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Abstract: T follicular helper (Tfh) cells are a specialised subset of CD4+ T cells that play a significant
role in the adaptive immune response, providing critical help to B cells within the germinal centres
(GC) of secondary lymphoid organs. The B cell receptors of GC B cells undergo multiple rounds
of somatic hypermutation and affinity maturation within the GC response, a process dependent
on cognate interactions with Tfh cells. B cells that receive sufficient help from Tfh cells form
antibody-producing long-lived plasma and memory B cells that provide the basis of decades of
effective and efficient protection and are considered the gold standard in correlates of protection
post-vaccination. However, the T cell response to vaccination has been understudied, and over the
last 10 years, exponential improvements in the technological underpinnings of sampling techniques,
experimental and analytical tools have allowed multidisciplinary characterisation of the role of T cells
and the immune system as a whole. Of particular interest to the field of vaccinology are GCs and Tfh
cells, representing a unique target for improving immunisation strategies. Here, we discuss recent
insights into the unique journey of Tfh cells from thymus to lymph node during differentiation and
their role in the production of high-quality antibody responses as well as their journey back to the
periphery as a population of memory cells. Further, we explore their function in health and disease
and the power of next-generation sequencing techniques to uncover their potential as modulators of
vaccine-induced immunity.

Keywords: T follicular helper cells (Tfh); germinal centre (GC); lymph node (LN); T cell receptor
(TCR); systems biology; scRNA-seq

1. Introduction

The adaptive immune response relies on the orchestration of a complex network of interactions
between antigen, numerous cell types and the signalling and effector molecules they produce. The ability
to generate immunological memory is dependent on T cells, and the diversity of the T cell receptor
(TCR) repertoire plays a significant role in maintaining the delicate balance between the ability to
recognise antigen with extraordinary specificity and the ability to continue detecting an immense
range of potential pathogens. Ideally, T cell responses would always establish sterilising immunity,
but realistically, the obstacles of antigenic variability, pathogen evasion strategies and T cell exhaustion
mean total elimination of the pathogen may not be possible.

Vaccination is undoubtedly one of the most successful interventions for reducing the burden
of infection-related disease on communities, and it is responsible for significant decreases in disease
prevalence, morbidity, and mortality globally [1]. Establishing immune memory to prevent the spread
of pathogens throughout communities is the ultimate goal of vaccination. This is achieved during
the germinal centre (GC) reaction, where the primary function is to establish and maintain memory
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cell populations that can mediate rapid recall responses and prolonged production of antibodies [2].
Of particular interest in the GC reaction are the interactions between Tfh cells and GC B cells and how
the relationship between these cell populations could be leveraged to improve immune responses
to vaccination.

The study of the differentiation and functioning of Tfh cells has demonstrated that dysregulation
in these processes can drive inadequate immune responses and can be linked to autoimmunity. It is
therefore crucial to understand the development and complex functioning of Tfh cells to potentially
prevent or counteract their dysregulation and for generation of rational vaccine design. In this review,
we discuss the differentiation of naïve T cells into fully mature Tfh cells, the complex interactions
between Tfh and B cells in the GC and the role of circulating Tfh (c-Tfh) cells in the periphery during
health and disease. In addition, we discuss the contribution of next-generation sequencing techniques
to our understanding of other immune cell biology and the potential future applications of these
technologies in uncovering insights into Tfh cell responses to infection and vaccination.

2. Role of the T Cell Receptor

The ability to maintain immune homeostasis, control continuous, multiple insults to the immune
system and generate immunological memory is dependent on T cells. Defence against numerous
pathogens, allergens and tumours can be attributed to the generation of a highly diverse repertoire
of TCRs during cell development in the thymus [3,4]. Each T cell possesses a TCR that enables
response to an antigen with extraordinary specificity whilst retaining enough heterogeneity as a
population to support recognition of the immense diversity of antigens. The TCR expressed on a
cell surface also plays a role in self-tolerance, cell lineage and cell fate decisions. Each TCR has
a unique antigen-binding site formed by three complementarity-determining region (CDR) loops,
which engage with the peptide–major histocompatibility complex (pMHC) molecule and determine
the antigen(s) bound to the surface of antigen-presenting cells (APCs) that the T cell will respond
to [5,6]. In addition to the combinatorial diversity achieved through pairing of different variable (V),
diversity (D) and joining (J) genes, the enormous diversity of the TCR repertoire is further enhanced by
the variation in the amino acid sequence at the primary antigen-binding site, termed the CDR3 [7–9].
Although only a small set of genes encode for the TCR, recombination of non-contiguous sequences
and deletion and insertion of nucleotides increase the number of potential TCRs to between 1015 and
1020 clonotypes [10,11]. However, the realistic possible diversity of the repertoire is limited by the
~1012 T cells within the human body [12]. One study utilised high-throughput sequencing to determine
that the thymic repertoire of αβ T cells ranged from 40 to 70 × 106 and 60 to 100 × 106 unique β and α

sequences, respectively [13]. Therefore, the ability of one TCR to recognise and effectively respond to
more than one antigen, a concept termed cross-reactivity, is essential to our ability to mount immune
responses against the large potential diversity of pathogens [14]. Characteristics of the repertoire,
including TCR affinity, TCR avidity, clonality and breadth, all play substantial roles in our ability to
identify and respond to the immense diversity of often highly variable antigens (reviewed in [4]).
Therefore, although it is evident that specificity and diversity can be achieved, the balance between
TCR frequency, cross-reactivity and diversity is essential to optimum immune surveillance.

