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The sustained growth of digital healthcare in the field of neurology relies on portable and cost-
effective brain monitoring tools that can accurately monitor brain function in real time. Func-
tional near-infrared spectroscopy (fNIRS) is one such tool that has become popular among 
researchers and clinicians as a practical alternative to functional magnetic resonance imag-
ing, and as a complementary tool to modalities such as electroencephalography. This review 
covers the contribution of fNIRS to the personalized goals of digital healthcare in neurology 
by identifying two major trends that drive current fNIRS research. The first major trend is 
multimodal monitoring using fNIRS, which allows clinicians to access more data that will 
help them to understand the interconnection between the cerebral hemodynamics and other 
physiological phenomena in patients. This allows clinicians to make an overall assessment of 
physical health to obtain a more-detailed and individualized diagnosis. The second major 
trend is that fNIRS research is being conducted with naturalistic experimental paradigms that 
involve multisensory stimulation in familiar settings. Cerebral monitoring of multisensory 
stimulation during dynamic activities or within virtual reality helps to understand the com-
plex brain activities that occur in everyday life. Finally, the scope of future fNIRS studies is dis-
cussed to facilitate more-accurate assessments of brain activation and the wider clinical ac-
ceptance of fNIRS as a medical device for digital healthcare.
Keywords  ‌�functional near-infrared spectroscopy; digital healthcare; optical monitoring; 

cerebral oxygenation; diffuse optics.

Functional Near-Infrared Spectroscopy as a Personalized 
Digital Healthcare Tool for Brain Monitoring

INTRODUCTION

Digital healthcare involves the intersection of new technologies with the field of health-
care. As described in the Global Strategy on Digital Health published by the World Health 
Organization, the aim of this intersection is to “improve health for everyone, everywhere 
by accelerating the development and adoption of appropriate, accessible, affordable, scal-
able and sustainable person-centric digital health solution.”1 Considerable attention has 
been given to concepts such as artificial intelligence (AI) and telehealth applications as 
person-orientated digital healthcare solutions. However, the role of brain monitoring 
tools that are appropriate for personalized digital healthcare solutions in the field of neu-
rology should not be overlooked. Advanced brain monitoring tools can be considered the 
cornerstone of digital healthcare in neurology due to the dependence of AI and telehealth 
applications on high-quality input data.

The growth of digital healthcare in neurology requires real-time, portable, and cost-ef-
fective brain monitoring devices, and thus functional near-infrared spectroscopy (fNIRS) 
has received attention from researchers and neurologists as a suitable tool for realizing the 
goals of digital healthcare. fNIRS and its three-dimensional imaging extension, diffuse op-
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tical tomography (DOT), are optical-based methods that are 
capable of measuring blood oxygenation levels using near-
infrared light. fNIRS can serve as a practical alternative to the 
currently employed bulky and movement-restricting meth-
ods such as functional magnetic resonance imaging (fMRI) 
and magnetoencephalography. fNIRS brain monitoring can 
be performed in real time and at the bedside, making it suit-
able for patients who cannot be transported or who experi-
ence difficulties in constrained environments.2,3 Although 
the spatial resolution of fNIRS is lower than that of other 
modalities, the fNIRS signal have been found to be strongly 
correlated with blood-oxygen-level-dependent (BOLD) sig-
nals.3,4 fNIRS can also act as a complementary tool to elec-
troencephalography (EEG). Simultaneous fNIRS and EEG 
measurements have improved the understanding of the re-
lationship between the electrical activity of neurons and blood 
oxygen delivery to the brain.5

The structure of this review paper is as follows. First, there 
is a brief review the principles of fNIRS to investigate its uti-
lization as an advanced brain monitoring tool for digital 
healthcare in neurology. Then, fNIRS research trends are 
highlighted that are driving toward a more-personalized un-
derstanding of the brain. These trends include multimodal 
brain monitoring and naturalistic experimental paradigms. 
To support the notion that these trends are shaping current 
fNIRS studies, recent research that best demonstrates its ap-
plication for digital healthcare in neurology is reported.

