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Abstract: Atherosclerosis is a multifactorial inflammatory disease that may progress silently for
long period, and it is also widely accepted as the main cause of cardiovascular diseases. To prevent
atherosclerotic plaques from generating, imaging early molecular markers and quantifying the
extent of disease progression are desired. During inflammation, circulating monocytes leave the
bloodstream and migrate into incipient lipid accumulation in the artery wall, following conditioning
by local growth factors and proinflammatory cytokines; therefore, monocyte accumulation in the
arterial wall can be observed in fatty streaks, rupture-prone plaques, and experimental atherosclerosis.
In this work, we synthesized monocyte-targeting iron oxide magnetic nanoparticles (MNPs), which
were incorporated with the peptides derived from the chemokine receptor C-C chemokine receptor
type 2 (CCR2)-binding motif of monocytes chemoattractant protein-1 (MCP-1) as a diagnostic
tool for potential atherosclerosis. MCP-1-motif MNPs co-localized with monocytes in in vitro
fluorescence imaging. In addition, with MNPs injection in ApoE knockout mice (ApoE KO mice),
the well-characterized animal model of atherosclerosis, MNPs were found in specific organs or regions
which had monocytes accumulation, especially the aorta of atherosclerosis model mice, through
in vivo imaging system (IVIS) imaging and magnetic resonance imaging (MRI). We also performed
Oil Red O staining and Prussian Blue staining to confirm the co-localization of MCP-1-motif MNPs
and atherosclerosis. The results showed the promising potential of MCP-1-motif MNPs as a diagnostic
agent of atherosclerosis.
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1. Introduction

Atherosclerosis, the primary cause of cardiovascular diseases, is a chronic inflammatory disorder
in the walls of large arteries or the medium and intima of large arteries. Inflammation is the
immune system’s response to injury and has been implicated in the pathogeneses of aortas. After
lipid-rich plaques and cholesterol particles accumulate within the artery wall, endothelial cell
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dysfunction/activation is then triggered by the accumulation of low-density lipoprotein (LDL) and
other lipoproteins. Afterward, the inflamed endothelial cells and oxidized lipids induce the excretion of
chemokines, cytokines, and mediators of inflammation into the bloodstream for monocytes and other
immune cells recruitment to the site. As the monocytes migrate into the aorta wall, they differentiate
into dendritic cells, macrophages, or foam cells [1,2]. At the same time, the continued recruitment and
accumulation of leukocytes is associated with the development of vulnerable plaques. The plaques can
become unstable and thus rupture, leading to thrombosis, myocardial infarction, or stroke. In addition,
the invasion and accumulation of white blood cells create atheromatous plaques, which make the
artery walls lose their flexibility and obstruct blood circulation [3,4]. Also, the inflammation hypothesis
has recently been proved by genetic evidence. The latest research has shown the relation between
coronary artery disease and the transendothelial pathway by genetic evidence [5,6].

Chemokines play important roles in atherosclerotic vascular disease. They are also expressed
by cells of the vessel wall [7]. As endothelial cells undergo inflammatory activation, the increased
expression of cell adhesion molecules, such as vascular cell adhesion molecule-1 and intercellular
adhesion molecule-1, promotes the adherence of monocytes. Furthermore, the monocytes migration is
controlled by the concentration gradient of monocytes chemoattractant protein-1, a chemokine that
binds to the C-C chemokine receptor named CCR2. Then, monocytes transmigrate into the innermost
layer of the arterial wall, pass between the endothelial cells to differentiate into macrophages, and
transform into foam cells [8,9].

In atherosclerotic arteries and atheromatous plaques, MCP-1 can be found in endothelial cells,
macrophages, and vascular smooth muscle cells. MCP-1 recruits monocytes into the subendothelial
cell layer and thus advances the development of atherosclerosis [10,11].

Due to the internal filters in the human body such as the liver, kidneys, and lymph nodes,
site-specific delivery by the conjugation of the modification of ligands can provide stable routes to avoid
damaging normal tissue and enhance therapeutic efficiency. Pan et al. developed VCAM-1-targeting
nanocarriers with a four-fold aggregation in the aortas of atherosclerosis model mice compared to
control model mice [12]. Chung et al. developed peptide amphiphile micelles incorporated with the
chemokine receptor CCR2-binding motif of MCP-1 for atherosclerosis targeting. The results showed
that MCP-1 peptide amphiphile micelles (PAMs) bind with monocytes in vitro and can be detected in
early-stage atherosclerotic aortas [13].