3. Lymphocyte Development in the Thymus

The stages of differentiation and functional maturation of thymocytes are marked by rearrangement
of the TCR genes, expression of the TCR and expression of cell surface proteins. Interaction with the
thymic stroma initiates commitment to and differentiation along the T cell lineage pathway. The initial
phase of thymocyte differentiation is termed the double-negative (DN) phase due to the absence
of expression of the T cell coreceptors CD4 and CD8 (Figure 1A). Naïve DN1 thymocytes express
Notch, Kit and CD44, but as they progress towards mature thymocytes, surface expression of the
IL-2Rα chain, CD25, is initiated, at which stage they are called DN2 cells [15]. During the DN2 phase,
sustained Notch expression is required for rearrangement of the β-chain locus of the TCR, from the
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Diversity β (Dβ) to the Joining β (Jβ) region, to begin [16]. As expression of CD44 and Kit are reduced,
Vβ to DβJβ rearrangements occur, and cells progress into the DN3 phase [17]. Productive expression
of a rearranged β chain paired with a surrogate pre-T cell receptor α chain to form the pre-T cell
receptor (pre-TCR) is essential to progression through the DN3 phase [18–20]. If cells fail to produce
successful rearrangements of the β locus, they do not progress and eventually undergo apoptosis.
DN3 thymocytes then lose CD25 expression and progress to the final DN phase, DN4, where the
pre-TCR induces ligand-independent dimerisation, causing the cell to begin to proliferate and express
both CD4 and CD8 on their cell surface as cells enter the double-positive phase of differentiation
(Figure 1B) [17].
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Figure 1. T cell differentiation in the thymus. (A) Immature thymocytes in the thymic cortex upregulate
Notch, Kit and CD44 to begin differentiation in double-negative (DN) phase 1. As CD25 expression is
upregulated, thymocytes progress into DN phase 2, where T cell receptor (TCR) β-chain rearrangement
begins. Rearrangement of the β-chain locus of the TCR, from the Diversity β (Dβ) to the Joining β (Jβ)
region, begins, and as expression of CD44 and Kit are reduced, Vβ to DβJβ rearrangements occur and
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cells progress into the DN3 phase. Only cells that successfully produce a reproductive β-chain survive
and progress into DN phase 4, where the β-chain is paired with a surrogate pre-α chain to form the
pre-TCR. (B) During the DN4 phase, expression of CD4 and CD8 are triggered, progressing cells
into the double-positive (DP) phase of differentiation. It is here that α-chain rearrangement begins,
and recombination of Vα to Jα gene segments continues until cell death or positive selection occurs.
During the DP phase, cells produce a functional TCR and undergo positive selection so that ultimately
only functionally competent and self-tolerant cells remain. (C) Thymocytes then migrate into the
thymic medulla, where downregulation of Notch and either CD4 or CD8 occurs. This is the final phase
of differentiation, termed the single-positive phase, where naïve T cells expressing either CD4 or CD8
and a functional TCR can exit the thymus and traffic to the periphery (created with BioRender.com).

Primary and secondary recombination of Vα to Jα gene segments occurs during this
double-positive phase, estimated to take an average of five rounds of recombination per allele
until positive selection or cell death occurs [21–23]. During this double-positive phase, thymocytes
undergo positive selection, where ~98% of thymocytes are eliminated [24,25]. Negative selection in the
thymic medulla ensures that T cells with high self-pMHC reactivity undergo apoptosis, eliminating risk
of autoimmunity [26,27]. Paradoxically, weak self-pMHC recognition is a requirement for development
of self-tolerance in the thymic cortex and ultimately T cell survival [28]. T cells with low self-pMHC
recognition are rescued, and T cells with no affinity of self-pMHC undergo apoptosis, a process termed
positive selection [29]. The remaining ~2% of thymocytes selected as both functionally competent and
self-tolerant progress to the final stages of differentiation, downregulating either CD4 or CD8 and
becoming single-positive T cells that exit the thymus as naïve T cells (Figure 1C). Naïve T cells migrate
to the periphery and subsequently traffic to lymphoid tissues throughout the body.