BASIC PRINCIPLES AND TECHNIQUE 
DEVELOPMENTS

fNIRS optical brain monitoring is based on photons gener-
ated by a near-infrared light source (i.e., laser or light-emit-
ting diode) propagating through the skin, scalp, and cere-
bral spinal fluid to reach the cerebral tissue. An optical window 
exists in the near-infrared range (600–1,000 nm) where ab-
sorption by water and lipids are minimized, allowing pho-
tons to pass through the skin and scalp. Light absorption in 
this range is primarily associated with oxygenated hemoglo-
bin (HbO) and deoxygenated hemoglobin (Hb), making it 
possible to resolve changes in cerebral blood oxygenation 
(i.e., HbO and Hb) and total blood volume (HbT).6 Most 
commercial fNIRS systems are the continuous-wave type, 
which continuously illuminates the region of interest and 
measures intensity variations to resolve the changes in he-
modynamic concentrations relative to baseline levels.7

Since photons must pass through the skin and scalp be-
fore reaching the brain, the fNIRS signal can be considered 
as a combination of non-event-related hemodynamics (skin 
and scalp) and event-related hemodynamics (brain activa-

tion). The source–detector (SD) distance must be appropri-
ately controlled in order to ensure that the measured signal 
includes photons that pass through the brain tissue. Monte 
Carlo simulations of photon propagation have indicated that 
an SD separation of 25–35 mm can reliably monitor brain 
activation in adults.6 Shorter SD distances are only consid-
ered sensitive to hemodynamics changes in superficial areas. 
These short SD channels can be used to regress superficial 
hemodynamics from farther channels to isolate hemody-
namics related to brain activation. However, the inhomoge-
neity of superficial hemodynamics should be considered 
when performing such regression.8 

SD distance is just one of the many factors that needs to 
be considered when designing and conducting an experi-
ment using fNIRS. Other experimental factors along with an 
overview of best practices for fNIRS studies has been pub-
lished as a useful guide for conducting research using fNIRS.9

The typical fNIRS signal in response to brain activation 
can be generated using gamma functions, which have been 
shown to accurately model BOLD and fNIRS signals (Fig. 
1).10,11 This generated signal can reveal blood vessel dynam-
ics and changes in cerebral metabolism via temporal chang-
es in the three fNIRS parameters being measured: HbO, Hb, 
and HbT. There is a rapid increase of oxygen consumption 
at the time of initial brain stimulation, resulting in a rapid in-
crease in Hb and a decrease in HbO.12,13 The following large 
increase of HbO and HbT reflect a delivery of blood oxygen 
to the brain to support neural activity. An additional increase 
in blood velocity washes out the Hb in the blood vessels and 
increases HbO until blood oxygen saturation peaks in the 
blood vessels.10 HbO and HbT peak once cerebral metabol-
ic demands are met, and then decrease to coincide with the 
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Fig. 1. Generated functional near-infrared spectroscopy signals and 
corresponding physiological blood vessel changes. Hb, deoxygenated 
hemoglobin; HbO, oxygenated hemoglobin; HbT, total blood volume.
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decrease in neural activity. Lastly, a post stimulus undershoot 
is observed due to the rapid decrease in HbT while oxygen 
is still being consumed. This undershoot has been observed 
more often in optical monitoring than in BOLD signals.14

Recent software advancements have greatly facilitated the 
modeling, processing, and analysis of fNIRS data. This in-
cludes a three-dimensional Monte Carlo program to model 
photon propagation that can be run entirely in a web brows-
er,15 along with continuous updates to the HOMER and At-
lasViewer programs for fNIRS data handling.16 These soft-
ware have also facilitated DOT reconstruction of cerebral 
hemodynamics without the need for prior knowledge of 
image reconstruction algorithms. Anatomically guided re-
construction of hemodynamics changes using DOT allows 
for gyrus-specific localization to pinpoint impairment and 
better understand the regional cerebral effects of diseases 
such as autonomic dysfunction.17

