitude and (D) phase angle. Modified from
Gan et al. (2007b).
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(2007b) were the first to integrate both systems by adding an

uncoiled cochlear model consisting of two straight fluid channels

separated by the basilar membrane to their previously developed

middle ear model (Gan et al., 2006). This was the first FEM in the

field to model the entire human ear to study acoustic-mechanical

transmission (Figure 10). Their model predicts the displacements

of the tympanic membrane, stapes footplate, and round window,

which generally agrees with experimental data (Gan et al.,

2007b). They predicted and compared with previous models

the sound pressure gain of the middle ear, measuring the ratio of

the scala vestibuli to the pressure of the auditory meatus on the

surface of the tympanic membrane (Figure 10).

Despite the great achievement of integrating cochlear

structures into the models, subsequent models developed to

study middle ear mechanics mostly continued to model the

middle ear structures only, often accompanied by a cochlear

load, as it considerably reduces computational costs. Lee et al.

(2006) increased the models’ geometrical accuracy by

introducing high-resolution computed tomography (CT) to

derive FE models of the middle ear. This new approach

brought new insights to the field, where up to that time,

model geometry was based on destructive histological sections,

anatomical data reported in the literature, or data directly

measured from temporal bones (Zhao et al., 2009), allowing,

therefore, to simulate middle ear pathologies with abnormal

geometrical parameters, including tympanic membrane

changes in stiffness or with perforations, middle ear cavity

alterations (e.g., middle ear effusion) and disorders of the

ossicular chain (e.g., stapes fixation) (Zhao et al., 2009).

Reports on FE models of the ossicular chain (Homma

et al., 2009) further overcame the difficulty of assessing

ossicular motion experimentally. Homma et al. analyzed

ossicular resonance modes for bone conduction and air

conduction, determining that a “hinging” or “rocking”

ossicular motion predominates under air conduction

excitation, and the “pivoting” ossicular motion

predominates under bone conduction excitation (Homma

et al., 2009) (Figure 11).

De Greef et al. (2017) highlighted that the stapes footplate

motion, and therefore the middle ear transfer function, is largely

influenced by the cochlear impedance, a value that varies among

different sources (Merchant et al., 1997; Puria et al., 1997; Aibara

et al., 2001; Nakajima et al., 2009). De Greef et al. (2017) also

demonstrated that increased damping of the tympanic

FIGURE 11
Characteristic ossicular motions described by Homma et al. (2009), reprinted with permission: (A) the first mode under air conduction, and (B)
the second mode under bone conduction.
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membrane smoothed the transfer function of the stapes footplate,

especially at 3 and 10 kHz. Similarly, O’Connor et al. (2017)

modified the tympanic membrane properties showing that 1) at

high frequencies, the middle ear pressure gain decreased with

increasing tympanic membrane mass, 2) a stiffer tympanic

membrane attenuated at low and mid frequencies while

boosting high frequencies, and 3) an increase in the shear

modulus of the membrane caused an attenuation on low and

mid frequencies and boosted high frequencies. Variability of the

chosen values in the FE models might explain the discrepancy

between experimental and computational results.

Recent models of the tympanic membrane revealed that not

just the mass but also the shape of the tympanic membrane plays

a role in the sound transmission to the cochlea (Fields et al., 2018)

and dictates the force transmitted to the ossicles with the higher

force transmitted with cone-shaped tympanic membranes than

with flat membranes (Fay et al., 2006).

The effect of bone mass in the ossicular motion has been

widely studied with FE models (Nishihara et al., 1993; Gan et al.,

2001; Needham et al., 2005; Liu et al., 2016), possibly for its

implications in middle ear implantations. Liu et al. (2016) FE

models agreed with these experimental studies showing that at

high frequencies, the stapes footplate displacement inversely

relates to the increasing mass of the incus’ long process

(Nishihara et al., 1993; Gan et al., 2001; Needham et al., 2005)

and further confirmed that this is also valid for implants placed

on the incus’ long process and at the eardrum. Instead, implants

placed at the body of the incus decreased stapes footplate

displacement at low frequencies. FE models also aid in

optimizing implants through the investigation of the effect of

diverse materials, shapes, and placement of prostheses on the

transfer function of the ossicular chain (Ladak and Funnell, 1996;

Ferris and Prendergast, 2000; Kelly et al., 2003; Abel and Lam,

2004).