4. T Cell Entry into the Lymph Nodes

Lymphocyte trafficking and entry into the lymph nodes (LN) is made possible by an extensive
network of lymphatic capillaries and vessels that infiltrate tissues within the body [30]. Lymphocytes
contained in the lymph drain from interstitial spaces into the afferent lymphatic vessels (LVs),
where their migration into the draining LN is mediated by interactions of C-C motif chemokine
ligand 21 (CCL21) expression on vessels and C-C chemokine receptor type 7 (CCR7) expressed on
T cells [31,32]. Lymphatic endothelial cells that line the LVs secrete sphingosine 1-phosphate (S1P),
which contributes to T cell LN migration via S1P receptor 1 binding [33–35]. In contrast, lymphocytes in
the blood drain into LNs via high endothelial venules (HEVs), a process initiated by CD62L (L-selectin),
which facilitates rolling and tethering of lymphocytes to the walls of venules [36]. Further, migration
of naïve T cells through HEVs is mediated by a complex adhesion cascade facilitated by interaction
between CCL21 and CCR7 [37]. Once inside the LN, the fibroblastic reticular cell (FRC) network
creates a scaffold-like architecture and a CCL21 gradient that influences dendritic cells (DCs) and T
cells intranodal positioning and migration through the LN [38,39].

5. Tfh Cell Migration through the Lymph Nodes

The structural components and major cell migration pathways are schematically summarised
in Figure 2. Lymph and its cellular components traffic through the subcapsular sinus and medullary
sinuses of lymph nodes. Here, T cells survey subcapsular macrophages and dendritic cells in the T cell
zone for cognate antigen (Figure 2), which, if found, will promote entry into the LN parenchyma [40].
Solubility and size of an antigen can impact the stimulation process as different size/forms of antigen,
such as soluble or particulate, are directed to different microanatomical sites within the LN (reviewed
in [41]). For example, soluble antigens are taken up and sequestered by lymphatic endothelial
cells. Antigens of low molecular weight are channelled via the conduit system surrounded by FRCs,
ultimately delivering antigens to follicular DCs in the B cell follicle, allowing cognate B cell sampling
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of antigen [42,43]. Immune complexes and particles traverse the subcapsular sinus via help from
subcapsular macrophages, where they then interact with FDCs and B cells [40,44]. If a cognate antigen
is not identified via TCR–pMHC-II interactions, T cells will transmigrate to the medullary sinuses
and exit the LN via the efferent LVs [45]. The innermost section of the LN, termed the medulla, is the
site where the positioning of DCs determines interaction with antigen and subsequent contact with
T cells [46]. Once T cells have encountered antigen, migration towards the paracortex or the T cell zone
begins, and CCR7 expression is downregulated, accompanied by C-X-C chemokine receptor 5 (CXCR5)
upregulation (Figure 2) [47]. This promotes homing to the B cell follicle of the LN cortex, formation
of the GC and differentiation of Tfh and GC B cells. Following stimulation, memory cells formed
during the GC reaction home to particular sites within the lymph node, where they await reactivation.
One such population is memory Tfh cells, which preferentially migrate to the T–B cell border in
the LN cortex via upregulation of CXCR5 [48]. It is here that, upon reactivation, these long-lived
memory Tfh cells provide help to B cells, and a subset further differentiate into effector Tfh cells by
Bcl6 upregulation [48]. Importantly, the lymphatic flow of the subcapsular sinus plays an essential
role in secondary immune responses as an efficient transport mechanism for follicular memory T cells
to migrate out of the GC and survey APCs, enabling proliferation and necessary rapid responses to
antigen re-encounter [49].
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Figure 2. Tfh circulation in the lymph node (LN). Naïve T cells enter the LN either through afferent
lymphatic vessels, or from the blood via the high endothelial venules (HEV). A complex adhesion
cascade driven by interactions of CCR7 and CCL21 facilitate naïve T cell migration through the medulla
and to the paracortex (T cell zone). Here, dendritic cells (DCs) prime naïve T cells, resulting in CCR7
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downregulation and CXCR5 upregulation. CXCR5 expression promotes Tfh cell differentiation and
migration to the border of the B cell follicle via a CXCL13 gradient. It is here, at the T–B cell border,
that cognate interactions involving critical signalling through ICOS/ICOSL, CD40L/CD40, TCR/MHC-II
and SAP/SLAM support further Tfh cell polarisation and differentiation, B cell help and germinal
centre (GC) formation. The GC reaction begins with Tfh and B cell interactions, where B cells will
either differentiate into short-lived antigen-secreting cells or enter the GC dark zone (DZ) to undergo
multiple rounds of somatic hypermutation (SHM), selection and proliferation. B cells then exit the DZ
and migrate into the light zone (LZ) of the GC, where they compete for antigen presented by follicular
dendritic cells (FDC). Tfh cells then selectively provide help to B cells possessing high-affinity B cell
receptors (BCRs). After these Tfh–B cell interactions, B cells either differentiate into memory B cells,
differentiate into long-lived plasma cells or re-enter the DZ for further rounds of SHM and selection
(created with BioRender.com).

