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Bottom-up approaches to systems biology rely on constructing a mechanistic
basis for the biochemical and genetic processes that underlie cellular functions.
Genome-scale network reconstructions of metabolism are built from all
known metabolic reactions and metabolic genes in a target organism. A net-
work reconstruction can be converted into a mathematical format and thus
lend itself to mathematical analysis. Genome-scale models (GEMs) of metab-
olism enable a systems approach to characterize the pan and core metabolic
capabilities of the Escherichia genus. In this work, GEMs were constructed
for 222 representative strains of Escherichia across HC1100 levels spanning
the known Escherichia phylogeny. The models were used to study Escherichia
metabolic diversity and speciation on a large scale. The results show that
unique strain-specific metabolic capabilities correspond to different species
and nutrient niches. This work is a first step towards a curated reconstruction
of pan-Escherichia metabolism.

This article is part of a discussion meeting issue ‘Genomic population
structures of microbial pathogens’.
1. Introduction
Escherichia coli K-12 MG1655 is the model organism for research on microbial
metabolic systems biology and physiology [1]. Recent studies have demon-
strated that this strain is not representative of the diversity of metabolic
capabilities across the species [2,3]. Genome-scale models (GEMs) of metab-
olism for hundreds of strains in this species have estimated the E. coli ‘core’
metabolic reactome to be 1866 reactions [4]. However, work reconstructing
E. coli metabolism has been focused on available genome sequences that
have not always spanned the known Escherichia phylogeny.

EnteroBase represents a curated database of over 100 000 E. coli strains
(191199 strains as of 1 November 2021) [5]. Clustering methods have divided
these strains into groups that span the currently known Escherichia phylogeny.
EnteroBase automatically clusters core genome multi-locus sequence typing
(MLST) allelic profiles into hierarchical clusters (HierCC) from annotated gen-
omes. EnteroBase has implemented HierCC for core genome MLST, which
allows for resolution of population structures at multiple levels ranging from
HC2000 (super lineages) for intercontinental dispersion down to HC5-10 for
detecting local transmission chains. EnteroBase reports cluster assignments and
designations at 11 levels of allelic differences for the Escherichia genus. HierCC
is able to assign genomes to populations and lineages within Escherichia/Shigella,
and compares favourably with other methods such asMLST and average nucleo-
tide identity (ANI) [6]. Thus, HierCC can be used to identify representative
strains of Escherichia spanning the diversity across the genus. Metabolic network
reconstructions have demonstrated their use to computationally evaluate the
genomic diversity of metabolism between organisms [7,8]. This study aimed to
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Figure 1. SNP tree of all 222 Escherichia strains spanning 222 distinct HC1100 clusters. Tree is based on SNPs found within the core-genome of all strains. The 222
strains spanned 12 diverse taxonomic groupings with an average of 20 ± 27 strains per lineage.
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take a first step towards reconstructing metabolic network
reconstructions and GEMs of metabolism for a set of strains
spanning the Escherichia phylogeny.
(a) Strain selection
A total of 222 genome sequences were selected from the over
100 000 available on Enterobase using hierarchical clustering
of core genome sequence types with the EnteroBase HierCC
pipeline. The genomes were selected based on their diversity
spanning the Escherichia phylogeny (figs 1 and 2 in companion
manuscript [6] for a tree of 967 genomes representing the
known core genome diversity of Escherichia in 2021). HierCC
assignments were more consistent with maximum-likelihood
super-trees of core single nucleotide polymorphisms (SNPs)
or presence/absence of accessory genes than classical taxo-
nomic assignments or 95% ANI [6]. Thus, HC1100 groups are
a good tool for detecting populations within Escherichia.
Strain names, assembly data and hierarchical clustering (HC)
groups are available in the electronic supplementary material,
data file S1. Beyond Escherichia coli, the Escherichia genus also
includes species albertii, fergusonii, marmotae and ruysiae. Fur-
thermore, common causes of dysentery Shigella boydii,
Shigella dysenteriae, Shigella flexneri and Shigella sonnei all corre-
spond to phylogenetic lineages within E. coli rather than to
discrete taxonomic units. The 222 strains collected span the
Escherichia phylogeny across 12 clades including strains from
clades I–VII as well as representatives of Escherichia fergusonii
(n = 11), Escherichia albertii (n = 54) and Shigella (n = 5)
(figure 1). All strains were determined to be from distinct
sequence types as defined by MLST [9].
(b) Pan-genome analysis
The 222 strains were used to construct a pan-genome to
evaluate shared and unique genes between the strains [10].
There were a total of 27 266 unique gene families present
across the 222 strains of which 1936 were shared by all 222
strains (core genome). EGGNOG [11] was used to functionally
annotate representative amino acid sequences from each of
the 27 266 gene families (figure 2a). EGGNOG failed to assign
functions to 10 669 (39.1%) genes and another 6967 (25.6%)
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Figure 2. Pan-genome analysis of the 222 representative strains. (a) Pan-genome curve representing the number of shared (core) genes and unique ( pan) genes
counted as additional strains are added (x-axis). Strains were added in random order 10 times with differences displayed as shaded curves representing 95%
confidence intervals. (b) Functional clusters of orthologous group (COG) annotation of the pan-genome. Abbreviations: A, RNA processing and modification; C,
energy production and conversion; D, cell cycle control; E, amino acid metabolism and transport; F, nucleotide metabolism and transport; G, carbohydrate metab-
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were annotated as having ‘unknown function’ (figure 2b).
Thus, in total, 64.7% of genes in the pan-genomewere function-
ally unannotated. For those genes where functional annotation
was available the top five categories included 535 (2.0%) in
energy production and conversion, 867 (3.2%) in carbohydrate
metabolism and transport, 1181 (4.3%) in transcription, 1414
(5.2%) in cell wall/membrane/envelope biogenesis and 1661
(6.1%) in replication and repair. A full pan-genome pres-
ence/absence matrix with annotated functions is available in
the electronic supplementary material, data file S4.
(c) Characteristics of the core and pan models
A set of 222 E. coli genome-scale reconstructions were built by
combining two recently published workflows [12,13] and used
to compare gene, reaction and metabolite content. The content
shared among all reconstructions defines the ‘core’ metabolic
capabilities among all the strains. Similarly, themetabolic capa-
bilities of all the strainswere combined to define the full set that
encompasses all models and thereby define the ‘pan’metabolic
capabilities among all the strains (figure 3a). The GEMs
covered 3393 out of the 27 266 gene-families present in the cal-
culated pan-genome (12.4%).