Fig. 2 presents an overview of DOT reconstruction to dem-
onstrate how software advancements work together to re-
construct localized brain activation. The first step is to mod-
el the source and detector layout of the fNIRS system relative 
to the brain anatomy. When individual magnetic resonance 
imaging (MRI) scans are unavailable, the Colin27 MRI tem-
plate can be used to model sources and detectors onto the 
anatomy using the AtlasViewer program (Fig. 2A).18 Accord-
ing to the channel layout, the photon propagation of each 
channel through the layered medium is simulated using the 

Monte Carlo method. The browser-based Monte Carlo eX-
treme program can be used for layer segmentation, photon 
simulation, and calculating fluence rates (Fig. 2B).15

The optical properties of the brain layers used to simulate 
photon propagation are listed in Table 1. Each optical prop-
erty quantifies the behavior of light within the measured tis-
sue, such as the absorption coefficient, which quantifies the 
effectiveness of photon absorption for a specific chromo-
phore, and the scattering coefficient, which quantifies the 
photon-scattering characteristic.10 The optical properties in 
Table 1 have been used in previous studies on cerebral he-
modynamics reconstruction.19 The sensitivity matrix is cal-
culated after simulating photon propagation in each channel, 
and three-dimensional reconstruction of cerebral hemody-
namics is then performed (Fig. 2C).18 The sensitivity profile 
of the channel measures the degree to which a change of ab-
sorption in a specific area is reflected in the measured signal. 
Sensitivity values can provide a better understanding of the 
brain regions that contribute most to the measured fNIRS 
signal, and they have been used to optimize probe position-
ing.18,20 The exact methods for inverting the photon propa-
gation model, calculating the sensitivity profile, and linear-
izing the reconstruction method can be found elsewhere.21-23

These software advancements have made data processing 
more widely available, and led to the standardization of data 
formats for use in studies on fNIRS.24 Consistent visualiza-
tion techniques using HOMER and AtlasViewer software 

Table 1. Summary of optical properties of the human head for modeling photon propagation

Tissue type
Absorption coefficient 

(mm−1)
Scattering coefficient 

(mm−1)
Anisotropy
factor (g)

Refractive
index (n)

Scalp and skull 0.019 7.8 0.89 1.37

Cerebrospinal fluid 0.004 0.009 0.89 1.37

Gray matter 0.02 9.0 0.89 1.37

White matter 0.08 40.9 0.84 1.37

A   B   C  
Fig. 2. Example of diffuse optical tomography processing steps: (A) probe modeling (red dot, source; blue dot, detector), (B) photon propagation 
modeling and fluence rate through a layered Colin27 template, and (C) probe sensitivity calculation.
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also allow for easier comparisons of the results obtained by 
different research groups. Due to these reasons, the applica-
tions of fNIRS have spread from only basic research and pre-
liminary clinical studies to interdisciplinary research fields, 
such as sports science,25 social neuroscience,26 and neuro-
marketing.27 Furthermore, the growing trend of multimod-
al monitoring using fNIRS has enhanced the capabilities and 
accuracy of cerebral monitoring in these fields.

MULTIMODAL MONITORING

Cerebral dysfunction can be assessed directly by cerebral 
monitoring using fNIRS, which is more accurate than using 
blood pressure and heart rate measurements alone.28 How-
ever, considering a more holistic health solution, a single 
brain monitoring modality for assessing cerebral hemody-
namics is not adequate in the context of whole-body chang-
es. Multimodal brain monitoring can therefore assess the re-
lationship between various physiological phenomena. Due 
to the portability and miniaturization of fNIRS, as well as 
the lack of crosstalk between fNIRS and other systems (e.g., 
EEG),29 multimodal monitoring has become one of the big-
gest trends in studies on fNIRS. Multimodal monitoring is 
important for digital healthcare because it produces a large 
amount of complementary data to improve the accuracy of 
AI systems.30 It also reveals potential individual confound-
ing factors for more-accurate brain studies31 and for explor-
ing cause-and-effect relationships between physiological 
phenomena.32