6. T Cell Egress from the Lymph Node

Similar to the role of S1P in the recruitment and trafficking of cells into the LN, a S1P gradient
created by low concentrations in the LN and high concentrations in the lymph causes the transmigration
of T cells into the lymphatic sinuses and exit via the efferent LVs [50]. The major homeostatic cellular
component of efferent lymph is CD4+ T cells; however, antigen presence and stimulation have been
shown to influence efferent lymph composition. Following antigen stimulation, the LN will undergo
three transitory states until returning to homeostasis. Initially, lymphocyte output is decreased as the
LN enters quiescence. This is followed by an intermediary increase in lymphocyte levels to above
resting levels in the lymph and finally an ultimate reduction in lymphocyte output to homeostatic
levels [51].

7. Stages of Tfh Cell Differentiation

Tfh cell differentiation is a multistage and complex process involving many signalling
pathways [52]. Unlike the differentiation pathways of other specialised CD4+ T cells, Tfh cell
differentiation accommodates significant heterogeneity within the population [53]. Initially, naïve CD4+

T cells are primed by DCs in the T cell area of the LN, resulting in downregulation of CCR7 and increased
expression of CXCR5, which is essential for Tfh cell homing to the B cell follicle (Table 1) [54–56].
It has been shown that during this early phase of Tfh differentiation, interleukin (IL)-6-mediated
induction of the transcription factors signal transducer and activator of transcription (STAT) 1 and
STAT3 is required for Bcl6 induction and downregulation of the IL-2Rα, respectively, limiting Th1
differentiation and promoting Tfh differentiation [57–59]. IL-21-dependent expression of inducible
costimulator ligand (ICOSL) by B cells and its essential interactions with ICOS are well established
as regulators of humoral immunity [60]; however, IL-21 can also regulate Tfh differentiation through
the transcription factor c-Maf [61]. Regulation of the expression of cytokines, including IL-21 and IL4,
that promote B cell and Tfh cell differentiation and proliferation is the major role of c-Maf expressed by
Tfh cells [62,63]. Interestingly, dendritic cell production of IL-12 induces sustained expression of ICOS
and has been demonstrated to be essential for early expression of, and closely correlated to, levels of
CXCR5 expression [64–66]. Upregulation of CXCR5 is accompanied by downregulation of CCR7 and
the transcription factor Blimp-1, mediated by upregulation of KLF2 [67,68]. Also critical to cell fate
and function is higher TCR affinity, resulting in longer TCR–MHC-II dwell time [69–71]. Immature Tfh
cells subsequently follow a gradient of CXCL13, the chemokine ligand for CXCR5, to migrate towards
the T–B cell border [72,73]. This is where they interact with B cells and commit to the Tfh lineage.

The later phases of Tfh differentiation highlight the symbiotic relationship between Tfh cells and
B cells, which are essential to the survival of maturing Tfh cells, providing additional signals aiding in
the maintenance of Bcl6 expression and their development into functional B cell helpers. The T–B cell
border within the LN is an important site where signalling between signalling lymphocytic activation
molecule (SLAM) family receptors expressed on T and B cells occurs [74]. Interactions between SLAM
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expressed on B cells and SLAM-associated protein (SAP) expressed on T cells are necessary for forming
stable T–B cell conjugates [75]. Signalling interactions between CD40L expressed by Tfh cells and
CD40 expressed on B cells are essential to the formation and maintenance of GCs as well as promoting
class switching of antibodies, inhibiting plasma cell differentiation and providing crucial GC B cell
survival signals [76–79]. Therefore, both GC formation and T cell-dependent antibody responses are
contingent on these interactions [74,75]. Furthermore, studies have demonstrated that for persistent
T cell migration to the T–B cell border, normal Tfh cell development and optimal germinal centre
responses as well as engagement of ICOS via ICOSL on follicular bystander B cells is essential [80].
Blockade of ICOSL function ultimately results in Tfh cell and GC formation inhibition [64,81]. This is
further supported by findings that signalling via ICOS promotes the expansion of Tfh cell populations
and overexpression results in spontaneous Tfh cell and GC development [82,83]. Deenick and
colleagues (2010) suggested that Tfh cell development is more heavily influenced by the role of
ICOS/ICOSL interactions in the positioning of B cells to provide plentiful sources of antigen rather
than co-stimulation [84]. Therefore, ICOS/ICOSL interactions play an important role in T and B cell
positioning within the follicle as well as co-stimulation.

Full differentiation of Tfh cells occurs within the GC, the site where their primary role in the
development of an immune response is performed [52,85]. GC Tfh cells are characterised by their
high expression of CXCR5 and low CCR7, high ICOS, high PD-1 and high IL-21 expression [86].
In addition, SAP is highly expressed on GC Tfh, where it is essential in sustaining long-lasting T–B
cell adhesion [87,88]. SAP plays a critical role in preventing robust inhibitory signalling through
SLAMF6 by outcompeting Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1)
binding [89]. When SAP is bound to SLAMF6, adhesion and development of Tfh cell and B cell
responses are supported [90,91]. The importance of these interactions is supported by the observations
of severely reduced humoral immunity in X-linked lymphoproliferative patients caused by mutations
in the gene SH2DLA that encodes SAP [92–94].

