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Abstract

Numerous pathogens, including viruses, enter the central nervous system and cause neurological disorders, such as encephalitis.
Viruses are the main etiologic agents of such neurological diseases, and some of them cause a high death toll worldwide. Our knowl-
edge about neuroinvasive and encephalitogenic virus infections is still limited due to the relative inaccessibility of the brain. To miti-
gate this shortcoming, neural ex vivo models have been developed and turned out to be of paramount importance for understanding
neuroinvasive and neurotropic viruses. In this review, we describe the major ex vivo models for the central nervous system, including
neural cultures, brain organoids, and organotypic brain cultures. We highlight the key findings from these models and illustrate how
these models inform on viral processes, including neurotropism, neuroinvasion, and neurovirulence. We discuss the limitations of ex
vivo models, highlight ongoing progress, and outline next-generation ex vivo models for virus research at the interface of neuroscience

and infectious diseases.
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Introduction

For viral pathogens, neuroinvasiveness is usually defined as the
capacity to enter the nervous system, while neurotropism is re-
lated to the ability to infect and replicate in neural cells. Neu-
rovirulence is a notion linked to central nervous system (CNS) dis-
ease manifestation caused by a virus, independently of neuroin-
vasion or neurotropism (Bauer et al. 2022). Encephalitic viruses
are thus neurovirulent because they cause CNS pathology, but all
neuroinvasive viruses are not necessarily neurotropic or neurovir-
ulent. Likewise, a virus can be neurotropic in cell culture experi-
ments, but can be unable to enter the nervous system (i.e. be non-
neuroinvasive). Neuroinvasive and encephalitic viruses gather a
myriad of pathogens from different families, such as herpes sim-
plex virus type 1 and cytomegaloviruses (HSV-1 and CMV, fam-
ily Orthoherpesviridae), Borna disease virus 1 (BoDV-1, family Bor-
naviridae), rabies virus (RABV, family Rhabdoviridae), enterovirus
A71 and D68 (EV-A71 and -D68, family Picornaviridae), West Nile,
Dengue, Zika, and tick-borne encephalitis virus (WNV, DENV, ZIKV,
and TBEV, family Flaviviridae), La Crosse virus (LACV, family Peri-
bunyaviridae), human immunodeficiency virus (HIV, family Retro-
viridae), canine distemper, measles, Hendra and Nipah virus (CDV,
MeV, HeV, and NiV, family Paramyxoviridae), to cite a few. Encephali-
tis, which is classically defined as the inflammation of the brain,
can be the result of a direct brain infection or indirect affec-
tion following infection outside the CNS. Numerous viruses are
thought to commonly reach the CNS, accidentally or as a re-
sult of a genuine neurotropism, transiently/acutely or chroni-
cally/persistently, actively replicating or not (Ludlow et al. 2016,
Bookstaver et al. 2017). However, what is known about these

viruses mainly comes from data obtained in animals or after
symptoms onset and post-mortem. Thus, a knowledge gap exists
regarding the early, asymptomatic, and prodromal stages of vi-
ral encephalitis, but also regarding neuropathology progression at
the organ, cellular, and molecular levels, because of the relatively
inaccessible nature of the CNS. To investigate these aspects, rel-
evant models are needed and researchers have used three main
types of ex vivo systems of increasing complexity, namely neural
(poly)cultures, organoids, and organotypic cultures. Their primary
goal is to mimic the tissue/organ microenvironment, and regard-
ing neurovirulent viruses, to ultimately model and decipher no-
tably viral possible entry routes into the CNS, neurotropism, dis-
semination, virus-host cell interactions, and viral evolution.
Viruses are the main cause of encephalitis, which often co-
occurs with viral meningitis. Although the cause of many en-
cephalitic cases remains unknown, viruses are the etiologic agent
of 70% of confirmed cases. Viral encephalitis still causes high
morbidity (3.5 to 7.5 per 100000 people) and mortality (up to
90%-100% depending on the pathogen and outbreaks) worldwide
(Venkatesan 2015, Ludlow et al. 2016, Bohmwald et al. 2021, Said
and Kang 2024). Although specificities in pathophysiological fea-
tures exist depending on the virus, encephalitis is essentially an
inflammation of the brain parenchyma that causes brain swelling
and neurological damage, sometimes associated with vasculitis.
Broadly speaking, cerebral edema, vascular congestion, throm-
bosis, hemorrhage, necrosis, immune cell infiltration and associ-
ated inflammatory response can regularly be observed. Brain re-
glons and neural cells can be differentially infected depending on
the virus (Dahm et al. 2016, Bohmwald et al. 2021). Encephalitic
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viruses can reach the CNS by different routes. They can use an-
terograde or retrograde axonal transports from peripheral neu-
rons (e.g. motor or olfactory neurons, for RABV for example) (Ly-
cke and Tsiang 1987). Access can also occur hematogenously by
the crossing of the blood-brain/cerebrospinal fluid or meningeal-
cerebrospinal fluid barrier, via direct infection of endothelial cells,
compromising the barrier, or via infiltration of virus-carrying im-
mune cells, in the case of WNV for instance (Wang et al. 2004,
Verma et al. 2010). For a certain number of pathogens such as MeV,
NiV, or severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), entry routes into the CNS during natural infection are still
not completely deciphered (Griffin et al. 2012, Koyuncu et al. 2013,
Bauer et al. 2022, Jagst et al. 2024).

As stated above, three important notions regarding these
viruses infecting the CNS are neuroinvasiveness, neurotropism,
and neurovirulence, which are often used interchangeably in the
literature although they refer to distinct meanings, a fact partic-
ularly highlighted during the SARS-CoV-2 pandemic (for a review,
see Bauer et al. 2022). Actually, these are central questions that are
modeled in in vitro and ex vivo models for the study of encephalitic
viruses: How does a virus enter the nervous system (neuroinva-
siveness), which cells of the nervous system are infected by this
virus (neurotropism), and how does the virus cause nervous sys-
tem pathology (neurovirulence) (Fig. 1)? We detail here how CNS
models are used to study viral neuroinfections by highlighting
their properties and key findings about different pathogens, and
what will be the future developments for these systems.

