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BACKGROUND: Continuous electroencephalogram monitoring is associated 
with lower mortality in critically ill patients; however, it is underused due to the 
resource-intensive nature of manually interpreting prolonged streams of contin-
uous electroencephalogram data. Here, we present a novel real-time, machine 
learning–based alerting and monitoring system for epilepsy and seizures that dra-
matically reduces the amount of manual electroencephalogram review.

METHODS: We developed a custom data reduction algorithm using a random 
forest and deployed it within an online cloud-based platform, which streams data 
and communicates interactively with caregivers via a web interface to display al-
gorithm results. We developed real-time, machine learning–based alerting and 
monitoring system for epilepsy and seizures on continuous electroencephalogram 
recordings from 77 patients undergoing routine scalp ICU electroencephalogram 
monitoring and tested it on an additional 20 patients.

RESULTS AND CONCLUSIONS: We achieved a mean seizure sensitivity of 
84% in cross-validation and 85% in testing, as well as a mean specificity of 
83% in cross-validation and 86% in testing, corresponding to a high level of 
data reduction. This study validates a platform for machine learning–assisted 
continuous electroencephalogram analysis and represents a meaningful step 
toward improving utility and decreasing cost of continuous electroencephalo-
gram monitoring. We also make our high-quality annotated dataset of 97 ICU 
continuous electroencephalogram recordings public for others to validate and 
improve upon our methods.

KEY WORDS: critical care; electroencephalography; epilepsy; machine learning; 
seizures; software

Continuous electroencephalogram (cEEG) monitoring is an impor-
tant tool in the ICU for assessing cerebral electrical activity (1) and 
detecting seizures; however, significant challenges limit its utility as a 

real-time monitor and hamper more widespread implementation. Continuous 
electroencephalogram is the test of choice for detecting nonconvulsive seizures 
including status epilepticus which, in critically ill patients, are both prevalent 
and associated with mortality (2). Prompt recognition of nonconvulsive sei-
zures is challenging, as data review requires manual interpretation by trained 
experts, such as physicians or electroencephalogram technologists (3). In 
addition, demand for cEEG monitoring often fluctuates widely (in our hos-
pital system ranging from one to over 20 cEEG patients monitored at any given 
time), making staffing challenging and costly (4). Even when such staff are in 
place, they are limited in the number of patients they are able to monitor due 
to labor-intensive demands for maintaining the quality of scalp recordings 
and rapidly interpreting recordings. At many institutions, cEEG is often read 

John M. Bernabei, BSE1,2

Olaoluwa Owoputi, BSE1,2

Shyon D. Small, BS1,2

Nathaniel T. Nyema, BS1,2

Elom Dumenyo, BS1,2

Joongwon Kim1,2

Steven N. Baldassano, MD, PhD1,2

Christopher Painter, MS1,2

Erin C. Conrad, MD3

Taneeta M. Ganguly, MD3

Ramani Balu, MD, PhD3

Kathryn A. Davis, MD2,3

Joshua M. Levine, MD3

Jay Pathmanathan, MD, PhD3

Brian Litt, MD1–4

A Full-Stack Application for Detecting Seizures 
and Reducing Data During Continuous 
Electroencephalogram Monitoring

METHODOLOGY

LWW

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bernabei et al

2          www.ccejournal.org	 July 2021 • Volume 3 • Number 7

at scheduled intervals, usually 8–12 hours, which can 
lead to significant delays in identification of critical 
events. Automated systems for evaluating cEEG in real 
time have the potential to recognize actionable events, 
such as seizures, much more quickly than manual in-
terpretation and at a lower cost per patient, which 
could expand the use of cEEG in both resource-rich 
and resource-poor healthcare settings (5).

Visual quantitative electroencephalogram (qEEG) 
methods have been deployed to reduce the time and 
cost associated with manual electroencephalogram in-
terpretation (6, 7). The most commonly used qEEG 
techniques offer near real-time analysis, displaying 
compressed metrics derived from amplitude and fre-
quency. Changes in these variables can be used to de-
tect seizures and cortical ischemia. However, although 
qEEG may significantly reduce review time by the cli-
nician, sensitivity for identifying seizures remains low 
(51–67%) (6). Despite its advantages over inspection of 
raw waveform data, visual qEEG still requires special-
ized training and inspection of the entire recording, al-
beit in a compressed format.