FE models and experimental analysis powerfully

complement and validate each other for the analysis of the

middle ear biomechanics. Although they may contain

approximations in geometry, material properties, and loading/

boundary conditions, mainly because experiments are not yet

able to inform us on all of these, FE models can simulate complex

systems as middle ear biomechanics and predict behaviors that

cannot be analyzed experimentally.

8 Unsolved questions on middle ear
mechanics

Our understanding of how the middle ear works has

developed since the mid-1850s. Fundamental to our current

knowledge is the mechanism of impedance matching, which is

the role of the outer and middle ear to transfer sound in air to a

fluid-filled cochlea. However, much remains yet to be fully

understood about the middle ear function and mechanics, and

we will consider some of the outstanding questions here.

8.1 What is the relative role/contribution
of the outer and middle ear in setting the
hearing threshold and shaping the
audiogram?

It has been debated whether or how much the frequency

range and the changes in the threshold at the high and low-

frequency ends of the hearing are determined by the middle ear

and the contributions of the cochlea. The human audiogram has

a band-pass filter shape. At frequencies below 0.5 kHz, thresholds

increase with a slope of 12 dB/octave; at frequencies between

0.5 and 2 kHz, thresholds decrease by 6 dB/octave; between 2 and

4 kHz, thresholds are relatively constant; at frequencies above

4 kHz, thresholds increase with a slope of 12 dB/octave; and

above 16 kHz the slope is >100 dB/octave.

FIGURE 12
Input impedance of the stapes and cochlea decreases in
magnitude and angle with drainage of the cochlea, demonstrating
that inner ear fluid plays a crucial role in the transmission of sound.
Interestingly, refilling the cochlea allows regaining input
impedance angle but not magnitude. Thus cochlear fluid
contributes predominantly as a resistive element to the ear input
impedance. Reprinted with permission from Ravicz, M. E, et al.
(2000).
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Cochlear microphonics are electrical signals that can be

recorded at the round window and originate from the hair

cells. They show a pattern of thresholds similar to the

audiogram. Dallos et al. (1971) suggested that the observed

pattern is a combination of the middle ear transfer function

and basilar membrane vibration at the base of the cochlea. Ravicz

and Melcher (2001) demonstrated that the cochlear input

impedance is stiffness-controlled below 1 or 2 kHz with an

impedance with a -6 dB/octave slope. Interestingly, Aibara

et al. (2001) also showed a stiffness-controlled cochlear input

impedance but without the expected magnitude increase

accompanying an increase in stiffness. Separating the impact

of the cochlea input impedance from the middle ear on the

audiogram is impossible because one loads the other. Notably,

draining the cochlea seems to produce a simple mass-spring

system (Figure 12), with the stiffness presumably coming from

the annular ligament around the stapes footplate. Thus cochlear

fluid contributes predominantly as a resistive element to the ear

input impedance.

The audiogram between 4 and 16 kHz suggests a mass-

controlled effect given the 12 dB/octave audiogram slope. A

mass contribution from the middle ear above 4 kHz was

suggested by Withnell and Gowdy (2013), although the data

range was limited to 6 kHz in this case. The slope of the

audiogram above 16 kHz is too steep to be explained by a

mass-controlled system and so does not have a middle ear

origin. Instead, the limit must be found in the cochlea due to

the limits of the tonotopic cochlear organization (Ruggero and

Temchin, 2002). Basically, the high-frequency slope reflects the

cochlea’s response above the highest frequency it is tuned to.

8.2 How do the vibration patterns of the
eardrum and ossicles change at high
frequencies?

Laser vibrometry has demonstrated that the eardrum undergoes

many local vibrations at high frequencies. These local vibrations are

not traveling waves or standing waves. They are vibrations fixed in a

location that do not propagate from their site of origin. It is unclear

what role these local eardrum vibrations play in audition or why they

occur. The conical shape of the eardrum suggests that the output of

the sound energy received by the eardrum is the umbo or throat of the

conical horn.

Possible modes of ossicle vibration that change with amplitude

and frequency have been discussed in great detail by (Hüttenbrink,

1992). The author suggested that sizeable slow pressure changes or

mechanical manipulations of the manubrium follow the description

provided initially by Helmholtz (1868). For audio frequencies and

sound levels that occur during normal conversation, the movement

pattern of themiddle ear changes: the chain ismoving as a fused entity

(Hüttenbrink, 1992) around an axis of rotation about the

incudomalleolar joint with the axis perpendicular to the direction

of stapesmotion. Rosowski et al. (2020) posit that the incudomalleolar

joint is fixed in space by the anterior malleolar ligament and the

posterior incudal ligament, so there is no translational (lateral-medial)

motion of this joint associated with this mode. Displacement of the

umbo produces rotation at the incudomalleolar joint and

displacement of the stapes.