Nanoparticles have been used for various applications in the biomedical field. The increasing
permeability allows more small sized particles to migrate into the intimal layer, resulting in enhanced
permeability and retention (EPR) effect [14,15]. When atherosclerosis lesions develop, endothelial cells
are prone to be leaky and fragile, which enhances the EPR effect.

Iron oxide magnetic nanoparticles possess superior physical and chemical properties, such as
superparamagnetism and the quantum tunneling of magnetization. Additionally, iron oxide magnetic
nanoparticles (MNPs) are also non-toxic, biocompatible, and easy to separate under external magnetic
fields. Owing to their unique properties, such as superparamagnetism, high surface area, large
surface-to-volume ratio, low toxicity, and easy separation under external magnetic fields, iron oxide
MNPs have enormous potential in fields such as magnetic resonance imaging (MRI), bioseparation,
environmental treatment, fluorescence labeling, and biomedical and bioengineering usage [16,17].

Although Fe3O4 MNP is a promising drug carrier, there are still drawbacks to its use, such as
aggregation and oxidation to γ-Fe2O3. Therefore, polymer coatings are usually applied to modify its
surface characteristics [18]. In recent years, the common reagents employed for the modification of
iron oxide MNPs have included surfactants, polymers, and natural dispersants [19–22]. Nevertheless,
the most used modification for medical applications is dextran, a biocompatible derivative. In aqueous
solutions, dextran interacts with metals and covers its surface, yielding aggregates with hydrodynamic
diameters between 20 nm and 150 nm [23,24].

In this work, iron oxide MNPs and MCP-1-motif iron oxide MNPs were stained with Cyanine
5 (Cy5) in fluorescence microscopy. The properties of MNPs were characterized. For in vitro cell
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experiments, cell viability was measured by the MTT assay and Live/Dead staining. To test the spatial
distribution of cells and MCP-1-motif iron oxide MNPs, two types of cells, including 3T3 cells and
WEHI 274.1 monocytes [13], were cultivated with iron oxide MNPs.

Apolipoprotein E-knockout (ApoE KO) mice, which are the most commonly used and
well-characterized animal model of atherosclerosis, were treated with a high-fat diet for further
plaque development and the monocytes accumulation was continuous and proportional to disease
progression [25–27].

Through the in vivo test, ApoE KO mice fed a high-fat diet and C57BL/6 wild-type mice fed
a normal diet for four weeks made up the atherosclerosis model and control group, respectively.
Mice were injected with iron oxide MNPs through the tail vein and the nanoparticle distribution was
observed by magnetic resonance imaging (MRI) and in vivo imaging system (IVIS). Figure 1 gives a
representative scheme of this research.
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2. Materials and Methods

2.1. Materials

MCP-1 peptides (YNFTNRKISVQRLASYRRITSSK) were purchased from Yao-Hong Biotechnology
(New Taipei, Taiwan). Iron oxide nanoparticles and the conjugation of MCP-1 peptides and iron
nanoparticles were obtained from MagQu (Taipei, Taiwan). 3T3 cells and WEHI 274.1 monocytes were
purchased from American Type Culture Collection (ATCC). Cyanine 5 NHS Ester were purchased from
Lumiprobe (Hunt Valley, MD, USA). Dulbecco’s modified Eagle’s medium-high glucose (DMEM-HG),
2-mercaptoethanol (β-ME), thiazolyl blue tetrazolium bromide (MTT solvent), and Oil Red O were
purchased from Thermo (Waltham, MA, USA). Fetal bovine serum (FBS) and antibiotic antimycotic
solution (penicillin/streptomycin/amphotericinβ) were purchased from Biological (Cromwell, CT, USA).