The various types of physiological parameters that can be 
monitored are best demonstrated in the study titled “Effect 
of short-term colored-light exposure on cerebral hemody-
namics and oxygenation, and systemic physiological activi-
ty.”33 That study analyzed the relationships between cerebral 
parameters and various systemic physiological parameters 
based on changes in colored light. For this purpose, cerebral 
oxygenation was monitored using a frequency-domain fNIRS 
system (ISS ImageNet) to measure oxygen saturation, HbO, 
Hb, and HbT. A wide range of systemic parameters were also 
measured, including the partial pressure of exhaled CO2 
(using the Nellcor N1000 gas analyzer), mean arterial pres-
sure, systolic blood pressure, diastolic blood pressure, pulse 
pressure, pulse transit time, heart rate, heart rate variability 
(using the SOMNOtouch noninvasive blood-pressure mon-
itor), electrodermal activity (using a skin-conductance bio-
feedback device), and skin conductance level. The main find-
ing of that study was that passive activities such as short-
term light exposure can induce color-dependent responses 
in cerebral hemodynamics and cardiorespiratory changes. 
That study coined the term systemic-physiology-augment-

ed fNIRS (SPA-fNIRS) for the simultaneous measurement 
of systemic physiological parameters for assisting, comple-
menting, and improving fNIRS measurements.

Subsequent SPA-fNIRS studies have demonstrated the im-
portance of neurosystemic monitoring in identifying poten-
tial confounding factors that could mask brain activity. Be-
cause the fNIRS signal is a combination of systemic changes 
and cerebral hemodynamics, non-event-related systemic re-
sponses may result in false positives when analyzing fNIRS 
data.31 SPA-fNIRS studies have observed the resting-state 
asymmetry of frontal cerebral oxygenation and the depen-
dence of resting-state hemodynamics on various systemic 
physiological parameters, the season of the year, and the 
time of day.34 Those study results highlighted the impor-
tance of considering individual baseline physiological dif-
ferences before evaluating differences across subjects. SPA-
fNIRS studies have also explored the relationships between 
experimental conditions and neurosystemic parameters, such 
as the effect of continuous light exposure on systemic and 
brain physiology35 and the effect of colored-light exposure 
on brain responses during verbal fluency tasks.36 Those find-
ings supported the need for continuous neurosystemic mon-
itoring to properly control for factors that could influence 
experimental results. Finally, comparisons of cerebral and 
systemic physiological parameters between different partic-
ipants produced evidence of synchronization due to eye con-
tact,37 which could be an important factor when performing 
hyperscanning studies (i.e., the simultaneous continuous 
fNIRS monitoring of multiple participants). Continuous and 
simultaneous neurosystemic monitoring can improve the 
accuracy of fNIRS measurements by identifying individual 
physiological characteristics and isolating physiological 
changes unrelated to brain activation.

Hardware improvements, such as system miniaturization, 
have not only increased the accessibility of fNIRS, but has 
allowed it to be combined with various brain monitoring 
modalities. Tables 2 and 3 present information on ten ma-
jor recent studies that combined fNIRS systems with other 
brain monitoring modalities. The tables list the types of hard-
ware used in the multimodal systems, the physiological pa-
rameters simultaneously measured, the fNIRS data acquisi-
tion rate, and the number of fNIRS channels. As indicated 
in the tables, fNIRS systems have been successfully combined 
with various other types of system, ranging from other brain 
monitoring tools (e.g., diffuse correlation spectroscopy and 
EEG) to stimulation tools (e.g., transcranial direct-current 
stimulation). These multimodal systems provide a wide range 
of neurosystemic parameters for quantifying different as-
pects of physiological changes. These parameters can also 
be used to derive new indirect parameters, such as those for 
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quantifying cerebral metabolism. Hardware and power-ca-
pacity improvements have also resulted in both higher data 
acquisition rates (up to 16.66 Hz) and more fNIRS channels 
(up to 133).