As an alternative to visual qEEG, there are several 
algorithms for detecting seizures in scalp electroen-
cephalogram. The most widespread is the "Reveal" al-
gorithm from Persyst (Solana Beach, CA), which has a 
reported clinical sensitivity of 76% with a false-positive 
rate of 0.11/hr (8), although subsequent studies have 
shown a significantly higher false-positive rate (9). 
This level of performance leads to a significant propor-
tion of seizures being missed, as well as a high false 
alarm burden. Other “nonpatient-specific” algorithms 
have been reported to perform better than Persyst but 
were either studied in epilepsy patients with stere-
otyped seizures (10) or tested on a carefully curated 
and cleaned dataset. Patient-specific algorithms have 
the highest level of performance (11) but require clini-
cians to mark training data for each individual, which, 
depending on the time to the first event, renders these 
approaches less practical for deploying rapidly in an 
ICU. There is a clear clinical need for nonpatient-spe-
cific seizure detection algorithms that are highly sen-
sitive and specific, even when applied to artifact-laden 
heterogeneous data of the sort typically obtained from 
ICU electroencephalogram. There is also a need for a 
gold standard, widely available cEEG data set and ob-
jective performance criteria for seizure detection algo-
rithms that can be used by experts and the Food and 

Drug Administration for benchmarking cEEG analysis 
tools, similar to what our group has done for bench-
marking seizure detection algorithms for intracranial 
electroencephalogram (12).

In this study, we introduce a novel framework for 
semiautomated cEEG analysis and data reduction de-
veloped using data collected in the ICU. We share our 
source code and unique dataset, so that others may 
improve upon our results and methods. Rather than 
designing an algorithm to replace clinical cEEG re-
view entirely, we use machine learning to perform 
data reduction with the intent of increasing the speed 
and decreasing the cost required to accurately evaluate 
cEEG data for the presence of seizures. Furthermore, 
our framework includes a data streaming portal that 
provides simplified yet detailed data to expedite treat-
ment decisions or guide further electroencephalogram 
review. We aim to establish a path for easy translation 
of our methods to clinical care, regardless of electro-
encephalogram hardware, in a way that will permit 
increased penetration of cEEG monitoring in hospitals 
worldwide.

MATERIALS AND METHODS

Our retrospective dataset consists of 97 patients who 
were treated in ICUs at University of Pennsylvania 
Health System and who underwent cEEG monitor-
ing between 2017 and 2020. To develop our algorithm, 
we used cEEG recordings from 27 randomly selected 
patients with discrete seizures and 50 recordings from 
consecutive patients without seizures. We also used a 
completely unseen test set of 10 patients with seizures 
and 10 seizure-free patients collected after algorithm 
training. Of the 97 study patients, the mean age was 
57.0 ± 18.5 years, and 53 were female. We used the 
portions of cEEG records that had high-quality mark-
ings including onset and offset times of each seizure. 
Average electroencephalogram recording time was 3.0 
± 1.6 hours per patient. In patients with seizures, the 
median number was 4 and the median length was 101 
seconds. Clinical characteristics of the development 
and test cohorts are shown in Table 1, and metadata on 
each individual patient including brief descriptors of 
each patient’s seizures can be found in Supplemental 
Table S1 (http://links.lww.com/CCX/A707). Data were 
collected through protocols approved by the institu-
tional review board of the University of Pennsylvania 

http://links.lww.com/CCX/A707
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(numbers 820595: “An automated platform for ICU 
EEG monitoring and visualizing results” and 832104: 
“Center for Neuroengineeering and Therapeutics 
scalp EEG repository”). Electroencephalogram sig-
nals were recorded and digitized at 256 Hz using Natus 
Xltek equipment (Natus Medical, Pleasanton, CA). 
All electroencephalograms were acquired using elec-
trodes placed in the international 10–20 configuration. 
Electroencephalogram recordings were annotated by 
board-certified clinical neurophysiologists to include 
times of onset and offset for all seizures. We stored 
electroencephalogram recordings on http://ieeg.org 
(13), a cloud platform for storing and sharing electro-
physiologic data.