2.2. Characterization of Iron Oxide MNPs

The structure of iron oxide MNPs were characterized by scanning electron microscopy (SEM)
(J NanoSEM 230, Nova, Pallini, Greece) and transmission electron microscopy (TEM) (H-7650, Hitachi,
Tokyo, Japan). Particle size and zeta potential were measured in a Zetasizer nanosystem (Zetasizer
Nano, Malvern, UK). Iron oxide MNPs solution was stored at −20 ◦C overnight and then moved
to a freeze dryer overnight to remove all water. The iron oxide MNPs powders were investigated
by X-ray photoelectron spectroscopy (XPS) (Theta Probe, Thermo Scientific, Waltham, MA, USA) for
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composition synthesis (carbon, nitrogen, and oxygen) and by a magnetometer (MPMS7, Quantum
Design, San Diego, CA, USA) for magnetic hysteresis loop.

2.3. Cell Culture

WEHI 274.1 monocytes (ATCC, Manassas, VA, USA) were cultured in DMEM-HG culture
medium supplemented with 10% fetal bovine serum, 1% antibiotic-antimycotic solution, and 0.05 mM
2-mercaptoethanol for in vitro testing. The cells were cultured on a T75 flask at 37 ◦C in a humidified
incubator under 5% CO2. After two days of cultivation, the medium with suspended monocytes was
moved to a centrifuge tube and centrifuged at 100 relative centrifugal force (rcf) for 5 min. Then the
supernatant was removed to eliminate the wastes and the monocytes were resuspended in culture
medium. To estimate the number of the cells, trypan blue was used to mark the dead cells and
hemocytometer was used to evaluate the number of viable cells. The suspended cells were prepared
for the use of the following experiments.

3T3 cells were cultured in DMEM-HG culture medium with 10% FBS and 1% antibiotic-antimycotic
solution for in vitro testing. First, the cells were seeded on a 10-cm culture dish at 37 ◦C in a humidified
incubator under 5% CO2. After washing with PBS, trypsin-EDTA was added and incubated with cells
for 4 min at 37 ◦C to detach cells from the culture plate. Then, culture medium was added to the
dish. The medium with suspended cells was centrifuged at 100 rcf for 5 min. Then the supernatant
was removed and the cells were resuspended in culture medium. To estimate the number of the cells,
trypan blue was used to mark the dead cells and hemocytometer was used to evaluate the number of
viable cells. The suspended cells were prepared for the use of the following experiments.

2.4. Cell Viability Evaluation

2.4.1. MTT Assay

3T3 cells were cultivated with different concentrations (0.1, 0.2, and 0.3 mg Fe/mL culture
medium) of iron oxide MNPs for four days. Cell viability was investigated on days 1 and 4 via MTT
assay. Prior to use, MTT stock solution was diluted to 0.5 mg/mL with cell culture medium. After
removing the original medium and PBS buffer washing, 500 µL MTT working solution was added to
each well and the mixture was placed in an incubator for 3 h. Finally, the MTT solution was replaced
with the same volume of DMSO and the mixture was shaken for 30 min. The absorbance value of the
product solution was observed at 570 nm. The whole process was operated without light exposure.

2.4.2. Live/Dead Assay

After WEHI 274.1 monocytes and 3T3 cells were cultivated with different concentrations
(0.1, 0.2, and 0.3 mg Fe/mL culture medium) of iron oxide MNPs for four days, the samples were
stained by Live/Dead dye to check cell viability. Live cells were stained fluorescent green due to reveal
intracellular esterase activity that deacetylated fluorescein diacetate to a green fluorescent product.
Dead cells were stained fluorescent red, as their compromised membranes were permeable to nucleic
acid stain (propidium iodide). Photos were taken by an inverted fluorescence microscope (Olympus,
IX-71, Tokyo, Japan).

2.5. In Vitro Imaging of Nanoparticles

First of all, MCP-1-motif iron oxide MNPs were stained with Cy5 fluorescence and the composition
of the reaction was as follows: 2 µL MCP-1-motif iron oxide MNPs solution (8.2 mg Fe/mL), 10 µL Cy5
solution (1 mg/mL), and 90 µL sodium bicarbonate solution (0.1 M, pH 8.3). The reaction occurred at
4 ◦C refrigerator overnight with shaking. After the reaction, the solution was centrifuged 110 rcf for
10 min and the supernatant was removed in order to remove excess Cy5 fluorescence. The process was
repeated twice to avoid excess Cy5 reacting with cells. The Cy5-MCP-1-motif iron oxide MNPs were
refilled in PBS for future use.
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Thirty thousand monocytes were cultured in 48-well plates and incubated with Cy5-MCP-1-motif
iron oxide MNPs suspension for 1 h at 37 ◦C in a humidified incubator under 5% CO2. Finally, DAPI
was used for nucleus staining and the results were achieved with an inverted fluorescence microscope.
3T3 cells with same quantities were used for control cells.