The fNIRS-EEG system is the most common combination 
for a multimodal fNIRS systems. Various reviews of the 
hardware integration, data processing, and interpretation of 
fNIRS and EEG multimodal systems can be found else-
where.47-49 To investigate further into fNIRS-EEG systems 
and explore the type of applications, the first 75 fNIRS-EEG 
articles were surveyed when performing a Google Scholar 
search using the keywords “fNIRS” and “EEG.” Conference 
proceedings were omitted and the publication date range 
was limited to 2018–2022 in order to focus on recently stud-
ied fNIRS and EEG applications. After reviewing the list of 
publications, the following six major categories were creat-
ed: 1) neurovascular coupling (NVC), 2) algorithm, 3) brain–
computer interface (BCI), 4) classification, 5) hardware, and 
6) open-access data sets (Fig. 3).

The NVC studies primarily consisted of clinical neurolo-
gy studies and basic neurological research that explored the 
relationship between neural electrical signals and cerebral 
blood oxygenation in both patients and healthy participants. 
They aimed to understand brain functioning in the presence 
of various stimuli or neurological disease. NVC studies can 
be further divided into three subcategories: 1) general stud-
ies on healthy adult participants, 2) studies on newborns/
children, and 3) clinical studies on patients. The proportions 
of studies among the NVC subcategories demonstrate that 
fNIRS-EEG multimodal systems have been equally useful 
for healthy adults (19%) and newborns/children (15%); how-
ever, relatively fewer of these systems have been implement-

ed in clinical settings (9%).
The algorithm, BCI, and classification categories, and 

open-access data sets can be considered as general digital 
healthcare studies because they directly intersect with tech-
nology. Research in these categories has facilitated the ac-
curate classification of fNIRS data, the interactions between 
humans and computers, and the sharing of data sets among 
research groups to benchmark classification accuracy and 
improve algorithm development of digital healthcare tech-
nologies. The survey found that these studies accounted for 
46% of fNIRS-EEG multimodal studies. It was interesting 
that this percentage was only slightly higher than that of the 
NVC studies combined (43%). The practical split between 
digital healthcare studies and general neurological research 
supports the idea that fNIRS has progressed toward being 
both a suitable medical modality for digital healthcare and a 
reliable brain monitoring tool for neurological studies. Many 
of the surveyed studies that directly contributed to the prog-
ress in digital healthcare were conducted using naturalistic 
experimental paradigms, which is the second major trend 
driving fNIRS studies.

NATURALISTIC EXPERIMENTAL 
PARADIGMS

The high motion tolerance of fNIRS when detecting arti-
facts allows subjects to engage in dynamic movements dur-
ing brain-activation studies, such as those that involve the 
tilt-table test50 and freely moving animals.51 fNIRS as a digi-
tal healthcare tool for unrestrained brain monitoring provides 
two major benefits: 1) the capability of monitoring partici-
pants in a natural environment and 2) providing neurofeed-

Fig. 3. The distribution of fNIRS-EEG applications according to relevant applications that were surveyed among 75 recent fNIRS-EEG studies. EEG, 
electroencephalography; fNIRS, functional near-infrared spectroscopy.
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back during virtual reality (VR) experiences. These benefits 
allow for more practical studies of brain activation with re-
al-life implications, which will be further discussed in this 
section.