During the primary immune response, Tfh cells were found to locate to two anatomically distinct
compartments of the LN, the follicle mantle (FM) and the GC, within the cortex [95]. FM Tfh and GC Tfh
were found to not only be spatially separated but also represented molecularly distinct subpopulations
with little migratory crossover [95]. GC Tfh cells expressed higher levels of genes associated with
Tfh cell differentiation and proliferation and B cell class switching [95]. FM Tfh cells expressed high
amounts of genes associated with temporospatial guidance, cell adhesion and immune regulation [95].
Interestingly, the GC has been described as an open structure in secondary immune responses [86],
where migration of Tfh cells between neighbouring GCs and the FM demonstrated a heterogeneous
distribution of these subpopulations and therefore greater diversity of Tfh cell help [95], hypothesised
to ultimately improve recall responses. Finally, the migration of Tfh into the subcapsular sinus to
survey APCs provides an opportunity for antigen-experienced Tfh to egress from the LN and enter
circulation, contributing to the c-Tfh cell population.
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Table 1. Key Tfh cell receptors and ligands.

Receptor
/Ligand

Corresponding
Gene

Reciprocal
Receptor/Ligand Function

CCR7 CCR7 CCL21 Promotes naïve T cell homing to the T cell zone
(paracortex) of the LN [31,47,54,56].

CXCR5 CXCR5 CXCL13 Essential for T and B cell homing to the B cell follicle,
within the cortex of the LN [55,72,73].

Bcl6 BCL6 -
Master transcription factor for Tfh cell lineage.

Limits Th1 differentiation through Blimp-1 pathway
and supports Tfh cell differentiation [96].

IL-21 IL21 IL-21R

Regulates ICOSL expression on B cells essential for
Tfh and B cell interactions through ICOS/ICOSL

signalling [60].
Regulates Tfh differentiation through c-Maf

promotion of IL-21 production [61].

ICOS ICOS ICOSL

Interacts with ICOSL expressed on B cells,
influencing Tfh and B cell positioning within

the LN [84].
Necessary for persistent T cell migration to the T–B
cell border of the B cell follicle and optimal germinal

centre responses [80].

TCR - MCH-II

T cell receptor that binds with
peptide–MHC-II complexes.

Higher TCR affinity results in longer TCR–MHC-II
interactions, ultimately influencing cell fate

decisions [69–71].

SAP SH2D1A SLAMF6 and SLAMF5

Necessary for forming stable T–B cell conjugates via
SLAMF6 binding within the GC [75].

Supports Tfh cell adhesion and development and B
cell responses when bound to SLAMF6 [90,91].
Essential for optimal GC responses by SLAMF5

binding [88].

CD40L CD40LG CD40
Essential for formation and maintenance of the GC,

promotes antibody class switching and provides
crucial survival signals to GC B cells [76–79].

EBI2 GPR183 7α,25-dihydroxycholesterol
(7α,25-OHC)

Involved in temporospatial guidance of B cells and
Tfh cells through the LN follicle mantle and GC [95].

S1PR1 S1PR1 S1P

Binds to S1P secreted by lymphatic vessels,
facilitating T cell migration into the LN [33–35].
High concentrations of S1P in efferent lymph

promotes Tfh cell egress from the LN via S1PR1
binding [50].

S1PR2 S1PR2 S1P
Involved in guidance and retention of Tfh cells
within the GC via repelling them from S1P-rich

lymph [95].

CD62L SELL GlyCAM-1 Facilitates adhesion and rolling of T cells along high
endothelial venules as they migrate into the LN [36].

8. The GC Response and Tfh Cell Function in the Immune Response

Effective humoral immunity is often mediated by sterilising or broadly neutralising antibodies
(bAbs), which are produced by memory B cells during the germinal centre reaction [97,98]. The GC
forms when antigen is presented by DCs, promoting differentiation and expansion of Tfh cells. GCs are
also the site where activated B cells capture and process antigen for presentation on MHC class II
complexes [99]. After Tfh cells recognise cognate peptide, further CD4+ T cell differentiation into Tfh
cells and B cell differentiation is re-enforced and promoted [100]. Once these initial T–B cell interactions
occur, B cells will either differentiate into short-lived antibody-secreting cells (ASCs), or they will
enter the GC reaction and undergo further rounds of selection, differentiation and proliferation [97]
(Figure 2).
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The GC comprises two functionally distinct compartments (Figure 2): the light zone (LZ) and
the dark zone (DZ). In the DZ, B cells undergo multiple iterations of proliferation and somatic
hypermutation to produce a heterogeneous B cell population with diverse B cell receptor (BCR)
sequences [101]. B cells then exit the DZ and migrate into the LZ, where they compete for antigen
bound to the surface of DCs [102,103]. Here, Tfh cells selectively provide help to B cells with high-affinity
BCRs due to their ability to internalise and therefore present more antigen to Tfh cells [104–106].
After interacting with Tfh cells in the LZ, B cells have three potential fates: (1) differentiate into memory
B cells and exit the GC [107], (2) differentiate into long-lived plasma cells and thus exit the GC [108],
or (3) re-enter the DZ for further rounds of somatic hypermutation and selection [109]. Many studies
have reported this bidirectional movement of B cells between LZ and DZ within the GC [110,111] and
suggest that the strength of the interaction between Tfh cells and B cells directly determines B cell
fate [97,112]. Interestingly, one study has reported that the proportion of Tfh cell help provided to
GC B cells directly translates to the degree of mutations in the B cell receptor, and thus the number
of cell divisions, that a given GC B cell will undergo in a single round of selection [113]. Therefore,
the GC reaction, preferential support of high-affinity B cells and subsequent production of diverse B
cell repertoires are all dependent on help from Tfh cells, although perhaps not to an equal degree as
antigen, ultimately impacting on the quality of the immune response.