Two-dimensional models: neural cultures

Classical neural (poly)cultures consist of two-dimensional (2D)
cultures of individual or mixed neural cell types (neurons, as-
trocytes, oligodendrocytes, and microglia). They can be obtained
from different parts of the CNS (spinal cord, brain substructures
such as cortex, cerebellum, hippocampus, brainstem, etc.). Var-
ious methods to generate these cultures and subsequently use
them in infection studies have been developed over the years. The
most straightforward method for generating these cultures is the
isolation and culture of a single cell type from embryonic, fetal,
or neonatal animal brains (Banker and Cowan 1977, Brewer et al.
1993, Ahlemeyer and Baumgart-Vogt 2005, Brewer and Torricelli
2007). Alternatively, neural stem/progenitor cells can be isolated
and cultured as adherent monolayer cultures or neurospheres
(i.e. free-floating neuroprogenitor cells clusters), which can self-
renew, proliferate, and be passaged in long-term culture. They re-
main in an undifferentiated or early differentiated state and can
thus then be differentiated into neurons, astrocytes, and oligo-
dendrocytes (Liem et al. 1995, Gobbel et al. 2003, Yan et al. 2005,
Brewer and Torricelli 2007, Barak et al. 2022). Such cultures can
also be obtained from embryonic stem cells (ESC) (Yan et al. 2005)
or induced pluripotent stem cells (iPSCs) (Barak et al. 2022).
These cultures have been used for decades to study encephal-
itogenic and other neurovirulent viruses. Almost 70 years ago,
cytopathological effects of poliomyelitis virus upon infection of
isolated human neural cells were described (Hogue et al. 1955),
and in the late 1960s, cultured human and murine glial cells
were reported to sustain long-term production of highly encephal-
itogenic arboviruses without cytopathic effect (Illavia and Webb
1969) (Fig. 2). Neural cultures are particularly useful tools be-
cause they are a simple reductionist system that is relatively easy
to implement and analyze, being rather well defined in terms
of culture conditions (medium, oxygen needs, etc.). They enable
working without the influence of hormonal, vascular, and im-

mune/inflammatory factors facilitating intracellular and cell-to-
cell observation (Brewer and Torricelli 2007). To go further, they
allow the study of various aspects of encephalitic neuroinvasive
viruses, from neural cell permissiveness, intracellular transport of
nucleocapsids, cytopathic effects, viral persistence, to viral spread
between neural cells.

Bornaviridae: BoDV-1

BoDV-1 is a prototypical example of a highly neurotropic virus,
which causes severe encephalitis, mainly in horses and sheep, but
also in humans, although little is known regarding pathogenesis
in the latter (Jungbéack et al. 2025). BoDV-1 was shown to infect and
replicate in human neural stem/progenitor cells without altering
their survival. However, in mixed neurons-astrocytes cultures, it
highly impaired the survival of neurons newly generated upon
differentiation of these progenitor cells, by inducing Caspase-3-
mediated apoptosis (Brnic et al. 2012). Surprisingly, infection of the
main target of the virus, hippocampal neurons, does not impair
neuronal survival (Hans et al. 2004). Infection of neurons grown
on multielectrode arrays revealed no impact on spontaneous neu-
ronal activity. It showed, however, an impairment of synaptic plas-
ticity, because pharmacological induction of increased synaptic
efficacy by bicuculline causes a rise in neuronal burst frequency
(reflective of synaptic activity), but this high level of network ac-
tivity did not last after drug removal for BoDV-1-infected neurons
thatreturned to basal levels, contrary to non-infected ones whose
increased activity lasted for several hours (Volmer et al. 2007, Prat
et al. 2009). Another impact of BoDV-1 on neuron physiology, as
shown following infection of primary rat neurons, is the increase
of the proportion of DNA double-strand breaks, which serve as
a docking platform for the virus replication organelle, resulting
in impaired neuronal firing (Marty et al. 2021). The literature pro-
vides discordant results concerning BoDV-1 cytopathicity and per-
sistence in neural cells (Ovanesov et al. 2008a,b, Brnic et al. 2012,
Jungbéck et al. 2025). As a matter of fact, BoDV-1 pathogenesis
particularly highlights the discrepancies that can exist between
in vivo and ex vivo infection, but also the utility of the neural cul-
tures to investigate contradictory observations. BoDV-1 is non-
cytopathic and non-cytolytic in cultured rat neurons; however,
in infected newborn animals, neuronal death is observed (Weis-
senbdck et al. 2000, Hans et al. 2004). In addition, infection of adult
rats is characterized by strong neurotropism associated with neu-
ronal destruction and leads to severe meningoencephalitis, as ob-
served for human infection (Jungback et al. 2025). Neural cultures
showed that neuronal death actually occurs during differentia-
tion as a result of viral interference on pathways important for
neuronal maturation (Brnic et al. 2012). On the other hand, BoDV-
1 can also persist in the brain of animals without impairing neu-
rons (Lipkin et al. 2011, Nobach et al. 2015). Microglia activation
has also been proposed as a mechanism responsible for neuronal
death in neonatal infection (Ovanesov et al. 2008a,b).

More specifically, sole expression of BoDV-1 phosphoprotein in
human neural progenitor cultures inhibited neurogenesis, a phe-
notype correlated with decreased expression of genes involved in
neuronal differentiation (Scordel et al. 2015). In-depth study of
non-cytolytic BoDV-1 persistence revealed that it depends on the
expression of the viral non-structural protein X, which localizes
in the nucleus and in mitochondria and inhibits the induction of
apoptosis in neurons (Poenisch et al. 2009). This led to investigat-
ing the promising therapeutic potential of BoDV-1 X as a neuro-
protective protein in the context of neurodegenerative patholo-
gles. Indeed, using microfluidic cultures of primary neurons, the
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Figure 1. Overview of the different CNS models used to address questions related to neuroinvasive and neurotropic viruses. Created in BioRender.com.

protein was shown to protect neurons against neurogenerative in- ization led to increased neuroprotection (Ferré et al. 2016). Fur-
sults, notably by preventing axonal fragmentation and enhanc- ther, expression in primary motor neurons from a murine model
ing mitochondrial filamentation. In rotenone-treated neurons, X of amyotrophic lateral sclerosis, characterized by mitochondrial
conferred protection against oxidative stress (Szelechowski et al. dysfunction leading notably to decreased ATP production,of the

2014). Engineering a protein with improved mitochondrial local- domain of X responsible for its neuroprotective effects, restored
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Figure 2. Timeline summarizing milestones in the implementation of neural ex vivo models in virology research. Created in BioRender.com.