Participants in a natural environment experience a diverse 
set of visual and auditory stimuli, and so the brain respons-
es measured in this condition often reflect complex connec-
tions between multiple cortices. However, typical task-evoked 
stimuli only target individual cortices. These experimental 
paradigms are also often repetitive, thereby failing to fully 
engage the participant with the task.52 Instead of task-evoked 
stimuli, naturalistic experimental paradigms involve real-
life scenarios that contain a mixture of visual and auditory 
stimuli, often along with narrative components. The brain 
responses and whole-brain mapping in naturalistic experi-
mental paradigms are best discussed by Fishell et al.52 in their 
publication titled “mapping brain function during natural-
istic viewing using high density diffuse optical tomography” 
that was published in 2019. In that study, a wide field of view 
DOT system monitored whole-brain responses during nat-
uralistic movie watching. It demonstrated the ability to sep-
arate stimuli-specific brain responses for concurrent audio 
and visual stimuli while watching a movie. For this purpose, 
a feature-decomposition strategy was used to map brain ac-
tivation to specific features (i.e., visual cues such as faces, bod-
ies, and hands, and audio cues such as speaking). That study 
presented the effectiveness of naturalistic experimental par-
adigms for DOT studies and their ability to isolate brain re-
sponses during multisensory experiences.

The naturalistic experimental paradigm extends beyond 
movie watching and has practical use in the ergonomics and 
sports-science fields. fNIRS has been increasingly used in 
ergonomics experiments to quantify parameters that are dif-
ficult to measure, such as cognitive workload. Cognitive work-
load is an important parameter for assessing the feasibility 
of robotic assistance technology in everyday life. For exam-
ple, fNIRS studies have found that using an exoskeleton in-
duces functional connectivity changes in participants, indi-
cating that the reduced physical effort required when lifting 
with the aid of an exoskeleton may be offset by the greater 
cognitive workload imposed by the robotic assistance.53 fNIRS 
also has the capability to accurately detect and communicate 
the intended movements of the participant to the exoskele-
ton despite the increased cognitive workload.54 Further-
more, cognitive workload measurements can be utilized to 
understand brain function during dynamic wheelchair us-
age. fNIRS studies of wheelchair users found reduced hemo-
dynamics activation when navigating simple environments 
(lower cognitive workload), but increased when navigating 
through complex environments with various obstacles (high-

er cognitive workload). The brain was also less active when 
wheelchair users used assistive software to support move-
ment, indicating that the software can reduce the cognitive 
workload imposed on the user.55

In the sports-science field, fNIRS monitoring has been 
used to study brain function during cooperative activities 
and training. A hyperscanning approach yielded evidence 
of interpersonal neural synchronization during joint draw-
ing tasks among basketball teammates. However, the same 
synchronization was not observed in college students who 
did not participate in cooperative sports.56 Altered brain 
function was also observed in endurance athletes during 
cycling, including reduced Hb production compared with 
controls; however, no evidence of improved neural efficien-
cy was observed in those athletes.57 In contrast, fNIRS mea-
sured the same functional connectivity while slackline ath-
letes were standing or walking, demonstrating their high 
level of balance.58 These applications highlighted for the ad-
vancement of ergonomics and sports science demonstrate 
the potential usefulness of fNIRS for the everyday person.

Naturalistic environments can also be replicated in VR, 
which is a key topic in digital healthcare. VR allows research-
ers to develop immersive environments and carefully con-
trol experimental parameters to design more-insightful ex-
perimental protocols. VR headsets combined with fNIRS 
allow real-time assessments of brain activation in realistic 
yet customized environments, and the delivery of real-time 
neurofeedback for more-effective and personalized training.

The enhanced efficacy of VR therapy was demonstrated 
by Cho et al.59 in 2022, in which a VR environment was used 
to administer prism adaptation (PA) therapy to test unilat-
eral spatial neglect. Since PA therapy often requires a large 
physical space, VR provides the opportunity to convenient-
ly administer such therapy. Using the multisensory environ-
ment of VR and real-time fNIRS brain monitoring, research-
ers adjusted the therapy treatment according to user responses. 
This allowed for measurements of activated attentive net-
works and quantification of the effectiveness of the therapy. 
Similar benefits were demonstrated in a fNIRS study that 
measured cognition during life-support training for emer-
gency preparedness. Monitoring cerebral blood oxygenation 
during training allowed researchers to assess the effective-
ness of emergency-situation training.60 