Feature Extraction

We digitally filtered raw electroencephalogram signals 
using a fifth-order Bessel bandpass filter with lower 
and upper cutoff frequencies of 1 and 20 Hz, respec-
tively and calculated features within a nonoverlapping 
sliding 5-second window. We calculated the following 

features for each of the 18 channels in each 5-second 
window: 1) power in the delta (1–4 Hz), 2) theta (4–8 
Hz), 3) alpha (8–12 Hz), and 4) beta (12–25 Hz) fre-
quency bands, 5) signal line length (14), which quan-
tifies the distance between successive points and has 
been shown to be an effective feature in seizure detec-
tion, 6) wavelet entropy (15), which measures the signal 
complexity in the time and frequency domains and has 
proven to be an effective electroencephalogram feature 
(16), statistical features of the signal including the 7) 
mean, 8) variance, 9) kurtosis, and 10) the mean value 
of the upper signal envelope of the electroencephalo-
gram waveform. For each feature within each 5-second 
window, we used both its median value and variance 
across all electroencephalogram channels yielding 20 
total features. Additional detail on feature calculation 
is found in the supplemental materials (Methods S1,  
http://links.lww.com/CCX/A707). Within each 
window, we used an automated artifact rejection algo-
rithm to remove channels containing missing values 
or supraphysiologic amplitudes that were clearly due 
to noise and also excluded any 5-second window with 
at least three channels containing missing values or 
shared artifacts that would introduce error into algo-
rithm. At the beginning of feature calculation during 
model training, the artifact rejection algorithm begins 
with conservative threshold values of each feature and 
iteratively rejects segments that surpass those feature 
levels and checks whether any of the rejected segments 
were clinically labeled seizures. If so, the threshold of 
each feature for artifact rejection is raised 50% and the 
process is repeated, yielding criteria which will not 
incorrectly reject seizure as artifact in any training 
patients.

Machine Learning Approach

We implemented a machine learning framework 
that identifies electroencephalogram segments of 
high seizure likelihood in unseen patients. Our al-
gorithmic approach is summarized in Figure 1. 
We used seizures in which the unequivocal sei-
zure onset and offset on electroencephalogram are 
marked by board-certified electroencephalogram 
readers for clinical purposes using the method of 
Litt et al (17) (Fig. 1A). We selected a random forest 
approach as it is fast, robust to overfitting, and can 
handle noisy data including correlated features that 

TABLE 1. 
Clinical Characteristics of Continuous 
Electroencephalogram Patients

 
Training  

Set
Test  
Set

Total number of patients 77 20

  Number of female patients 42 11

Age, mean ± sd 57.6 ± 18.0 54.8 ± 21.0

Number of patients with seizures 27 10

  Total seizures 265 27

Reason for study, n   

  Altered mental status 8 5

  Witnessed or reported seizure 15 7

  Sepsis/toxic/metabolic disorder 11 2

  Intracranial hemorrhage 18 3

  Neoplasm 9 0

  Anoxic brain injury 4 2

  Other/unspecified coma 13 1

We used records from 77 patients in the ICU for algorithm cross-
validation and training, and a held-out test set of 20 patients who 
underwent continuous electroencephalogram after algorithm de-
velopment. The reason for ordering the study was retrospectively 
collected from the electronic health record as the most direct 
factor necessitating the study.