The size and content of the core metabolic content can be
used to characterize the metabolic basis of E. coli as a species.
There were 1688 reactions shared across all strains. The reac-
tions in the core group fell into specific metabolic subsystems
including the pentose phosphate pathway (12 out of 13 reac-
tions, 92% conserved), murein biosynthesis and recycling
(52 out of 59 reactions, 88% conserved), purine and pyrimi-
dine metabolism (28 out of 35 reactions, 80% conserved)
and (glycolysis/gluconeogenesis (20 out of 27 reactions,
74% conserved). Furthermore, some of the reactions not
classified as core reactions were still found in a majority of
strains, for example in glycolysis/gluconeogenesis the glu-
cose-1-phosphate adenylyltransferase reaction encoded for
by glgC was found in all but one strain. See the electronic
supplementary material, data file S2 for full details.

By contrast with the core reconstruction, the pan meta-
bolic content constitutes the total number of different
reactions found in all strains and as such is an indicator of
the full metabolic capabilities within the Escherichia genus.
There were a total of 3342 reactions found in any strain, of
these 1688 were variably present across the strain-specific
models. The model with the most reactions was E. coli AZ-
TG73683 (2823 reactions) while the model for E. albertii
O88:H- had the fewest number of reactions (2497 reactions)
(figure 3b).

By contrast to subsystems common to core reactions, the
accessory reactome was found to have reactions from nitro-
gen metabolism (5 out of 23 reactions, 22% conserved),
alternative carbon metabolism (136 out of 513 reactions,
27% conserved) and for the amino acid methionine (10 out
of 27 reactions, 27% conserved). Importantly, the alternate
carbon metabolism subsystem is by far the largest of these
groups (513 reactions).

(d) Calculating phenotypes
Metabolic network reconstructions can be converted to
computable mathematical models allowing them to compute
phenotypes (outputs) given different inputs [14,15]. The 222
strain-specific reconstructions were converted to mathematical
models allowing simulation of growth in different environ-
ments including all possible sets of potentially growth
supporting carbon, nitrogen, phosphorus and sulfur sources.
Thus, this set of GEMs allows for a meaningful interpretation
of the content of each reconstruction and allows one to gain
perspective on the strain’s micro-environmental and ecological
niche [16].

Previous work has shown that alternate carbon sources
distinguish strains [17,18]. Thus, simulations were performed
to predict growth capabilities in alternate environments
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including sole growth supporting carbon, phosphorus and
nitrogen sources. In total, 735 different growth conditions
were evaluated. At least one strain was able to grow
in 570 unique environments. Of these, 220 supported
growth for all strain-specific models (figure 4a) (electronic
supplementary material, data file S3).