Efficacy can be measured not only for therapy and train-
ing but also for prescription medication for cognitive disor-
ders. Simultaneous VR and fNIRS monitoring was used to 
monitor brain oxygenation changes in students with atten-
tion deficit hyperactivity disorder (ADHD) in a classroom 
setting. This experiment was designed to measure the effica-
cy of prescription medication in controlling impulsive re-
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sponses to new scenarios.61 The VR and fNIRS monitoring 
results also indicated better focusing ability in healthy par-
ticipants and participants with ADHD, as well as higher user 
satisfaction with the experimental protocol.62

Reinforced learning can be integrated into VR environ-
ments through real-time fNIRS monitoring that provides 
neurofeedback. In a study that exposed participants with 
ADHD to a VR classroom environment, neurofeedback was 
utilized to help their self-regulation of cognitive behavior. 
The feedback included visual or acoustic cues, such as light-
ing changes in the classroom, which were immediately pre-
sented to the participant upon the performance of certain 
behaviors, in order to correct them or act as positive reinforce-
ment.63 VR feedback based on the fNIRS signal was found 
to help participants of all ages with ADHD to concentrate, sit 
still, endure boredom, and inhibit impulsive behavior.63,64 Be-
sides alleviation of cognitive dysfunction, neurofeedback can 
be used as guidance for the user, including paced breathing 
to localize brain activity during mindful breathing.65

FUTURE OUTLOOK

While the future of fNIRS for digital healthcare in neurology 
is promising, certain outstanding issues need to be addressed 
before it can become widely accepted in clinics. One of the 
biggest obstacles to fNIRS monitoring is the lack of an ac-
cepted data-processing pipeline for effectively removing 
noise, such as systemic noise and motion artifacts.6 The use 
of different processing pipelines makes it difficult to compare 
results among studies, because each noise-removal algorithm 
offers varying capabilities in removing motion artifacts, tem-
poral drift, and non-event-related hemodynamics. Many re-
views have investigated various fNIRS processing pipelines, 
with each having its own benefits and drawbacks depend-
ing on the characteristics of the participants.66-69 In the case 
of motion artifacts, most researchers agree that correcting 
motion artifacts is a better approach than simply rejecting 
trials.70 Wavelet filtering combined with another algorithm 
(i.e., spline interpolation) was the most effective correction 
method for reducing motion artifacts in cognitive studies71 
and infant data.70

For a reliable assessment of cerebral hemodynamics, the 
basic fNIRS processing pipeline should include steps such as 
channel rejection, motion artifact removal, and superficial 
hemodynamics removal.9 To reach a consensus on the best 
processing pipeline, the capabilities of the different types 
must be objectively measured. In this sense, realistic data-
generation algorithms are needed to provide both noisy data 
and the ground-truth hemodynamics response as a basis for 
comparing the effectiveness of recovering the ground-truth 

data.72 The lack of a consensus-based approach for basic fNIRS 
processing may lead to results that are difficult to interpret 
or unreliable.31,73

Tremendous progress has been made toward fNIRS be-
coming a viable alternative to fMRI as well as a complemen-
tary monitoring tool to EEG, thereby making it one of the 
most appropriate tools for achieving the goal of personaliz-
ing digital healthcare. Researchers are constantly finding in-
novative ways to perform multimodal monitoring with fNIRS, 
which affords clinicians and patients access to more data 
and allows for a personalized assessment of the health of the 
whole body. Researchers are also designing experiments with 
fNIRS that allow participants to freely engage with multi-
sensory environments that closely mimic naturalistic, ev-
eryday conditions. Lastly, fNIRS combined with innovative 
technologies such as VR allows researchers to work within 
a digital space to objectively measure performance and pro-
vide feedback to the individual.
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