9. Utilisation of c-Tfh Cells to Study Disease States

Tfh cells are empirically defined by their ability to migrate into the GC of secondary lymphoid
tissue and the aid they provide to B cells within these anatomically protected sites during the immune
response. This establishes an inherent, yet significant, obstacle to studying their role in host responses
to infection, vaccination and autoimmunity. Coupled with confounding ethical concerns with accessing
healthy human lymph nodes, many studies have utilised animal models, human tonsillar tissue or a
circulating, phenotypically similar counterpart, c-Tfh, to highlight the importance of Tfh cell assistance
and functioning in the generation of effective immunity. Several studies have utilised CD4+ CXCR5+

ICOS+ c-Tfh as a surrogate biomarker of humoral immunity under the hypothesis that these cells are
memory Tfh that egress from the LN following antigen encounter. This hypothesis has been supported
by the detection of tetanus-toxoid-specific c-Tfh cells in peripheral blood even years after receiving
booster vaccination [114]. Importantly, more recent studies have established the clonal relationship
between GC Tfh and their memory c-Tfh counterparts by TCR repertoire sequencing of matched
human blood and tonsillar samples [115,116]. Perhaps the most definitive evidence that GC Tfh exit
the LN and enter the periphery to form c-Tfh was provided by an interesting study that demonstrated
efferent lymph collected from the thoracic duct in humans was enriched for Tfh cells, and treatment
with the S1PR1 modulator, fingolimod (FTY720), prevented LN egress and reduced c-Tfh cell numbers
and frequency in peripheral blood [117].

Aberrant Tfh cell development and functioning can drive autoimmunity and have been linked
with inadequate immune responses [118,119]. However, due to the difficulty accessing bona fide GC
Tfh, the use of c-Tfh as a surrogate biomarker has become standard across studies of autoimmunity,
immunodeficiencies, allergy and malignancies. In the case of systemic lupus erythematosus (SLE),
increases in the frequency of activated c-Tfh positively correlated with serum autoantibody titres
and disease severity [120–123]. Furthermore, elegant studies performed in mice demonstrated
that excessive Tfh cell responses and subsequent GC formation were sufficient to cause lupus-like
autoimmunity [124,125].

Tfh cell dysregulation leading to impaired B cell responses and ultimately humoral immune
responses have also been reported in human immunodeficiency virus/simian immunodeficiency virus
(HIV/SIV) [126]. Studies have shown that expanded Tfh cell populations harbour higher levels of HIV
or SIV DNA compared to other CD4+ T cell subsets, can effectively support productive HIV infection
and form a major viral reservoir [127–129]. Additionally, expansion of HIV-specific GC Tfh cells and
c-Tfh cells have been observed in chronic infection and are associated with increased IL-21 secretion and
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polyclonal hypergammaglobulinemia [130]. HIV-specific c-Tfh demonstrated a Th-1-like phenotype
and functionality, which had a significant positive association with the size of the translation-competent
viral reservoir [131]. Interestingly, Th-1-like c-Tfh have been shown to largely lack the ability to help
naïve or memory B cells [132]. Conversely, IL-21-producing c-Tfh were observed to have greater helper
capacity to induce B cell maturation and class switching in HIV elite controllers and were associated
with antigen-specific B cells in HIV progressors [133]. However, significant impairment of c-Tfh cell
functioning in chronic HIV infection leads to reduced B cell responses, a phenomenon mirrored in
secondary lymphoid organs [134,135].