The axis of rotation is no longer as described byHelmholtz or von

Békésy but is an “imaginary” axis outside the bodies of the middle ear

ossicles. Although not discussed in detail, Figure 8 shows similar

results (Rosowski et al., 2020). Their results from the OCT

measurements show a lateral-medial whole-body translational

component that suggests the incudomalleolar joint is moving in

unison without rotation (Figure 8). This would require the

synovial joint range of motion to reduce with increasing

frequency, so the first mode should decrease frequency-dependent.

It further requires that the anchoring of the incudomalleolar joint by

the attached ligaments be frequency-dependent, with this mode

increasing with increasing frequency. Sim and Puria (2008) suggest

that the ligaments act like springs, so their impact on anchoring the

incudomalleolar joint would reduce as a function of increasing

frequency. They also showed a torsion or twisting of the

incudomalleolar joint.

The first mode (Figures 8A,B) is the commonly described piston-

like motion of the ossicles, where the motion is in one dimension. A

piston-like motion has been inferred from the cochlea input

admittance phase, well described by a minimum phase system up

to 22 kHz in chinchilla (Ravicz and Rosowski, 2013). The frequency

range of hearing for the chinchilla is about 10 octaves, from 60 Hz to

32 kHz (Heffner and Heffner, 1991), so a simple piston-like motion

for the stapes describes approximately 9.5 of the 10 octaves. In

contrast, the more recent paper by Rosowski et al. (2020), using

OCTmeasurements, suggested that a piston-like motion is dominant

up to 8 kHz, with the incudomalleolar joint twisting motion being

dominant from 8 to 17 kHz.

As withmode two (Figures 8C,D), this mode requires that the

anchoring of the incudomalleolar joint by the attached ligaments

is frequency-dependent, with this mode increasing with

increasing frequency. A twisting of the incudomalleolar joint

is consistent with the rocking motion observed for the stapes

footplate at higher frequencies, the stapes footplate having a

convex shape.

Complex eardrum vibration patterns and multiple modes of

ossicular chain vibration at high frequencies remain to be

understood in the context of sound transmission from the ear

canal to the cochlea.

8.3 How are connective tissue disorders
affecting middle ear mechanics?

To date little is known about the effect of disorders of collagenous

tissues on the material properties of these tissues in the ear and the

mechanics of the middle ear to generate a hearing loss. While
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modeling and experimental approaches are improving and providing

predictive power for the models from a clinical point of view, it is

important to understand how genetic and disorder-related

predispositions result in middle ear malfunction and what

measures can be taken to restore normal function. Developing

new treatments for patients with diseases that affect bone

formation and also result in hearing loss, such as Paget’s disease

or osteogenesis imperfecta (OI), may be relevant also for the general

population. For people with brittle bones, conventional treatments for

hearing loss do not offer a reliable solution (Ugarteburu et al.,

Forthcoming 2022). However, a detailed understanding of the ear

structure and function in these conditions is essential for developing

new therapies. Little data exist on the material properties of the

ligaments and bones, and their effect on middle ear mechanics. The

majority of these are also onmice models of the disease, such as those

for OI (Bonadio et al., 1990; Altschuler et al., 1991; Chen et al., 2007;

Stankovic et al., 2007; Pokidysheva et al., 2013; De Paolis et al., 2021;

Patel et al., 2022). Studies from small animals must then be translated

to humans to be clinically relevant. Thus further studies that aim to

understand the differences and similarities between these two hearing

systems are needed.

9 Conclusion

The middle ear is important for hearing and matches the

impedance between the air and the fluid-filled cochlea allowing

the acoustic energy to reach the inner ear, where it is transformed

into action potentials that the brain can interpret as speech,

music, or noise. The early workings were well described in the

18th century, and more sophisticated measurement methods

have refined our understanding of tympanic membrane and

middle ear ossicle movements. While modeling and

experimental approaches are improving, questions still need to

be answered to fully understand the middle ear mechanics and

the hearing loss associated with its malfunctioning.