http://ieeg.org
http://links.lww.com/CCX/A707
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is often found in biomedical applications (18). We 
trained the model (Fig. 1C) using 400 trees to predict 
whether each 5-second electroencephalogram seg-
ment in each patient contains a seizure or not based 
on the 20 features discussed in the prior section  
(Fig. 1B). As seizures are typically uncommon events, 
even in recordings that contain them, they make up 
only a small proportion of our overall dataset. Thus, 
we train the classifier to be penalized 500 times as 
heavily for false negatives (e.g., missing a seizure) as 
for false positives. In algorithm development, we used 
five-fold cross-validation in which one of five patients 
were held out of training at a time to be used for vali-
dation. To quantify final performance, we trained the 
algorithm on all 77 development patients and tested 
on a separate cohort of 20 patients. After the model 
generates its prediction of seizure or nonseizure 
for each 5-second window, the predictions are then 
briefly postprocessed to improve readability and clin-
ical workflow. For any single 5-second windows that 
our system deemed “nonseizure” but is surrounded 
on either side by windows marked as “seizure,” we 
change the marking of the center window to “seizure,” 
so that the reduced electroencephalogram becomes 
more continuous (Fig. 1D). We subsequently remove 
“seizure” markings initially made by our system 

which are not within 15 seconds of another “seizure” 
marking as this lowers our chance of false positives. 
These steps make the reduced electroencephalogram 
significantly more contiguous and amenable to clin-
ical review.

Evaluation

To measure the performance of our model, we cal-
culated “seizure sensitivity” and specificity, which 
indicates the level of “data reduction” our system can 
achieve. We define “seizure sensitivity” as the propor-
tion of seizures for which the algorithm marks either 
the entirety or a portion of the event on electroenceph-
alogram. We calculate specificity and thus “data reduc-
tion” by determining the proportion of true-negative 
windows in the patient’s time series that are marked 
for removal rather than review by the clinician. Our 
random forest classifier outputs the probability of sei-
zure for each window and adjusting the threshold from 
its default of 0.5 (e.g., any 5 s window with > 50% sei-
zure likelihood is marked for clinician review) allows 
us to generate receiver operating characteristic curves 
to assess the tradeoff between seizure sensitivity and 
data. Each clinician user could adjust this threshold to 
tune the seizure detection-data reduction tradeoff to 
their own preferences.

Figure 1. Seizure detection and data reduction methods. A, We use clinically annotated ICU continuous electroencephalogram (cEEG). 
B, We calculate the listed electroencephalogram (EEG) features for each channel subtracted from a common average reference before 
taking the mean and variance of each feature across channels. C, We train a random forest model to classify each 5 s cEEG segment 
as likely or unlikely to contain seizure and test in unseen patients. D, We smooth predictions to improve interpretability for future clinical 
review in (E). UEO = unequivocal electrographic onset.
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Full-Stack Application

We construct an integrated application to manage 
the inputs, outputs, data storage of our novel ma-
chine learning algorithm, and its interaction with 
users. In our application, an open-source task man-
agement platform called “Celery” allocates separate, 
asynchronous processes which harvest and process 
data from electroencephalogram streams, calcu-
late seizure likelihood using the algorithm, and ul-
timately store predictions in a MongoDB database 
(Supplementary Fig. S1A, http://links.lww.com/
CCX/A707). In this study, we used http://ieeg.org on 
Amazon’s elastic computing cloud for electroenceph-
alogram storage and its toolboxes for data streaming 
into custom MATLAB software (MathWorks, Natick, 
MA). Implementation could also be performed on 
local machines behind institutional firewalls or on 
HIPAA compliant cloud facilities, as optimal for in-
dividual institutions. We also present an interactive, 
web platform using the Python Flask library to dis-
play reduced electroencephalogram and allow clini-
cians to interact with and understand the outputs of 
our system (Supplementary Fig. S1, B and C, http://
links.lww.com/CCX/A707).

The main page of the dashboard shows an over-
view of all patients who are currently undergoing 
cEEG monitoring in the ICU with the real-time, ma-
chine learning–based alerting and monitoring system 

for epilepsy and seizures (RAMSES) system. Each 
patient is listed with information related to outputs 
from the classifier. We show the number of seizures 
detected over the course of a patient’s recording, the 
percentage of the recording consisting of concerning 
epochs, the time in minutes since the last seizure, and 
a visual representation of the most concerning pre-
diction over the length of the recording. This visual 
representation appears as a dot color coded accord-
ing to the respective prediction as follows: red is a 
likely seizure, yellow is a potential seizure, and blue 
is non seizure. Clinicians may modify the dash-
board layout and display statistics according to their 
preferences. Specifically, they may order patients 
according to those with most recent seizures, highest 
density of concerning epochs, or the room number. 
Furthermore, they may adjust the time period over 
which the statistics are calculated to provide different 
quantifications of clinical status.