We observed variation in catabolic capabilities across the
HC1100 representatives. This result aligns with observations
of variable O-antigens presence throughout Escherichia [6]
and further bolsters observations regarding the high
frequency of homologous recombination in this genus
[19,20]. Some of the most variable growth-supporting
carbon sources included 4-hydroxyphenylacetate (74%
models predicted to grow), rhamnose (73%), myo-inositol
(61%), (R)-propane-1,2-diol (48%) and allose (34%)
(figure 4b). Some of the fewest number of strains were pre-
dicted to grow on D-xylonate as a carbon source (5% of
strains), D-lysine (7%) and L-fuculose (3%). Variable sole nitro-
gen source compounds predicted to support growth included
D-ornithine (8% of strains), psicoselysine (29%), acetamide
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(72%) and D-methionine (82%). L-cysteate was one of the com-
pounds predicted to support growth as a sole nitrogen source
across the fewest number of strains (3%). Phosphorus sources
were far more conserved with the majority of compounds
(50 out of 60) predicted to support growth in greater than
95% of strains. The most variable predicted growth support-
ing phosphorus sources were Arbutin 6-phosphate (59% of
strains predicted to grow) and 2-phosphoglycolate (72%).
L-cysteate was among the least predicted sole sulfur sources
to support growth (2% of strains), while compounds like
taurine (69%) and isethionic acid (69%) had more variable
predictions to support growth as sole sulfur sources.
2. Discussion
This study demonstrates the use of GEMs of metabolism to
study similarities and differences between species and strains
of a genus. Unique GEMs for 222 different Escherichia strains
spanning the phylogeny were constructed and used to: (i)
tabulate core and pan metabolic capabilities within the
Escherichia genus; and (ii) calculate metabolic capabilities
and evaluate differences between strains by computing
growth phenotypes on over 500 different nutrients. This
work further bolsters the case for using strain-specific
models of Escherichia to guide future studies to evaluate
growth advantages conferred by unique nutrients to Escheri-
chia strains in different niches [21]. All in all, this study begins
the process of defining the Escherichia genus based on
common metabolic capabilities, and its strains based on
niche-specific growth capabilities.

The results obtained generate new hypotheses related to a
strain’s nutrient niche. Only 7% of strains were predicted to
catabolize the sugar acid D-xylonate as a carbon source.
This may indicate Escherichia strains seldom encounter this
compound. D-xylonate is derived from the hemicellulose
sugar D-xylose and has several industrial applications [22].
Two natural pentitols ribitol and D-arabitol were predicted
to be catabolized by 13% of strains. Thus, strains that catabo-
lize these compounds may be favoured in niches where they
consist as part of the diet. For example, D-arabitol occurs
naturally in certain forms of mushrooms (at up to 9.5% of
dry weight) and ribitol occurs bound to the teichoic acids
and capsules of several Gram-positive bacteria [23].

Another interesting carbon source is D-allose where only
34% of strains were predicted to catabolize this compound.
D-allose is a monosaccharide rarely found in the natural
environment but touted as a potential ultra-low calorie
sweetener [24]. Our results indicate that some strains of
Escherichia may gain a fitness advantage compared to other
strains from catabolism of D-allose and thus further studies
should be performed to evaluate the potential impact to the
microbiome upon ingestion of D-allose. Similarly, tagatose is
another hexose often used as an artificial sweetener. Our
models predicted 39% of the strains were able to catabolize
this compound as a sole carbon source.

Beyond carbon sources, D-ornithine was predicted to sup-
port growth as both a sole nitrogen and carbon source for 8%
of strains. D-ornithine has been detected in cow milk and thus
may form a source of both carbon and nitrogen for strains
present in environments rich in dairy products. Taurine
was predicted to serve as a sole sulfur source for 69% of
strains. Taurine is a major component of bile and has been
detected in the large intestine. It is also a common ingredient
in energy drinks.

The core reactome identified in this study consisted of 1688
reactions, a count slightly smaller (1866) than a recent study
looking solely at E. coli strains [4]. This is probably owing to
the inclusion of other species in the Escherichia genus such as
E. fergusonii and E. albertii. It should also be noted that these
models were built based on a database of metabolic enzymes
present in Gram-negative species. Functional characterization
of enzymes in diverse strains is constantly improving and
thus these models should be viewed as a work in progress.
Furthermore, it is possible that more distantly related species
have orthologous proteins with greater amino acid differences.
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Future work should include a deeper analysis of the orthology
cut-offs used for model construction and should aim to evalu-
ate the sequence-level diversity of functionally similar enzymes
across these more distantly related species.