ATP levels. Likewise, in vivo treatment of this murine model with
X or domain thereof delayed symptoms onset and improved dis-
ease progression, with notably improved motor performance and
motor neuron survival (Tournezy et al. 2024).

Orthoherpesviridae: CMV, HTLV-1, and HSV-1

By contrast, human CMV (HCMV) impairs neuronal differentiation
and is cytopathic to precursor cells, as demonstrated with neuro-
sphere cultures from human fetus brains, but also to differenti-
ated neurons and astrocytes (van Den Pol et al. 1999, Odeberg et
al. 2006). Similarly, HIV infection of human neurospheres revealed
that their differentiation ability was not impaired but newly gen-
erated neurons showed signs of injury and decreased expression
of neuronal markers (McCarthy et al. 2006). In the same family,
human T-lymphotropic virus 1 (HTLV-1) can infect the CNS and
cause neuroinflammation and highly rare cases of encephalitis,
although the consequences of HTLV-1 neuroinfection may be un-
derestimated (Costa et al. 2012, Rocamonde et al. 2023a,b). Little
is known about the neurotropism of HTLV-1, and it was recently
shown to primarily target neurons in human iPSCs-derived neu-
ral polycultures and in the brain of primates naturally infected
(Rocamonde et al. 2023a). CNS infection by HSV-1, the most com-
mon cause of encephalitis, was also modeled using human iPSCs-
derived neurons. This system was used for demonstrating their
susceptibility to infection by this virus that can enter a quiescent
state in these cultures but not in progenitor cells, for comparing
the changes in gene expression, cellular functions, and epigenetic
marks between acute, quiescent/lytic, and latent infection of neu-
rons, and for comparing antiviral drugs (D’Aiuto et al. 2015, 2019).

Rhabdoviridae: RABV

On the contrary, RABV is a well-known zoonotic agent causing a
well-documented encephalitis, and ex vivo studies using stem cell-
derived human forebrain-type neuron/astrocyte cultures, com-
bined with microfluidics, demonstrated induction of inflamma-
tory cytokines, absence of neuronal death, and axonal traffick-
ing of the virus in the neuronal network upon infection (Sun-
daramoorthy et al. 2020a). Infection of murine primary neurons
revealed a selective viral-induced axonal and dendritic degenera-
tion that hinders virus spread between connected neurons (Sun-
daramoorthy et al. 2020b).

Paramyxoviridae: MeV and NiV

Primary neural cultures have been widely used to study important
aspects of MeV, a paramyxovirus causing rare but serious acute or
delayed encephalitis, with respect to its neuroinvasive properties,
especially interneuronal and intraneuronal dissemination (Young
and Rall 2009). Using primary cultures of embryonic hippocampal
neurons, MeV (vaccine strain) cell-to-cell spread was shown to be
receptor-independent and to require direct cell-cell contact but
not syncytia formation, as reported in the brain of patients with
MeV encephalitis. In patient brains, large syncytia are not com-
monly observed compared with what is seen for non-neuronal
cells, leading to the hypothesis of a trans-synaptic transmission
(Lawrence et al. 2000). Infection of similar hippocampal neuron
cultures revealed that the well-known antiviral protein Tetherin
surprisingly promotes MeV neuronal infection (Miller et al. 2021).
In pure cultures of neurons and cocultures of murine neurons and
astrocytes, it was shown that MeV seemed unable to infect as-
trocytes directly, but that neuron-astrocyte contact was needed.
In astrocytes, MeV can replicate and disseminate without forma-
tion of syncytia and production of infectious units, which may
be related to their natural ability to self-organize in syncytial-
like networks. Moreover, neuron-neuron and astrocyte-astrocyte
spread was independent of a high affinity receptor and required
cell membrane fusion, contrary to neuron-astrocyte spread that
may rely on the release of infectious units in the synaptic cleft
(Poelaert et al. 2021). Note, however, that MeV remains a primate-
restricted virus, because outbreaks in both human and non-
human primates are reported (MacArthur et al. 1979, Choi et
al. 1999, Dogadov et al. 2023), which may lead to some varia-
tion in the infection behavior between species used to model
infection.

These models, along with three-dimensional (3D) models to
some extent, as described below, have been used and optimized
for studying neurotropic/neuroinvasive viruses such as BoDV-1 or
MeV, and further validated for emergent pathogens such as NiV or
SARS-CoV-2. For NiV, infection of primary human olfactory neu-
rons revealed efficient viral replication and a cytopathic effect
(Borisevich et al. 2017, Ozdener et al. 2023), arguing for the ex-
istence of an olfactory route for Henipavirus neuroinvasion, as al-
ready suggested in a hamster in vivo model (Munster et al. 2012).
This model recapitulates some key features of the human olfac-
tory epithelium, such as heterogeneity in olfactory cell popula-
tion, expression of olfactory receptors, and responses to odorant
cues (Borisevich et al. 2017, Ozdener et al. 2023).



Flaviviridae: TBEV and ZIKV

In the Flaviviridae family, TBEV is well described to cause neurolog-
ical pathology but little is known about the molecular interplays
governing viral tropism and susceptibility of neural cells. In this
regard, infection of human neural progenitor-derived neuronal-
glial cultures phenocopies natural human brain infection with
predominant tropism for neurons inducing neuronal death, and
astrogliosis. The authors demonstrated that distinct susceptibil-
ity in neurons and astrocytes was linked to differential antiviral
capacities, with astrocytes being able to upregulate more immune
genes and more strongly than neurons (Fares et al. 2020). With
respect to TBEV-induced neuronal death, transcriptomic analysis
in the same model revealed an upregulation of pyroptosis- and
apoptosis-related genes upon infection (Fares et al. 2021). Simi-
larly to BoDV-1, study of human primary neural progenitor cells
infected with ZIKV indicated that neurogenesis and differentia-
tion were stimulated upon infection, via notably the aberrant ac-
tivation of the Notch pathway, inducing premature differentiation.
Progenitor cells were more permissive to the infection than cells
differentiated into neurons and astrocytes, phenotypes driven by
the mounting of a robust innate immune antiviral response in
more differentiated cells. Connecting these data to natural preg-
nancy infection, they may explain the drastic negative impacts
on fetal brain development (leading notably to microcephaly and
other neurological disorders), via the targeting of neural progeni-
tors and dysregulation of neurogenesis (Ferraris et al. 2019).