Within the same application, clinicians may also 
select any given patient and further inspect the algo-
rithm’s outputs over the duration of the recording. In 
this patient-specific view, predictions are represented 
as a timeline with different epochs color coded in ac-
cordance with the color associations of the dots on the 
main page. Clinicians can further inspect the raw elec-
troencephalogram associated with each prediction by 
double-clicking the prediction on timeline.

Figure 2. Algorithm performance. A, Tradeoff between seizure sensitivity and mean data reduction for both the cross-validation (CV) 
(blue) and test (purple) sets. Vertical lines: default operating performance defined by a seizure classification threshold of 50% (blue 
dotted line at 83% specificity for CV, purple dashed line at 89% specificity for the test set). B, Histogram of seizure sensitivities at the 
default operating points for both the CV set (bottom, blue), and the test set (top, purple).

http://links.lww.com/CCX/A707
http://links.lww.com/CCX/A707
http://ieeg.org
http://links.lww.com/CCX/A707
http://links.lww.com/CCX/A707
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Data and Code Sharing

All records and annotations are freely available on 
http://ieeg.org associated with the patient IDs listed in 
Supplementary Table S1 (http://links.lww.com/CCX/
A707). The code for the seizure detection and data re-
duction algorithms is available at GitHub.com /jber-
nabei/ICU_EEG, whereas the code for streaming and 
web-interfacing is available at GitHub.com/nathaniel-
nyema/RAMSES. We aim for our methods to be trans-
latable and for other groups to validate and improve 
our algorithms or their own using the resources we 
provide.

RESULTS

We retrospectively acquired data from 97 critical care 
patient cEEG recordings including individuals with 
and without seizures. Our artifact rejection process 
yielded a mean of 44 rejected 5-second intervals; how-
ever, the range across patients was high with 61 of 97 
patients having no rejected windows and five of 97 

patients having over 200 rejected windows, mirroring 
the wide variability in clinical care and sources of po-
tential artifacts in the ICU. To assess seizure detection 
performance and its trade off with the amount of data 
reduction, we calculated five-fold cross-validation sei-
zure sensitivity across our development cohort of 77 
patients. Figure 2A shows the ROC curve representing 
the performance of our system for both the cross-val-
idation (blue) and test (purple) sets across a range of 
classification thresholds from 5% to 100% seizure like-
lihood. At our default setting of 0.5 representing the 
truest performance of our classifier (e.g., 5 s windows 
with > 50% likelihood of containing seizure activity are 
classified as such), we found a mean seizure sensitivity 
of 84% in the cross-validation and 85% in the test sets, 
respectively. The exact distributions are found in Figure 
2B, and the number of seizures missed in each patient 
are noted in Supplementary Table S1 (http://links.lww.
com/CCX/A707). In the patients within the cross-val-
idation and test sets which contain seizures, specificity 
and thus data reduction was 80% (range, 6–100%; 

Figure 3. Representative results of data reduction algorithm. In both panels, the distribution of true seizures over an 8-min period 
are shown in blue, and the reduced electroencephalogram (EEG) is shown in purple. All EEG is displayed in anterior-posterior bipolar 
montage and is of 35 s in length. A, Continuous EEG (cEEG) clip of a true-positive (left) and false-positive (right) seizure segments.  
B, cEEG clip of true-positive (left) and false-negative (right) seizure segments.