2.6. Animal Model

ApoE KO mice (male, 7 weeks old) and C57BL/6 wild-type mice (male, 7 weeks old) were given
a high-fat diet (HFD, 45% fat, 35% carbohydrate, 20% protein) and/or a normal diet (ND, 10% fat,
70% carbohydrate, 20% protein) in National Yang-Ming University, Taipei, Taiwan (for MRI) and
Laboratory Animal Center, National Taiwan University College of Medicine, Taipei, Taiwan (for IVIS).
The animal protocol was approved by National Taiwan University College of Medicine Laboratory
Animal Center (#20160214) (Effective dates: 2016/07/01 ~2020/06/30).

The high-fat diet and gene deficiency promoted atherosclerosis plaque progression. Mice were
shaved and the tail veins were dilated and sterilized with 70% ethanol before iron oxide nanoparticles
injection (10 µg/g mice). The injection detail and mice choice are shown in Tables 1 and 2.

Table 1. Experimental design of animal model for magnetic resonance imaging (MRI).

Mice Diet Nanoparticle Injection

Wild-type Four weeks ND MCP-1-motif MNPs
ApoE KO Four weeks ND MCP-1-motif MNPs
ApoE KO Two weeks ND and two weeks HFD MCP-1-motif MNPs
ApoE KO Four weeks HFD MCP-1-motif MNPs

Normal diet (ND), High fat diet (HFD), monocytes chemoattractant protein-1 (MCP-1), magnetic nanoparticles (MNP).

Table 2. Experimental design of animal model for in vivo imaging system (IVIS).

Mice Diet Nanoparticle Injection

Wild-type Four weeks ND PBS
Wild-type Four weeks ND MNPs
Wild-type Four weeks ND MCP-1-motif MNPs

ApoE KO Four weeks HFD PBS
ApoE KO Four weeks HFD MNPs
ApoE KO Four weeks HFD MCP-1-motif MNPs

2.7. Nuclear Magnetic Resonance Imaging (MRI)

All of the mice were anesthetized by ether and were measured using a T2*-contrast (axial view)
FLASH sequence 7.0 T imaging (BRUKER BIOSPEC 70/30 MRI, Billerica, MA, USA) for every 2-mm
sectioning thickness. (Repetition time (TR) = 200 ms, Echo time (TE) = 5 ms, Matrix 256 × 256 pixel,
Field of view (FOV) = 4 × 4 cm, Flip angle = 30◦) Images were acquired at 40 h after nanoparticles
injection [28].

2.8. Non-Invasive In Vivo Imaging System (IVIS)

For IVIS, iron oxide MNPs all had been modified with Cy5 fluorescence and the imaging time
spots of IVIS were 0, 2, 8, 24, 48, 72 h after nanoparticles injection [29]. Mice were anesthetized with
2.5% isoflurane in O2 and whole-body fluorescence imaging was conducted by IVIS. The emission at
680 nm was measured with an optimal excitation wavelength of 640 nm (FOV: 12.5, f2, 0.75 s). Mice
were then euthanized via CO2 overdose and the aorta, heart, liver, spleen, lung, and kidney were
harvested. The aorta and organs fluorescence were also conducted using IVIS. After imaging, all were
immersed in 5% formaldehyde for fixation and preservation [13].
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2.9. Histology Staining

Freshly dissected tissues were covered with enough O.C.T for a few minutes in a labeled small
weigh boat. Then the prepared sample was placed in a metal beaker filled 2/3 full with isopentane
and subsequently placed in a Dewar of liquid nitrogen. Samples (6–8 µm) were cryosectioned and
stained with hematoxylin for 1 min, or Prussian Blue staining for iron oxide MNPs for 30 min, or Oil
Red O staining for atherosclerosis for 5 min, depending on the investigation [30–33].

2.10. Statistical Analysis

All data are expressed as means ± standard deviation. A comparison of different groups
was determined using Student’s t-test and significant difference was assumed at p-value ≤ 0.05.
The statistical data was analyzed using ORIGIN® 8.6 (OriginLab Corp., Northampton, MA, USA).