The presence of Tfh is required for IgE production and development of an allergic response [136,137].
Increased numbers of c-Tfh were observed in atopic dermatitis patients, which correlated with activated
memory B cells, IgE production and disease severity [138,139]. In allergic rhinitis and asthma, levels
of c-Tfh cells with a Tfh2 phenotype are also elevated, correlating with total IgE levels and therefore
contributing to a pro-inflammatory milieu in the latter [140]. Further supporting the role of Tfh
in allergy, mice with a mutated IL-6R were unable to expand Tfh cell populations, resulting in
significantly reduced IgG1 and IgE responses to house dust mite sensitisation when compared to
wild-type mice [141]. Therefore, it is evident that the accumulation of c-Tfh has been linked to increased
IgE production and proallergic function. Interestingly, these results demonstrate that Tfh dysregulation
can lead to impaired B cell responses and humoral immunity across many pathological modalities.

10. Role of Tfh Cells in Vaccination

Multiple studies have demonstrated the emergence of a transient population of PD-1+ICOS+

c-Tfh cells following vaccination with inactivated influenza vaccine [142–145]. Inactivated influenza
vaccine-induced c-Tfh cells were phenotypically similar to their GC counterparts, expressing various
activation markers, including PD-1, CD38, ICOS and Ki67 [143,144,146]. Levels of c-Tfh cells correlated
with increased Ab serum titres and presence of ASCs and corresponded to peak GC responses in
mice and plasmablast response in humans [142–145,147]. Subsequent studies also demonstrated
a positive correlation between activated c-Tfh and an increased affinity of inactivated influenza
vaccine-induced Abs and magnitude of memory B cell responses [145,148]. c-Tfh occurrence correlated
with active Tfh cell differentiation in secondary lymphoid organs of mice [147], which was mirrored
in a vaccination study with an MF59-adjuvanted inactivated H5N1 vaccine [149] and supported
by observations of an association between diminished c-Tfh and reduction in vaccine-specific Ab
levels in serum of older people in response to vaccination [150]. Secondary immunisation elicited a
predominantly plasmablast response, with the induction of few secondary GC responses in mice [151]
and in rhesus macaques, although this is potentially attributable to the short interval between
immunisations [152]. Further, rhesus macaques that produced higher levels of neutralising Abs had
larger GC responses, and antigen-specific CD4+ T cells isolated from peripheral blood were enriched
for Tfh-associated genes, including IL-21, ICOS and CD40L [152]. In a subsequent study, GC B cell
and antigen-specific CD4+ T cell numbers in the draining LN increased significantly by day 7 post
primary vaccination, and this response was 10-fold larger when immunised subcutaneously compared
to intramuscularly [153]. However, there was no significant difference in serum IgG titres between the
two immunisation protocols, suggesting the magnitude of response may not be directly proportionate
to quality of response.

Two critical studies in Tfh cell immunology were published in 2017 that utilised TCR β chain
repertoire sequencing to characterise the c-Tfh response to vaccination and establish the clonal
relationship to GC Tfh [116,143]. The initial clonal-activated c-Tfh cell response correlated with
plasmablast responses and vaccine-specific serum IgG. This was observed following successive
seasonal influenza vaccinations and was clonally related to tonsillar GC Tfh [116,143]. Interestingly,
between vaccinations, these c-Tfh clones were found in the “inactivated” c-Tfh repertoire and were
seen to expand into activated c-Tfh upon antigen re-encounter [143]. These observations were mirrored
in an antigen-specific c-Tfh population [116]. A subsequent study observed a transcriptional and
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clonal relationship between c-Tfh and lymph node GC Tfh [154]. Interestingly, they demonstrated
that the combination adjuvant glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE) promoted
the emergence of public TCR β sequences as well as long-lived Ab responses [154]. Further to
establishing that GC Tfh and c-Tfh are clonally convergent, it has been shown that although circulating
non-Tfh cells share few TCR β clones with GC Tfh, they are clonally distinct from c-Tfh cells [115].
A population of Tfh cells isolated from human thoracic duct lymph were shown to be phenotypically
and transcriptionally similar to GC Tfh [117]. Utilisation of next-generation sequencing by these recent
studies have allowed critical analysis of c-Tfh cell kinetics in response to vaccination but also validation
of the hypothesis that c-Tfh cells represent a circulating memory pool critical in aiding B cells during
immune responses.

11. The Future Role of Systems Biology Approaches in Characterising Tfh Cells

Next-generation sequencing technologies have played an increasingly important role in
understanding Tfh cell biology in recent years [115–117,143,154] by enabling researchers to obtain data
sets that are sufficiently representative of immune cell populations. Moreover, the recent progress
that has been made using such technologies to characterise other immune cell populations and their
responses to infection and vaccination indicate strong potential for gaining similar insights for Tfh
cells from future studies.