http://ieeg.org
http://links.lww.com/CCX/A707
http://links.lww.com/CCX/A707
http://links.lww.com/CCX/A707
http://links.lww.com/CCX/A707
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interquartile interval 77–94%) and 87% (range 46–
100%; interquartile interval 83–99%), respectively. For 
seizure-free patients, comprising 50 of 77 cross-vali-
dation subjects and 10 of 20 test subjects, the average 
specificity and thus data reduction was 84% (range 14–
100%; interquartile interval 79–97%) and 85% (range 
41–99%; interquartile interval 79–97%) for the cross-
validation and test sets, respectively. Of the 27 cross-
validation patients and 10 test set patients who had 
seizures during the recording period, the data reduc-
tion algorithm only missed all seizures in one patient 
in each set. In the cross-validation set, the patient had 
a single 10-second event lacking high-frequency ac-
tivity over a low-voltage background (Supplementary 
Fig. S2A, http://links.lww.com/CCX/A707), whereas 
in the test set, the patient had seizure activity evident 
only in a small number of channels superimposed over 
higher amplitude spikes present at baseline throughout 
much of the record (Supplementary Fig. S2B, http://
links.lww.com/CCX/A707). In all other patients, few 
seizures were missed. To quantify our performance at 
an additional operating point, we adjusted the classifi-
cation threshold to favor greater than 90% mean sen-
sitivity across patients. This step resulted in 75% data 
reduction in the cross-validation set but only 55% data 
reduction in the test set.

To provide a better understanding of the strengths 
and limitations of a clinical implementation of our 
system, we visualize examples of system outputs in 
Figure  3. Figure 3A shows true-positive and false-
positive electroencephalogram examples for a patient 
in which the algorithm correctly identified 13 of 18 sei-
zures while achieving a 99.2% data reduction. On the 
left, we show a clip of correctly classified seizure activity 
localized to the right hemisphere, whereas on the right, 
we show a nonseizure segment which the algorithm 
erroneously classified as possibly containing a seizure. 
The asymmetry of right and left hemisphere activity in 
the false-positive example could have skewed our al-
gorithm to predict seizure during this time segment. 
Figure 3B shows a patient in which our algorithm cor-
rectly identified 36 of 40 seizures with a 91.7% data 
reduction. On the left, a correctly identified seizure is 
displayed, whereas on the right, there is an example of 
a missed seizure where strong discharges in the frontal 
electrodes may have masked the high-frequency ac-
tivity in feature space. This algorithm achieved a seizure 
detection sensitivity of 90% for this patient.

DISCUSSION

In this study, we present an important step in developing 
and implementing automated cEEG analysis systems 
to manage the increasing demand for expensive ICU 
electroencephalogram monitoring. Our main objec-
tive was to use machine learning to both reliably detect 
seizures and to dramatically reduce the amount of elec-
troencephalogram that must be physically reviewed by 
physicians and trained technologists. Additionally, we 
aimed to provide an open-source framework to allow 
data handling, storage, and display—which could be 
applied to other uses of electroencephalogram moni-
toring. We found that this approach provides a mean 
seizure sensitivity of 84% in cross-validation and 85% 
in testing, as well as a mean specificity of 83% in cross-
validation and 86% in testing. In both cross-validation 
and testing, the majority of patients had all seizures 
detected (19/27 for cross-validation, 8/10 for test). We 
share all of our data and code with the intention that 
our methods are improved upon, so that machine-
learning assisted data reduction can be used clinically 
to expand the use and decrease the cost of continuous 
electroencephalogram in the ICU setting.

Our algorithm is primarily distinct from others by 
its approach as data reduction rather than an expert 
labeler of seizure onset and offset or of patients that 
contain seizure versus those which do not. Rather, 
we draw attention to concerning segments in each 
record and attempt to minimize the number of sei-
zures that would be missed by implementing such a 
system. As such, even the majority of patients without 
seizures have some of their record highlighted and 
marked for clinician review. These segments could 
correspond to cerebral activity on the ictal-interictal 
continuum, or periodic discharges which are ab-
normal and could be important to clinicians, but do 
not meet criteria for seizure.