3. Results and Discussion

3.1. Characterization of Iron Oxide MNPs

TEM and SEM images were employed to observe the structures of iron oxide MNPs and
MCP-1-motif MNPs. The SEM images reveal that most of the nanoparticles are quasi-spherical
and attempt to aggregate in the solid state because of their high surface energy [34] (Figure S1). Due
to peptide surface modification, peptides derived from MCP-1 might have physical, such as Van der
Waals force, and chemical interactions, such as NH· · ·OH-bonds, with each other and thus impede
nanoparticles dispersion [35,36].

Also, the TEM images show the size and the structure of the iron oxide MNPs (Figure 2).
Comparing the size of two types of MNPs, MCP-1-motif MNPs formed a larger morphology and shape
that is more irregular. The diameter of MCP-1-motif MNPs and MNPs were approximately 20 ± 3 nm
and 10 ± 3 nm in a spherical shape, respectively.
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Moreover, the hydrodynamic diameter of the iron oxide MNPs was measured by the dynamic
light scattering (DLS) method to test aqueous properties (Table 3). In the results of DLS, the peaks
of the diameter were approximately 90 nm and 300 nm (Figure S2). The higher value in particle size
determined by the DLS method compared to the TEM image was attributed to the interaction of water
molecules in the aqueous solution [37]. Furthermore, the zeta potential value of MNPs (−14.1 mV) and
MCP-1-motif MNPs (−17.6 mV) were higher than −20 mV, which indicated that the dispersion was
relatively stable [38]. Therefore, the nanoparticles solution would be sonicated before the experiment.
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Table 3. Dynamic light scattering (DLS) results of MNPs and MCP-1-motif MNPs (n = 3).

Nanoparticles Zeta Potential (mV) Hydrodynamic Diameter (nm)

MNPs −14.1 ± 0.16 90.0 ± 4.90
MCP-1-motif MNPs −17.6 ± 0.25 323.8 ± 12.17

XPS measurements were made to quantify the element composition of nanoparticles, and the
results are shown in Figure 3. Three bands of the XPS survey spectrum at around 285, 397.5, and
532.5 eV represented C1s, N1s, and O1s, respectively. In Figure 3a,b, the C1s XPS spectra had a large
peak at 284.5 eV, corresponding to sp2 hybridized carbon (C-C bonds), as well as two small peaks
at 286.0 and 288.0 eV, which could be ascribed to C-O bonds and C=O bonds [39,40]. On the other
hand, the N1s XPS spectra in Figure 3c,d all exhibited a major peak at around 400.0 eV. The binding
energies at 398.8 and 400.0 eV, respectively, were attributed to N atoms bonded with sp3-hybridized C
atoms (N-sp3C, N(H)-C bonds) and N atoms bonded with sp2-hybridized C atoms (N-sp2C, N(C)-C
bonds) [41,42]. Figure 3e,f show the O1s XPS spectra of iron oxide MNPs and the two major peaks
were located at around 530.0 and 535 eV. The O1s peaking at 532.0 and 533.3 eV could be assigned to
oxygen in the form of O=C bonds and C-O bonds. In addition, the binding energies at 529.7 eV and
535.3 eV represented Fe3O4 and H2O, respectively [43,44].
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Tables 4 and S1 show the compositions of different kinds of bonds and the chemical elements
of iron oxide MNPs. MNPs only had dextran shell modification, which had a large quantity of C-C
bonds. Moreover, the hydroxyl bond was replaced with an amine bond, so no signal (C-O bonds)
could be found in the C1s XPS spectrum of MNPs. Also, we observed that the C1s XPS spectrum of
MCP-1-motif MNPs had peaks at the C-O bonds and C=O bonds because of the peptide sequence.
According to the description above, the amine bond was the major composition in the MNPs consistent
with the N1s XPS spectrum. On the other hand, both N(C)-C bonds and N(H)-C bonds could be
found in the results of MCP-1-motif MNPs. Through the oxygen analysis, two kinds of nanoparticles
presented Fe3O4 and H2O. With the C=O bonds existing on the shell of the nanoparticles, the ratio of
Fe3O4 and H2O decreased compared to the control group.