10 Appendix: Methods to measure
middle ear function

Vibration amplitudes of the middle ear ossicles are extremely

small. The first methods to visualize such vibrations included

stroboscopic illumination and visual examination. It is

understandable that initially, only responses to non-physiological

inputs were measured. With the development of novel, more

sensitive methods, it is now possible to measure vibrations at

physiological sound levels in the ear. Figure 13 shows currently

available methods to measure middle ear mechanics.

10.1 Stroboscopic methods

The stroboscopy was the first method to quantify vibration

patterns of key structures in the cochlea, such as the basilar

membrane. It is an imaging technique where the target structure is

imaged continuously while illuminated by intermittent light, the

frequency of the intermittent light close to the frequency of

movement of the object under investigation. The technique is not

spatially selective, and large vibrations of the target structures are

FIGURE 13
Penetration depth and resolution of different imaging modalities, reprinted with permission from (Popescu et al., 2011).
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required for a response. For example, for studying the vibration

patterns of the inner ear soft tissue structures, von Békésy delivered

sound levels well above 100 dB SPL (sound level re 20 µPa).

10.2 The Mössbauer method

A radioactive source is placed on the target structure. A

detector monitors the emitted radiation. Counts are locked to the

acoustic signal, and period histograms with the sufficient

resolution are constructed from the recordings. Velocity

estimates are fitted to the recorded data. (Rhode, 1974;

Tonndorf, 1977; Gundersen et al., 1978; Kringlebotn et al.,

1979; Gummer et al., 1989; Ruggero and Rich, 1991).

10.3 Capacitive probe measurements

Von Békésy used the capacitive probe tomeasure themiddle ear

mechanics and map the tympanic membrane’s vibration pattern.

Capacitive probes require the probe to be placed in the proximity of

the object of interest, the stapes footplate. Therefore, this needs to

access the footplate through the inner ear, thus removing the fluid

from the cochlea and consequently removing the load that the

cochlea applies to the middle ear (Vlaming and Feenstra, 1986).

10.4 Laser doppler velocimetry

The interaction of two coherent laser beams, a reference and a

target beam, is used to calculate the movement of the beams oriented

towards the target structure. Displacements less than 10–8 m at

frequencies between 100 Hz and 100 kHz can be measured. The

measurements are point measurements. To evaluate areas, multiple

measurements at the selected location must be conducted (Drain,

1980; Nuttall et al., 1991; Stasche et al., 1993; Ulfendahl et al., 1996;

Maier et al., 2013; Masalski et al., 2021).

10.5 Holography

Holography is a technique that uses the pattern of

interference between highly coherent beams determined by

the reflection or transmission of the light beams through a

target structure to reconstruct the amplitude and phase

distribution of a coherent wave. Two beams are required for

two-dimensional (2D) and three for three-dimensional (3D)

holograms (Powell and Stetson, 1965; Khaleghi et al., 2013;

Khaleghi et al., 2015a; Khaleghi et al., 2015b). For moving

target structures, the resulting fringes can be used to

simultaneously determine the selected sites’ vibrations.

10.6 Speckle contrast imaging

When coherent light interacts with a random scattering

medium, the scattered light will interfere constructively and

destructively, resulting in a pattern of bright spots or speckles.

This pattern is monitored with a camera over time. Movements

of the scattering medium lead to fluctuations of the speckles and

subsequent intensity variations of a detector monitoring the

speckles. Temporal and spatial speckle statistics provide

information on the movement of the scattering medium

(Yamaguchi et al., 1990; Wada et al., 2002).

10.7 Optical coherence tomography

Optical Coherence Tomography (OCT) is an optical, non-

invasive imaging technique. In its simplest form, the emitted

radiation from a single low-coherent light source, typically

near-infrared, is split into a reference and a target beam.

The light in the reference beam reflected by a mirror and

the light backscattered from the tissue in the target beam are

combined in a coupler and recorded by a single-point detector.

The recordings allow a reconstruction of the target structures.

Hereby, the photon count at the detector and the quality of the

detector determines the image quality. While the penetration

depth of the light in tissue is relatively short, 1 mm, a decent

spatial resolution of about 1–10 µm can be achieved (Pitris

et al., 2001; Popescu et al., 2011; Subhash et al., 2012; Chang

et al., 2013; Macdougall et al., 2015; Jeon et al., 2019a; Burwood

et al., 2019; Oh et al., 2020).
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