Coronaviridae: SARS-CoV-2

Regarding SARS-CoV-2, there were conflicting data on whether it
commonly targets the brain before the Omicron variant, espe-
cially because most of them come from post-mortem analysis
that are a picture of the infection endpoint and resulting dam-
ages, which do not necessarily reflect the previous stages of the
infection (Matschke et al. 2020, Ferren et al. 2021, Meinhardt et al.
2021, Solomon 2021, Song et al. 2021, Bauer et al. 2022, Beckman
etal. 2022, Stein et al. 2022). Be that as it may, SARS-CoV-2-related
CNS complications and (rare) cases of encephalitis exist (Vander-
vorst et al. 2020, Valencia Sanchez et al. 2021). Investigation of
SARS-CoV-2 neurovirulence in primary murine neurons and hu-
man ESC-derived cortical neuron cultures revealed neuronal fu-
sion induced by infection that resulted in impaired synaptic ac-
tivity (Martinez-Marmol et al. 2023).

Drawbacks of the model

Despite the simplicity to obtain and to use them to investigate
important aspects of virus biology, the representativeness of neu-
ral cultures regarding CNS physiology is debatable (Table 1). As a
cell culture technique, neural cells are kept out of their tissue and
organ context, meaning that initial 3D configuration and cellular
interactions are lost and recreated in two dimensions. Moreover,
for cultures of a single cell type, neurons in particular, purity can
be challenging because glial cells can proliferate at a high rate
and overgrow the culture (Altman 1963, Lesslich et al. 2022). In
polycultures, having a representative ratio of the four main CNS
cell types is also not trivial (Lesslich et al. 2022). For example, de-
pending on the protocol used, embryonic cultures can typically
yield 60%-95% neurons and 5%-40% astrocytes, or 40% neurons,
50% astrocytes, and 10% microglia, while adult cultures consist
of 80% neurons, 10% oligodendrocytes, 5% microglia, and 5% as-
trocytes (Gao et al. 2002, Patel and Brewer 2003, Brewer and Torri-
celli 2007, Gao 2012, Goshi et al. 2020). Cell maturity (and resulting
ability in terms of neuronal electrical activity or glial phagocyto-
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sis for example), differentiation, neuron myelination, formation
and abundance of synapses, etc., can also vary greatly between
the vast number of available protocols. Animal cultures usually
require waiting ~2 weeks before using them for infection stud-
ies, and astrocytes seem to show an activation profile that may
impede infection success and bias observations (Thomson et al.
2008, Kleinsimlinghaus et al. 2013, Gilmour et al. 2019). iPSCs have
proven their potential for the generation of relevant neural cul-
tures, especially for overcoming the difficulty to have access to
primary human neural cells and for obtaining cultures of high
quality and purity, but are still an expensive and time-consuming
method. They can virtually generate all cell types of the CNS and
thus have been used to produce pure and defined mixed neural
cultures (Guttikonda et al. 2021, Sato et al. 2021, Barak et al. 2022).
Neural cultures also usually lack blood-brain barrier (BBB, en-
compassing endothelial cells and pericytes) and vasculature more
broadly speaking, choroid plexuses, and immune system, which
are important elements in the neuropathogenesis of neuroviru-
lent and encephalitogenic viruses.

3D microphysiological models: towards
complex brain organoids

Another application of iPSCs is the generation of brain organoids,
which are self-assembled microphysiological 3D culture systems
composed of neuronal and glial cells recapitulating aspects of
the brain (Lancaster et al. 2013, Lancaster and Knoblich 2014,
Barreras et al. 2023, Birtele et al. 2025). They can be obtained
from human and animal cells, which is advantageous for studying
zoonotic neurotropic viruses from different host species (Pain et
al. 2021, Kim et al. 2025). Unguided protocols spontaneously pro-
duce organoids, giving rise to heterogeneous structures. Alterna-
tively, guided protocols use specific patterning and growth factors
to generate more organized organoids that are representative of
a given brain region (e.g. cortex, hippocampus, or midbrain) (Fan
et al. 2022, Barreras et al. 2023). Their use for studying encephali-
togenic viruses is largely less widespread than that of neural cul-
tures, although they allow to address questions related to neu-
ral permissiveness, viral neurotropism, viral spread, cytopathic ef-
fects, impacts on organoid gene expression, organization, size and
innate immune response upon infection, and drug testing (Depla
et al. 2022, Barreras et al. 2023). Their major interest is the pos-
sibility to genetically modify iPSCs to study gene mutations and
their impact on viral infection in a complex cellular model. In ad-
dition, they can be derived from somatic cells easily accessible
from patients (Beghini et al. 2024).

Flaviviridae: ZIKV and DENV

Cerebral organoids have been notably used to study ZIKV-induced
microcephaly, and showed reduced size of organoids, disorganiza-
tion with less ventricles and loss of progenitor cells upon infection
(Garcez et al. 2016, Qian et al. 2016, Antonucci and Gehrke 2019).
In the study of Garcez et al., organoid growth impairment was spe-
cific to ZIKV because infection with DENV2 (16681 strain), another
closely related Flavivirus, did not impact organoid size (Garcez
et al. 2016). In particular, ZIKV and DENV show major patholog-
ical differences in human brain organoids, with ZIKV infection
inducing apoptosis and defects of growth and folding in cortical
organoids, while DENV infection does not (Li et al. 2017b). ZIKV
preferentially infects neural progenitor cells, consistent with de-
velopmental defects reported when infections occur during preg-
nancy (Garcez et al. 2016, Tang et al. 2016). The AXL protein has
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Table 1. Advantages and limitations of the main neural models used to study neuroinvasive and neurotropic viruses.