Table 4 shows the chemical element composition of two iron oxide MNPs. MNPs had dextran
shells, a kind of organic compound, so carbon was the major element in the composition. On the other
hand, the peptides sequence and iron oxide core presented oxygen, so the ratio of oxygen was higher
than those of the other two elements.

Table 4. Chemical element composition ratio of iron oxide MNPs.

MNPs MCP-1-Motif MNPs

C1s 54.25% 40.32%
N1s 5.44% 2.14%
O1s 40.31% 57.55%

3.2. Magnetic Measurements

To make sure that the magnetic properties remained after dextran coating and peptide grafting,
a superconducting interference magnetometer was applied. Figure 4 shows the M-H Curve/Hysteresis
Loop of MNPs (2.2 mg) and MCP-1-motif MNPs (9.0 mg). The operation temperature was 310 K and
the magnetic field range was ±7.0 Tesla.

The hysteresis loops were normal and tight with no remnant magnetization, indicating a typical
superparamagnetic behavior. In general, iron oxide MNPs, whose size was smaller than 20 nm, were
supposed to be superparamagnetic at room temperature. Hence, from Figure 4, we could observe
that the saturation magnetization values of MNPs and MCP-1-motif MNPs were 15.5 and 31.0 emu/g,
respectively, due to the size difference of the two types of nanoparticles [45–47].

Paramagnetic materials had unpaired electrons, such as atomic or molecular orbitals. Therefore,
superparamagnetic nanoparticles were free to align their magnetic moment in any direction. When
an external magnetic field was applied, these magnetic moments would tend to align themselves in
the same direction as the applied field. In addition, peptides derived from MCP-1 also contained free
electrons and might enhance the magnetic moments in the applied magnetic field, promoting high
saturation magnetization values [48].

3.3. Cytotoxicity

The MTT assay was conducted with 3T3 cells incubated with different concentrations of
MCP-1-motif MNPs for one day and four days. The result is shown in Figure 5a and could estimate
the cytotoxicity of the nanoparticles. The normal Fe concentration of the injection solution was
0.2 mg Fe/mL. The lower and higher Fe concentrations were also investigated in the MTT assay.
The percentages were calculated by comparing the 3T3 cells without iron oxide MNPs. The cytotoxicity
of MCP-motif MNPs under three concentrations did not have a negative effect on cell proliferation.
Even after four days of incubation, the cell viability still reached around 100%.

Figures 5b, S3 and S4 are the Live/Dead staining images. The counting results are shown in
Figure S5. WEHI 274.1 monocytes and 3T3 cells were also incubated with different concentrations
of MCP-1-motif MNPs for one day and four days. The monocytes all maintained a round shape and
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the quantities were consistent with the control group. Similarly, 3T3 cells were still in elongation and
proliferated stably in all groups.Pharmaceutics 2018, 10, x FOR PEER REVIEW  9 of 17 
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Figure 5. (a) MTT assay of 3T3 cells with different concentration of MCP-1-motif MNPs; (b–i) Live/Dead
staining of WEHI 274.1 monocytes (b–e), and 3T3 cells (f–i) in 0 and 0.3 mg Fe/mL at day 1 (D1)
(b,c,f,g) and day 4 (D4) (d,e,h,i) (n = 4).
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3.4. In Vitro Imaging of MCP-1-Motif MNPs

Figure S6a is the fluorescence image of Cy5-MCP-1-motif MNPs; the further conformation can
be observed through the merged image in Figure S6b. WEHI 274.1 monocytes were cultured with
Cy5-MNPs or Cy5-MCP-1-motif MNPs after 1 h and stained with DAPI (Figure 6). After cultivation,
the nanoparticles in solution were removed by centrifugation. Whether in the fluorescence or the bright
image, there was no Cy5 signal, which represented MNPs co-localized with WEHI 274.1 monocytes.
However, monocytes stained by DAPI (blue) had a spherical shape and the surfaces were overlapped
with Cy5-MCP-1-motif MNPs (red), indicating the potential affinity to monocytes of peptides derived
from MCP-1. Moreover, 3T3 cells were also cultured with MCP-1-motif MNPs, but no nanoparticle
seemed to attach on the cell surface (Figure S7). Therefore, we could conclude that the binding ability
of MCP-1 was preserved and MCP-1-motif MNPs had the ability to target monocytes.
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Figure 6. Overlaid image (fluorescence and bright) of WEHI 274.1 monocytes cultured with
(a) Cy5-MNPs or (b) Cy5-MCP-1-motif MNPs.