A key question in studies of this nature is what anal-
ysis performance metrics are adequate for clinical de-
ployment. Seizure sensitivity is the typical gold standard, 
although seizure labeling varies significantly between 
experts (19). Furthermore, the open nature of our pro-
cessing algorithm allows our algorithm to train toward 
any given experts reporting style. There is also some indi-
cation that to adequately manage patients, it may not be 
necessary to capture and identify every seizure on elec-
troencephalogram, as many of these events may not have 

http://links.lww.com/CCX/A707
http://links.lww.com/CCX/A707
http://links.lww.com/CCX/A707
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clinical significance, and trends in number of events, 
combined with clinical metadata may be adequate for 
excellent patient management even if a small percentage 
of subtle electrographic seizures are missed by the algo-
rithm. Indeed, in our results, there are a small number of 
patients with seizures (1/10 in our test set) for which the 
algorithm misses all events in that patient. It is likely, as 
we highlight in Figure 3 and Supplementary Figure S2 
(http://links.lww.com/CCX/A707) and Supplementary 
Figure S3 (http://links.lww.com/CCX/A707) that the 
reasons our algorithm misses seizures could be similar to 
those that cause humans to miss seizures: subtle features 
when compared with background, confusion by artifact 
or noise, and ambiguity of whether the data meet clinical 
criteria for a seizure. Although there are no studies of the 
sensitivity of real-time human reviews of multipatient 
cEEG data, our experience suggests it is likely similar to 
that of our algorithm.

Although very encouraging, our study has limita-
tions. One limitation is the relatively small sample size 
of patient data for the purposes of cross-patient seizure 
detection. In our cohort, 37 of the 97 patients had sei-
zures, which likely did not contain sufficient variety to 
fully represent the myriad seizure types and locations 
encountered in an ICU population. This limitation 
restricts the types of features and models that we can 
use to those which perform well on small amounts of 
data. Another potential limitation is the high prevalence 
of patients with seizures in our dataset compared the ge-
neral ICU population. However, the similar data reduc-
tion performance between patients with and without 
seizures (87% vs 85%, respectively) implies that there 
should not be significant variability based upon the 
proportion patients with seizures. Namely, our study 
suggests that clinicians using our system would have to 
spend approximately 85% less time reading each cEEG 
record to either identify seizures or to be confident that 
it is unlikely to contain them. Furthermore, the algo-
rithm may not retain the entirety of each seizure in the 
“reduced” dataset. As each window is 5 seconds in length, 
portions of the seizure such as the beginning in which a 
window may overlap both ictal and preictal data could 
erroneously be marked as normal, as could the initial 
segments of long seizures with gradual onset in which 
quantitative features have not yet significantly changed. 
However, we feel that these seizure clips would be easy 
for clinicians to notice in the reduced cEEG, and their 
prompt recognition could outweigh the inconvenience 

of failing to capture some events in their entirety. Finally, 
we do not have training labels for other clinically impor-
tant phenomena such as sleep stages or different types 
of nonictal discharges that may influence classification. 
Detection of such interictal abnormalities is poor with 
all commercially available software. Despite these short-
comings, we believe that RAMSES is both novel and an 
important step in moving toward automated monitor-
ing systems that can be rapidly implemented, reduce 
cost, and increase the efficiency of clinicians and tech-
nologists in busy cEEG monitoring settings.

CONCLUSIONS

The RAMSES system represents a significant starting 
point for future work in data-driven ICU electroen-
cephalogram analysis. We have previously reported 
an integrated data management and caretaker noti-
fication platform for multimodal ICU data (20). Our 
vision involves a unifying data platform that is capable 
of incorporating any number of analytic engines, har-
nessing the power of cloud computing, and providing 
real-time clinical updates. Indeed, implantable devices 
for seizure detection and stimulation may operate 
under such a paradigm in the near future (21). At pre-
sent, the modular structure of RAMSES ensures that 
these future iterations can be incorporated without 
disruption of the system. It is reasonable to envision 
this data set dramatically expanding, as we set up 
multi-institutional collaborations to enhance our per-
formance, data acquisition, and system testing. Our 
ultimate goal is for many more critically ill patients to 
benefit from continuous electroencephalogram moni-
toring during their hospitalizations, while reducing the 
costs and improving the effectiveness of these systems.
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