Neural cultures

Brain organoids

Organotypic brain cultures

Advantages Easy; quick; inexpensive; long-term
culture; rather well characterized
Limitations Cells out of their physiological

context; difference between young
and old animal; access to human
cells difficult; potential lack of cell
types; lack of vascularization,
immune system, and blood-brain
barrier; low representativeness of
physiological neural populations;
heterogeneity in protocols

3R compliance; 3D cultures;
patient-specific; starting material
easy to obtain even from humans;
better reflects in vivo cell identity;
model of any brain region; more
predictive than cell cultures
Expensive; long and not easy to
obtain; high variability; usually
lack microglia, vascularization,
immune system, and blood-brain
barrier; infection and analysis
somewhat tricky; necrosis in the
center; heterogeneity in protocols;
imperfect replication of the precise
brain cellular composition,
diversity, and structural

3R compliance; 3D cultures in its
original tissue configuration; all
cell types; easy to obtain; easy to
infect and analyze; more predictive
than cell cultures

Difference between young and old
animal; access to human
organ/sample difficult; lack of
vascularization, immune system,
and blood-brain barrier;
slicing-induced astrogliosis;
possible proliferation of glial cells;
hard to standardize human slices

organization brain

been proposed to be a receptor for ZIKV in the brain. However, ge-
netic ablation of AXL by TALENs and CRISPR genome editing tech-
nology in iPSCs, then differentiated into neural progenitor cells or
brain organoids, did not prevent infection and death of the cells
(Wells et al. 2016). This work was further supported by cell cul-
ture studies showing that AXL mediates ZIKV entry into human
astrocytes and microglia but not neural progenitors, and in vivo
knockout studies (Retallack et al. 2016, Meertens et al. 2017, Li et
al. 2017a). The authors suggested that the virus uses another re-
ceptor to enter into the less differentiated cells. By contrast, DENV,
for which AXL is also an entry factor, is dependent on this protein
to infect microglia, astrocytes, and neural progenitors (Meertens
etal. 2012, 2017).

Orthoherpesviridae: HSV-1 and CMV

In the case of HSV-1 encephalitis, the genetic determinants in pa-
tients remain poorly documented. Data indicating that heterozy-
gous mutations in the SNORA31 gene found in patients could be
causative of HSV-1 encephalitis were further confirmed using ge-
netically engineered human iPSCs-derived cortical neurons and
oligodendrocytes. Indeed, CRISPR-mediated deletion of SNORA31
makes these neurons susceptible to HSV-1, similarly to neurons
derived from iPSCs of patients with SNORA31 mutations (Lafaille
et al. 2019). These studies highlight the relevance of genetic ma-
nipulation of iPSCs and derived organoids to decipher key mech-
anisms of neuroinfection.

HSV-1 also causes microcephaly. Compared with ZIKV, HSV-1
impaired organoid size as well, and even caused their disintegra-
tion at a higher dose. However, HSV-1 and ZIKV infections induced
different transcriptional responses. Additionally, while interferon
(IFN) beta treatment rescued ZIKV-induced organoid alterations, it
was not efficient against HSV-1 (Krenn et al. 2021). Distinct patho-
logical features of HSV-1 were highlighted in brain organoids com-
pared with 2D neural cultures, with acute and latency-like in-
fections observed in both cases. The reactivation was, however,
less efficient for HSV-1 in organoids, as seen in the CNS of an-
imal models where HSV-1 reactivation is inefficient. HSV-1 was
reported to spread from the organoid periphery to its inner lay-
ers (D’Aiuto et al. 2019). Modeling HSV-1 encephalitis in human
brain organoids demonstrated virus-induced alteration of tissue
integrity, neuronal functions, and transcriptome. Although highly

reducing viral load, acyclovir used as antiviral treatment did not
prevent viral damage and induction of neuroinflammation, but
only did in combination with anti-inflammatory drugs, offering a
potential therapeutic strategy aiming at stopping viral replication
and tuning inflammatory response to mitigate subsequent brain
injury (Rybak-Wolf et al. 2023).

Three studies thoroughly examined the impact of HCMV infec-
tion on brain organoids (Brown et al. 2019, Sison et al. 2019, Sun
et al. 2020). HCMV was able to spread in cortical organoids and
impaired their structural organization (such as neural rosettes
formation) and the further generation of differentiated neurons
(Brown et al. 2019, Sison et al. 2019). Similar observations were
made by Sun and colleagues, who reported reduced organoid
growth upon infection and alteration in the formation of corti-
cal layers. Incubation of the virus with neutralizing antibodies re-
stored the defects caused by infection in these settings (Sun et al.
2020).

Coronaviridae: SARS-CoV-2

As expected, numerous studies used human brain organoids to
assess SARS-CoV-2 neurotropism and neurovirulence, with some-
times discrepant results that may be tied to differences in mul-
tiplicity of infection used, type of protocol for organoid produc-
tion, cellular composition, and age of the organoids, etc. (Oster-
mann and Schaal 2023). They demonstrated neurons permissive-
ness under these conditions and showed productive infection of
neurons to different extents, and syncytia formation upon cell-
cell fusion as observed in neural cultures. Evidence of neuronal
death and perturbations of synaptic functions were associated
with the infection, indicating a potential direct viral involvement
in CNS manifestations for some authors (Bullen et al. 2020, Ra-
mani et al. 2020, Zhang et al. 2020, Song et al. 2021, Partiot et
al. 2024b). SARS-CoV-2 infection of brain organoids aberrantly re-
arranges synapse morphology with enlargement of presynaptic
structures and increase of their number as revealed by analysis
of the presynaptic marker Bassoon, and perturbs electrical ac-
tivity, as shown by monitoring local field potentials of organoids
cultured on microelectrode arrays. Mechanistically, infection in-
duces an upregulation of synaptic proteins expression, the most
overexpressed being Latrophilin-3 (LPHNS3), a protein involved in
synapse formation and maintenance. Interestingly, this protein



and its receptor are also upregulated in the brain of COVID-19
cases. Swelling of synapses was dependent on LPHNS3, as it could
be reverted by pharmacological treatment with an agonist pep-
tide of this protein. Treatment also reverted the altered electrical
activity of infected organoids. This study also suggested a key role
of microglia in synaptic pruning in this context, because adding
monocytes to the cerebral organoids reverted the enlargement of
synapses (Partiot et al. 2024b). The relevance of these findings
with respect to natural CNS infection and COVID-19 neurologi-
cal symptoms should be further addressed. Indeed, even if LPHN3
deficiency has been associated with defective electrical activity
in mouse (Sando and Stdhof 2021), there are no available data
involving this protein in viral infections to date. Similarly, repli-
cation of SARS-CoV-2 in human iPSC-derived brain organoids in-
duces death of cortical neurons and loss of synapses (Mesci et al.
2022).