3.5. Nuclear Magnetic Resonance Imaging (MRI)

Magnetic resonance microscopy permitted to us obtain high-resolution images of the aorta in
mice at the level of the abdominal aorta. Figure 7a–h show the MRI abdomen axial cross-sectional
anatomy of wild-type mice and ApoE KO mice. The upper side of the images is anterior and the
lower side is posterior. Before the nanoparticle injection, all mice were scanned for baseline, which are
recorded in Figure 7a–d. The red arrowhead symbol indicates the abdominal aortic walls of mice and
the light color represents the hollow structure.

Figure 7e–h are the images of magnetic resonance images of mice injected with MCP-1-motif
MNPs after 40 h. Bright aortic lumen and wall indicated that there was no significant iron oxide MNPs
accumulation in wild-type mice (Figure 7e). Besides, ApoE KO mice with four weeks of high-fat diet
had dark aorta walls, as shown in Figure 7h, indicating that the aorta was full of MCP-1-motif MNPs.
The degree of darkness in the aorta was more obvious when mice were fed a high-fat diet for a longer
period of time [49–51].

Figure 7i shows the pixel density of aorta (area = 41.31 mm2), which stood for the degree of light
color. The values of pixel density of all groups decreased because of the existence of iron oxide MNPs.
The ratio of pixels decreased after injections: 25.43% (wild-type mice ND4), 26.51% (ApoE KO mice
ND4), 38.14% (ApoE KO mice ND2 + HFD2), 40.86% (ApoE KO mice HFD4). This indicated that
MCP-1-motif MNPs in the blood flow obviously attached to the monocytes during the formation of
atherosclerosis plaques in ApoE mice compared to the other three groups. The MRI results concluded
that the MCP-1-motif MNPs would accumulate in the aorta in the atherosclerosis model.
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3.6. Non-Invasive In Vivo Imaging System

The IVIS spectrum system confirmed the existence of Cy5 MNPs and Cy5-MCP-1-motif MNPs
in the bloodstream of mice in 72 h through a background level of fluorescence throughout the body.
Figures 8 and S8 show the body fluorescence images of ApoE mice as well as wild-type mice injected
with iron oxide MNPs, respectively. Body fluorescence decreased due to nanoparticles being excreted
when the time reached 48 or 72 h. The fluorescence distribution in MCP-1-motif MNPs (Figure 8)
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tended to accumulate at the backbone of the body, which might indicate the aggregation of iron oxide
MNPs in the aorta. Compared to the experimental groups, MNPs distributed randomly throughout
the body.

Figure 8e shows the backbone fluorescence at any time point compared to the 0-h backbone
fluorescence. The fluorescence of ApoE KO mice with MCP-1-motif MNPs still maintained over 90% at
2 h compared to the other test groups. On the other hand, the fluorescence of MNPs in the two types
of mice all reduced to under 80% at 2 h, and the two wild-type groups were significantly different
from the ApoE KO mice with the injection of MCP-1-motif MNPs. This might result from the retention
ability of MCP-1-motif MNPs in the atherosclerosis model. After the 24-h injection, the signals all
decreased to about 30–40%, and they declined to under 20% in 72 h [52].
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After the 72-h injection, mice were sacrificed and the aorta, heart, liver, spleen, lung, and kidney
were harvested. The aorta and organs fluorescence conducted by IVIS are shown in Figure 9. From the
results of different organs, the presence of iron oxide MNPs was detected in the kidney of all types
of mice, indicating that mice would excrete the nanoparticles in urine through the kidney and the
bladder. However, the aorta of the atherosclerosis model injected with MCP-1-motif MNPs had notable
fluorescence signals, confirming the longer retention time of MCP-1-motif MNPs to atherosclerosis
plaque in the aorta.
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Figure 9. IVIS organ fluorescence of ApoE KO mice injected with (a) PBS; (b) MCP-1-motif MNPs;
(c) MNPs, and wild-type mice injected with (d) PBS; (e) MCP-1-motif MNPs; (f) MNPs. (g) Average
radiant efficiency diagram of IVIS organ fluorescence (n = 3).