Minimal gap-filling was performed on these models to
ensure they could grow in M9-minimal media with glucose
as the carbon source. As a result, we expect these models to
faithfully capture the diverse catabolic capabilities of the
different strains. However, strain-specific auxotrophies may
be obfuscated by this gap-filling. Future work could focus
on delineating differences in strain-specific auxotrophy by
limiting gap-filling and evaluating missing ‘black holes’ in
anabolic pathways [25,26]. Because the reconstruction process
is iterative, comparing the model predictions generated here
with experimental growth screens would highlight areas
where the model predictions are incorrect and would guide
further curation and improvements [27].

This work is the first step towards a pan-metabolic recon-
struction of the Escherichia genus. Further literature curation
and experiments will be required. The reconstruction process is
iterative and thus testing of model-predicted phenotypes is
essential. Strain acquisition can be difficult, however collecting
these strains for high-throughput phenotypic screens (e.g.
BioLog [28]) would be useful to improve these models and
guide further curation and validation. A highly curated recon-
struction of Escherichia metabolic capabilities would be a
valuable resource to the community of systems modellers and
those studying Escherichia physiology. It would allow for
deeper elucidation of the genotype to phenotype relationship
across diverse strains of the genus. Furthermore, such a
resource would allow for rapid, high-quality construction of
strain-specificmodels of freshly acquired and sequenced isolates.
3. Material and methods
(a) Strain specific model reconstruction
All genomes were re-annotated using the PROKKA v. 1.12 [29].
Amino acid sequences from E. coli K-12 MG1655 were used for
identifying orthologues following the protocol by Norsigian
et al. [12] using a bi-directional hit cut-off of 70% over at least
70% of the protein length. CARVEME [13] was used to supplement
these reconstructions using a database of Gram-negative meta-
bolic reconstructions (-u gramneg option). The models were
gap-filled using M9 minimal media (-g M9 option). METANETX
[30] was used to standardize metabolites and reactions to the
BiGG (Biochemical Genetic and Genomic knowledgebase) name-
space [31]. All genome sequences were downloaded from
EnteroBase on 11 February 2020.
(b) In silico growth simulations
The COBRApy toolbox v. 0.22.1 [32] was used for all simulations.
Each of the 223 metabolic network reconstructions (including
E. coli K-12 MG1655 model iML1515) were loaded into the
toolbox. M9 minimal media was simulated by setting a lower
bound of −1000 (allowing unlimited uptake) on the exchange
reactions for Ca2+, Cl−, CO2, Co

2+, Cu2+, Fe2+, Fe3+, H+, H2O,
K+, Mg2+, Mn2+, MoO2�

4 , Na+, Ni2+, SeO2�
4 , SeO2

3 and Zn2+. A
lower bound of −0.01 was placed on the cob(I)alamin exchange
reaction. The default carbon source was glucose with a lower
bound of −20, the default nitrogen source was NH4

− with a
lower bound of −1000, the default phosphorus source was
HPO2

4 with a default bound of −1000 and the default sulfur
source was SO2�

4 with a default bound of −1000. To identify
sole growth supporting carbon, nitrogen, phosphorus and
sulfur sources each of these default compounds were removed
from the media (lower bound set to 0) one at a time and different
compounds were added to determine whether they supported
growth. All simulations were performed in aerobic conditions
with O2 added with a lower bound of −20. Nutrient sources
with growth rates above zero were classified as growth support-
ing, while nutrient sources with growth rates of zero were
classified as non-growth supporting. The Gurobi 9.1.2 linear pro-
gramming solver (Gurobi Optimization Inc., Houston, TX) was
used to perform flux-balance analysis.

(c) Heatmap, phylogenetic tree, pan-genome and
principal component analysis figure construction

The pan-genome and core-genome SNP tree was constructed by
calculating the core-genome using PANX [10]. A core-genome
SNP matrix was constructed to build the core-genome phyloge-
netic tree using FASTTREE [33] and RAXML [34]. Genes of the
pan-genome were annotated using EGGNOG v. 5.0 [11]. The
binary results from the growth/no growth simulations for each
strain were used to compute a hierarchical clustering using the
Jaccard method in the seaborn python package. The heat map
was visualized using matplotlib in python. The principal com-
ponent analysis plot was built from predicted growth values
using the scikit-learn implementation [35].

Data accessibility. All data are accessible as part of the electronic sup-
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