Such a model of infection should be carefully used to address
specific questions and does not allow evaluating whether the
virus can actually reach and enter the brain or the CNS more glob-
ally. A choroid plexus organoid model showed that choroid plexus
cells were more permissive to SARS-CoV-2 than neurons and
that infection impaired the integrity and function of the blood-
cerebrospinal fluid barrier (Pellegrini et al. 2020). Neuron-neuron
and neuron-glia fusion, and subsequent formation of syncytia via
the fusion of neurites (and more marginally soma), were reported
in SARS-CoV-2-infected brain organoids (Martinez-Marmol et al.
2023).

Paramyxoviridae: MeV, NiV, and HeV

Paramyxoviruses gather important neurovirulent and en-
cephalitic viruses, including highly lethal zoonotic pathogens
with pandemic potential such as HeV and NiV; however, only
a few studies using brain organoids to deal with this family of
viruses have been conducted to date. Infection of human brain
organoids with MeV highlighted the crucial role of the viral
fusion protein in neural dissemination. Notably, single mutations
destabilizing the fusion protein, identified in patients with MeV
encephalitis, rendered the virus highly efficient to infect and
spread in organoids. A fusion inhibitory peptide was shown to
prevent viral spreading (Mathieu et al. 2021). To date, no study
using brain organoids for examining emerging HeV and NiV has
been published, despite these viruses being highly neuroinvasive
and encephalitic to animals and humans.

Retroviridae: HIV-1

An elegant model of coculture between microglia and human
brain organoids was used to investigate HIV-1 neuropathogenesis
(Dos Reis et al. 2020). HIV-1 may cause encephalitis and targets
microglia and other glial cells in the CNS, while leaving neurons
uninfected (Masliah et al. 1992, Kaul and Lipton 2006). Microglia
infected with HIV-1 were added to human brain organoids and
were shown to attach, infiltrate, support productive infection, and
produce inflammatory cytokines in the organoids, consistent with
the neuroinflammatory environment seen in vivo. This resulted in
neuronal loss and astrocytosis (Dos Reis et al. 2020). Another re-
port using microglia-containing human brain organoids indicated
that microglia were the only target cells in this model, and that
they supported productive infection (Gumbs et al. 2022). This was
further demonstrated in a recent model of cerebral organoids, in
which hematopoietic progenitors are cocultured with human iP-
SCs and differentiated into microglia during organoid formation,
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generating organoids with a physiologically relevant percentage
of microglia of ~7% (Narasipura et al. 2025).

Picornaviridae: EV-A71, EV-D68, and PeV

Picornaviridae include notable neurotropic and encephalitic
viruses, especially EV-A71, EV-D68, and parechoviruses (PeV)
(Huang and Shih 2015, Leber et al. 2016, Wiley 2020, Wang et al.
2023, Liu and Long 2025). EV-A71 primarily replicates in the gut,
but can invade the CNS via different means, by using retrograde
axonal and trans-synaptic transport, and crossing the BBB via
the infection of immune cells. It can infect peripheral nerves
such as enteric and cranial nerves, and motor neurons at neu-
romuscular junctions (Tan et al. 2014, Lim et al. 2021, Wang et
al. 2023, Gaume et al. 2024). Ex vivo neural models are somewhat
underused to explore EV-A71 neuropathology. Tropism for motor
neurons was notably demonstrated in human ESC-derived hu-
man spinal neurons (consisting of mixed cell populations, namely
motor neurons, interneurons, and neural progenitor cells) and
spinal cord organoids, in which neural progenitors and neurons
were found infected (Chooi et al. 2024). Using both 2D and 3D
models of neural, intestinal, and respiratory tissues, Tseligka
and colleagues investigated intra-host adaptation by studying a
variant of EV-A71 bearing a substitution in the VP1 capsid protein
(Tseligka et al. 2018), acquired in an immunocompromised pa-
tient. Interestingly, this substitution was absent in the respiratory
tract, but the variant was present in a mixed population in the
gut. By contrast, it was present as a dominant population in the
blood and cerebrospinal fluid, and was shown to be advantageous
for the infection of a neural cell line, suggesting this substitution
promotes neurotropism and enables neuroinvasion (Cordey et
al. 2012). Mechanistically, the substitution seems to confer the
virus the ability to bind heparan sulfates. However, instead of
actually favoring neurotropism specifically, it rather seems to
improve overall dissemination and subsequent reaching of the
CNS (Tseligka et al. 2018).

In the case of EV-D68, the role of heparan sulfates in promot-
ing virulence and neurotropism was also tackled in iPSCs-derived
brain organoid. Because heparan sulfates are broadly expressed in
human tissues (and also expressed in this organoid model), muta-
tions conferring the ability to bind heparan sulfates were hypoth-
esized to expand EV-D68 tropism (i.e. confer neurotropism). Inter-
estingly, heparan sulfates-binding variants did not have any ben-
efits, as all non-binding and binding variants could infect neural
cells of human cerebral organoids (Sridhar et al. 2022), suggesting
that gaining this ability is not or is marginally involved in the ac-
quisition of neurotropism. Brain organoids were also used to com-
pare a neuroinvasive and the prototypic non-neuroinvasive strain.
They showed higher permissiveness to the former, as seen in vivo
and as opposed to what is observed in the SH-SY5Y neuroblas-
toma cell line where both viruses replicate (Vazquez et al. 2023),
highlighting the relevance of organoid models. Neuropathogenic
capacity of different EV-D68 strains was effectively modeled in
forebrain organoids with regard to cellular innate responses, tak-
ing advantage of cultures at different developmental stages. In
less mature organoids (shorter culture period), neural stem cells,
which had functional antiviral innate responses, were shown to
basally express IFN-stimulated genes, priming them to respond to
the infection. Accordingly, while both neuropathogenic and non-
neuropathogenic strains could efficiently infect late organoids
(and SH-SYSY cells), only the neuropathogenic strain could repli-
cate productively in early organoids, suggesting a higher per-
missiveness of late organoids. In addition, neuropathogenic EV-
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D68 counteracts [FN responses, hampering innate induction. This
study further showed that the entry of both strains depends in
part on sialic acid expressed in cerebral organoids (Vazquez et al.
2024). Similar findings concerning the antiviral immunity of pro-
genitor cells were made with LACV in early forebrain organoids
derived from human iPSCs, in which type I [FN-mediated innate
signaling was induced within uninfected neural progenitors and
limited viral spread and replication. Further, the virus antago-
nized this response via its specialized protein NSs (Negatu et al.
2025).