3.7. Iron and Oil Drops in Specific Organs

After in vivo imaging, kidneys were cut into 6–8 µm cross-sections and the tissue sections were
stained with hematoxylin and Prussian Blue (Figure S9). Blue precipitation found in the kidney tissue
due to the injection of iron oxide MNPs confirmed that the kidney was the major organ employed for
excreting nanoparticles [31]. For further confirmation of MCP-1-motif MNPs in the atherosclerosis
model, the vessel wall of aorta was stained with Oil Red O, which illustrated atherosclerotic lesions,
and Prussian Blue, which illustrated precipitations of iron oxide MNPs (Figure 10). The staining results
showed the co-localization of MCP-1-motif MNPs and plaques. Oil drops and Prussian Blue are all
observed in Figure 10c, indicating the potential affinity of MCP-1-motif MNPs in the atherosclerosis
model [53–55].
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4. Conclusions

In this work, the characteristics of iron oxide MNPs were measured and analyzed. Electron
microscope images showed the quasi-spherical shape of nanoparticles and XPS spectra further
confirmed that the MCP-1 peptides conjugated on the iron oxide MNPs. They were relatively stable in
aqueous solution and dispersive when stirred.

Then, the following in vitro experiment was examined. We developed the cell viability process of
iron oxide MNPs, including an MTT assay and a Live/Dead assay. Whether in WEHI 274.1 monocytes
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or 3T3 cells, MCP-1-motif MNPs exhibited a cell viability around 100% compared to the control group.
Next, we successfully attached Cy5 fluorescence to iron oxide MNPs using an amine-ester reaction.
With different types of cells incubated with iron oxide MNPs for 1 h, we observed that MCP-1-motif
MNPs co-localized with WEHI 274.1 monocytes, indicating a potential tool for tracking early-stage
atherosclerosis lesions in aorta, usually aggregated with large quantities of monocytes.

Next, iron oxide MNPs were injected into wild-type mice, for the control group, and ApoE KO
mice, a widely-used atherosclerosis model, and in vivo imaging was performed. First, MRI showed that
MCP-1-motif MNPs were obviously accumulated in the abdomen aorta of ApoE KO mice fed a high-fat
diet for four weeks compared to other experimental groups. Second, we also found that the average
radiant efficiency of Cy5-MCP-1-motif MNPs nearby the backbone of the atherosclerosis model mice
was still 90% after 2 h. In addition, organs harvested after 72 h showed that nanoparticles accumulated
in the kidney for excretion in all mice injected with nanoparticles. Above all, Cy5-MCP-1-motif MNPs
largely aggregated in the aorta of atherosclerosis model mice, confirming the co-localization of aorta
plaque and MCP-1-motif MNPs. Finally, vital organs tissues were stained with Prussian Blue and Oil
Red O, which identified that the MCP-1-motif MNPs have the potential ability to track aorta lesions
and can be a promising targeting tool for early-stage atherosclerosis.

In conclusion, from the in vitro test and in vivo test, we observed that MCP-1-motif MNPs could
interact with monocytes and accumulate in the aorta of an atherosclerosis model, indicating a potential
targeting tool for early-stage atherosclerosis.
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distribution of (a) MNPs and (b) MCP-1-motif MNPs by DLS, Figure S3: Live/Dead assay of cells with
MCP-1-motif MNPs at day 1, Figure S4: Live/Dead assay of cells with MCP-1-motif MNPs at day 4, Figure S5:
Cell counting of (a) WEHI 274.1 monocytes and (b) 3T3 cells. (n = 3), Figure S6: (a) Fluorescence image and (b)
merged image of the Cy5-MCP-1-motif MNPs, Figure S7: Fluorescence image of (a) 3T3 cells and (b) WEHI 274.1
monocytes cultured with Cy5-MCP-1-motif MNPs, Figure S8: IVIS body fluorescence of ApoE KO mice and
wild-type mice injected with PBS from 0- to 72-h injection, Figure S9: Prussian Blue and hematoxylin staining of
kidney of (a–c) ApoE KO mice and (d–f) wild-type mice (scale bar = 50 µm), Table S1. Bond composition ratios of
the iron oxide MNPs.
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