High-throughput sequencing technologies allow for the large-scale “bulk” sequencing required to
capture data for large and/or highly diverse populations of cells. Investigations of the enormously
diverse immune receptor repertoires of T cells and B cells have flourished with this technology,
yielding valuable immunological insights. For example, the immune receptor repertoires of cells
involved in responses to infection or vaccination to pathogens such as Cytomegalovirus (CMV),
Epstein-Barr Virus (EBV), Tuberculosis (TB) and influenza have been well characterised, enabling the
identification of immune receptor “signatures” in T cells [155–157] and B cells [158]. Furthermore,
it has been demonstrated that such features may allow prediction of the antigen specificity of cells
using machine learning approaches [155–157]. Bulk TCR repertoire sequencing has also revealed broad
heterogeneity of CD4+ T cell functionality in response to microbial infection and vaccination [159],
and transcriptomics have demonstrated that T cells defined as the same clone by their TCR sequence
can represent phenotypically distinct subsets [160]. Another application of TCR deep sequencing is as
a predictor of disease outcome or state (reviewed in [161]); for example, TCRβ oligoclonality is linked
to clinical relapse in juvenile idiopathic arthritis [162], and EBV-cross-reactive TCR clonotypes are
enriched in cerebrospinal fluid from multiple sclerosis patients [163].

Single-cell sequencing technologies have also experienced rapid development and growth
in application to immunological studies, with increasing capability to generate multi-omic data
by measuring the proteome, genome, transcriptome, methylome and spatial expression of single
cells [164]. Single-cell RNA sequencing (scRNA-seq) techniques have, to date, been the most popular
and have been deployed to analyse the network of cell types, the cytokines and chemokines they
produce, their transcriptomic profiles and their involvement in complex immune responses [165].
Explorations of immune responses to vaccination have provided valuable insights by assessing for
proteomic and transcriptomic predictors of improved vaccination response. Notably, researchers
have identified certain gene expression profiles, including the B cell growth factor tumour necrosis
factor receptor superfamily member 17 (TNFRS17) and eukaryotic translation factor 2 alpha kinase
4, that respectively predicted neutralising antibody titres and antigen-specific CD8 T cell responses
to yellow fever vaccination [166]. Similar utilisation of systems biology has been applied to groups
of interest, such as older adults, where one study validated the identification of genes, including
CAMK4, previously associated with influenza vaccine responses [167]. New genes of interest that were
not previously associated with responses to influenza vaccination and previously uncharacterised
genes were also linked to vaccine-induced immunity [167]. Gene signatures identified as possible
regulators of vaccine-induced immunity have been described across successive years and multiple
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cell populations post influenza vaccination [168–170], measles vaccination [171] and meningococcal
vaccination [172]. The use of single-cell RNA-seq enabled identification of molecular signatures that
underpin relationships between Th1 and Tfh cells and showed each cell population differentiated from
a highly proliferative single precursor cell during malaria infection in mice [173].

Despite the incredible contribution of next-generation sequencing techniques to the understanding
of immune responses to infection and vaccination, the discovery of new relationships between cell types
and the identification of correlates of protection, there are a number of challenges associated with these
technologies [165]. Thus, ongoing development of innovative experimental technologies is focussed
not only on increasing throughput and resolution and decreasing costs but also on improving data
quality and reproducibility. Also crucial to addressing these challenges is the development of novel
computational methods to process, analyse and interpret experimental data. Computational methods
utilising machine learning and artificial intelligence approaches is another rapid-growth research
area with enormous implications for improving predictive power and developing integrated models
of immune responses to infection. Such studies rely on application of these methods to large-scale
data sets and thus greatly benefit from recent growth in the number and size of data repositories that
facilitate sharing of data. Collectively, these technological advances, coupled with increasing research
resources, are allowing researchers to pursue systems biology approaches that are expected to lead to a
better understanding of not only Tfh cells but the complex immune system as a whole and how it may
best be manipulated to achieve positive health outcomes.

12. Concluding Remarks

Over the past decade, great efforts to characterise the roles and responsibilities of Tfh cells in
immunity and infection have yielded interesting and powerful insights, establishing them as key
players in immune responses to vaccination in both secondary lymphoid organs and in the periphery
and as potential correlates of protection. Despite these significant advances in understanding of the
role of Tfh cells in health and immunity, particularly in the field of vaccinology, there are still areas
to be explored. Validation of the clonal relationship present between the two hugely heterogeneous
populations of cTfh and secondary lymphoid organ (SLO)-derived Tfh is essential to the utilisation
of cTfh as a surrogate biomarker in future studies. Could the adoption of scRNA-seq technologies
provide powerful insight into the transcriptional factors and signalling pathways that regulate T cell
egress from the LN and contribute to our understanding of the relationship between LN Tfh and their
circulating counterparts? Ultimately, validation of a clonal relationship will address significant ethical
and practical obstacles in accessing and studying SLO-derived Tfh. Given the substantial heterogeneity
within the Tfh population, is it possible to identify subpopulations with greater helper functionality or
certain gene expression profiles that could be leveraged to improve immune responses to vaccination?
Are the Tfh cell responses studied using vaccination as a model truly indicative of their role during the
course of natural infection? Finally, there remains a unique opportunity to harness emerging tools to
characterise the Tfh cell response to vaccination on a transcriptomic and proteomic level. The ability to
identify gene signatures associated with improved vaccine-induced immunity in Tfh cells could be a
very powerful tool in rational vaccine design.
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