However, there are contradictory results concerning induction
of and response to IFN in neural stem/progenitor cells and neu-
rons at different maturation states, which may be linked to the dif-
ferent models, protocols, and viruses used, the origin of the model
(human, wild-type [WT] or transgenic animal), or the type of neu-
ronal populations studied (Farmer et al. 2013, Fantetti et al. 2016,
Ferren et al. 2019, Lin et al. 2019, Winkler et al. 2019, Telikani et
al. 2022, Carvajal Ibafiez et al. 2023, Ferren et al. 2023, Vazquez et
al. 2024, Negatu et al. 2025). Typically, while some reports indicate
an association of neuronal maturation with increased susceptibil-
ity to LACV-induced apoptosis mediated by reduced IFN response,
or a protection of neural stem/progenitor cells from MeV infec-
tion by IFN gamma (Fantetti et al. 2016, Winkler et al. 2019), other
data show that human neuronal differentiation induces the up-
regulation of type I IFN pathway and increase of functional IFN
response, and suggest that immature neurons and progenitors
are more susceptible to alphaviruses infection, or that adult/more
differentiated neurons become non-permissive to infection in the
case of MeV for example (Dhondt et al. 2013, Farmer et al. 2013,
Ferren et al. 2019, Welsch et al. 2019, Ferren et al. 2023). This as-
pect therefore warrants more precise characterization and use of
pertinent systems with respect to human neuropathology.

EV-D68 tropism remains elusive during human infection; how-
ever, in vivo and in vitro studies indicate that it targets spinal
cord motor neurons, cortical neurons, and astrocytes (Brown et
al. 2018, Poelaert et al. 2023). By infecting iPSCs-derived spinal
cord organoids containing spinal motor neurons, interneurons,
and glial cells, it was shown that historic strains of EV-D68 were
unable to replicate, contrary to contemporary neuropathogenic
strains, even infecting deep inside the organoids, with the extra-
cellular release of progeny virions but absence of obvious cyto-
pathic effects (Aguglia et al. 2023).

In the same family, certain PeV such as PeV-A3 can cause
CNS disease, while others do not, such as PeV-Al. In human
brain organoids, both viruses are able to infect and replicate
in astrocytes and neurons (Capendale et al. 2024). However,
PeV-A1l infection was more efficient than that of PeV-A3, con-
trary to observations made in neuroblastoma cell line (Wester-
huis et al. 2012, Capendale et al. 2024). The major difference
between neuropathogenic and non-neuropathogenic PeV was a
strongly increased inflammatory response upon PeV-A3 infec-
tion of organoids, correlating clinical data, suggesting that neu-
ropathology is mediated by neuroinflammation induction, rather
than viral replication itself (Koyuncu et al. 2013, Capendale et al.
2024).

Matonaviridae: RuV

As a last example, rubella virus (RuV) infection during pregnancy
can result in neurological pathology, but the viral tropism and
mechanisms of pathogenesis in the CNS are still poorly defined.
To address these questions, brain organoids were used to model
the early developing brain and engrafted with fetal primary hu-

man microglia. This model highlighted the strong viral tropism
towards microglia, revealed by capsid staining in these cells, but
notin other neural cells (Popova et al. 2023), similarly to HIV-1 and
ZIKV congenital infection, but opposite to other pathogens such
as HSV or HCMV (Rock et al. 2004, Retallack et al. 2016, Lum et al.
2017). Microglia infection was shown to require diffusible factors
from non-microglial cells in order to occur, and infection overall
impacted the expression of genes involved in cerebral develop-
ment (Popova et al. 2023).

Drawbacks of the model

One of the reported limitations of most brain organoid mod-
els is the lack of the resident macrophages of the CNS, mi-
croglia, because they derive from the mesoderm, contrary to the
other neural cells originating from the neuroectodermal lineage
(Barreras et al. 2023). However, protocols to produce microglia-
containing brain organoids are being developed by adding im-
mortalized/primary microglia or macrophage progenitor to pre-
viously generated organoids (Abreu et al. 2018, Dos Reis et al.
2020, Xu et al. 2021). Besides, it was actually reported that cells
with typical features of microglia (morphology, phenotype, func-
tions) can intrinsically develop in human brain organoids, dis-
proving the consensus to date (Ormel et al. 2018, Gumbs et al.
2022). In the first organoid models, the presence of oligodendro-
cytes was also somehow lacking, but protocols to induce oligoden-
drogenesis and myelination in brain organoids were reported in
recent years (Madhavan et al. 2018, Shaker et al. 2021). Just like
neural cultures, most organoids lack internal vasculature, BBB,
choroid plexus, and immune system. In addition, organoids re-
semble more a embryonic brain structure than that of an adult,
and the protocols for organoid generation are quite heteroge-
neous, which can make comparisons difficult between studies.
The technique is still not standardized and homogenous between
labs and its variability is thus relatively high. In most cases, size
and shape of the organoids are not controlled parameters, al-
though size- and shape-controlled organoids are being developed
(Pamies et al. 2017). Size s a critical factor, because as they mature
and grow until reaching a certain limit, necrosis in the inner core
of the organoids occurs as a result of limited diffusion and subse-
quent depletion of oxygen and nutrients. This leads to additional
variability that can still be compensated by increasing the num-
ber of samples per condition (Grebenyuk and Ranga 2019). From
a practical point of view, infection, treatment or analysis (such as
monitoring of viral spread) of organoids can be somewhat tricky
due to their 3D structure (Table 1).

A window into the brain: organotypic brain
cultures

Developed several decades ago (Humpel 2015), organotypic brain
cultures (OBCs) are an even more complex and physiological
model, inasmuch as they represent an open window directly on
the brain. They are less used than primary neural cultures be-
cause of the higher complexity to prepare them. Additionally,
they are less easy to implement but have shown their great value
for studying neurotropic viruses in the last 20 years. Historically,
organotypic culture of nervous tissue was notably initiated in
1962 with the work of Bousquet and Meunier on rat hypophysis
fragments (Bousquet and Meunier 1962), further to which two
main methods were sequentially developed. The first one is the
roller-tube technique, where organotypic slices are cultured on
flat-sided culture tubes under slow rotation with a low amount



of medium, allowing regular alternation of feeding and aeration
(Gahwiler 1981, Gahwiler et al. 1997). Optimization of this tech-
nique in the 1990s led to the membrane interface culture method,
where slices are kept on semipermeable membranes (Fig. 2) (Stop-
pini et al. 1991, Gahwiler et al. 1997, Daviaud et al. 2013).

OBCs consist of slices of brain substructures (cerebellum, hip-
pocampus, brainstem, olfactory bulb, etc.) typically prepared with
a tissue chopper (in the open air) or a vibratome (in liquid
medium). For the tissue chopper protocol, these cultures are then
maintained on a semiporous membrane such as they reside on
an air-liquid interface, receiving nutrients from the medium un-
derneath the membrane and oxygen from the upper side, or in
liquid medium for the vibratome protocol (Humpel 2015, Welsch
et al. 2017). A standardized tissue chopper protocol for virology
was notably established by our lab a few years ago (Welsch et
al. 2017). OBCs have several notable advantages. They retain the
original cytoarchitecture and all the neural cell types, and can be
obtained from virtually any animal model (rodents, ferret, dog,
primate, etc.) or even humans (including post-mortem or from
surgical resection). They are ethically preferable over in vivo ex-
periments because several slices from several substructures can
be prepared from one animal, thereby enabling the testing of sev-
eral conditions and reducing animal toll. In addition, euthanasia
is quick, thereby reducing animal pain because no animal manip-
ulation is required.

Bornaviridae: BoDV-1

These ex vivo cultures offer an unique opportunity to investigate
early events of CNS viral infection. Examination of BoDV-1 patho-
genesis in newborn rat hippocampal slice cultures revealed a se-
lective neuronal loss of dentate granule cells upon infection, as
observed in vivo in infected newborn rats, whereas BoDV-1 is non-
cytolytic in primary neuron cultures, indicating that these ex vivo
cultures are relevant to model BoDV-1 neuropathogenesis (Mayer
et al. 2005). OBCs can also be used to compare different substruc-
tures in terms of their intrinsic response to infection and to fac-
tors like cytokines in the absence of a circulating immune system.
For BoDV-1, murine organotypic cerebellar and hippocampal cul-
tures supported viral proliferation with neurons being the main
infection target, as shown by immunofluorescence labeling. Ad-
ditionally, treatment with IFN gamma was fully efficient for in-
hibiting BoDV-1infection in cerebellar slices, seemingly by putting
non-infected neural cells in an antiviral state and preventing in-
fection, contrary to hippocampal slices for which efficiency was
lessened. This observation highlights a differential sensitivity to
this cytokine depending on the brain region (Friedl et al. 2004).

Orthoherpesviridae: HSV-1 and CMV

OBCs are particularly suitable to study initial viral neurotropism,
both at the cellular and brain region scales, as was done for HSV-
1in neonate mouse and rat OBCs for example (Braun et al. 2006,
Cohen et al. 2011). HSV-1 neurotropism was specifically oriented
towards leptomeningeal, cortical, periventricular, and hippocam-
pal areas, infecting meningeal, ependymal, and undifferentiated
cells, but only a few differentiated astrocytes or neurons, paral-
leling observations made in intracerebrally inoculated animals
(Braun et al. 2006). Age of the animal at the time of slicingis an im-
portant factor for infection susceptibility, as shown in this study
where HSV-1 infection of adult OBCs was far less extensive than
that of neonate animals (Braun et al. 2006), seemingly because of
a different maturity state of the neural cells and cellular intrin-
sic innate response. Similar observations were made with murine
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CMV (MCMV) in murine OBCs (Kawasaki et al. 2002, van den Pol
et al. 2002). Recently, human fetal OBC was developed to investi-
gate HSV infection in a more relevant system and demonstrated
a consistent cell tropism (towards astrocytes and neurons) and
neuropathology compared with what is observed in the brain of
neonatal and adult cases of HSV encephalitis, and notably virus-
induced necroptosis (Young et al. 1965, DeBiasi et al. 2002, Wnek
et al. 2016, Rashidi et al. 2024). Such findings should, however, be
treated cautiously because fetal brain tissues differ from neona-
tal ones, in that they represent distinct developmental and thus
maturity stages. Conversely, this model would be relevant for viral
infections occurring during pregnancy such as ZIKV infection.

Paramyxoviridae: MeV, NiV, and CDV

A large corpus of data regarding Paramyxovirus encephalitis has
been gathered thanks to OBCs. In particular, the initial cellular
targets of MeV infection in human CNS remained elusive, and
several studies addressed this knowledge gap. MeV infection of
organotypic hippocampal cultures from IFN signaling-deficient
(IFNARXC) mice expressing MeV receptor showed increased viral
replication compared with immunocompetent cultures, and that
all neural cell types were permissive to MeV infection in both set-
tings. However, astrocytes and microglia became refractory to in-
fection over time in culture in immunocompetent slices, but not
in IFNARKOC slices. This was concomitant to the development of
an astrogliosis phenomenon induced by the slicing procedure that
depends on IFN signaling, presumably putting responder cells (as-
trocytes and microglia) in an antiviral state while leaving neurons
and, to a lower extent, oligodendrocytes permissive to the infec-
tion (Welsch et al. 2019).

This model describing the role of IFN signaling in the control
of astrogliosis and of MeV CNS infection and early permissive-
ness of glial cells, and more generally, MeV initial neural tropism,
has been recently investigated further in hamster organotypic
cerebellar cultures (Ferren et al. 2023). Hamster is a more rele-
vant model for MeV because hamster brain is naturally suscepti-
ble to infection contrary to mouse, harboring a too strong type I
IFN response as observed elsewhere for NiV (Dhondt et al. 2013).
This study notably demonstrated that WT virus and a neuroinva-
sive hyperfusogenic variant (bearing a single substitution found
in MeV encephalitis patients in the fusion protein) were able to
infect all CNS cell types. The WT virus infected few cells in to-
tal and showed limited spreading compared with the neuroinva-
sive variant. As observed in MeV encephalitis patients, the ini-
tial tropism of the neuroinvasive variant was strongly skewed to-
wards neurons. Strikingly, stimulation with type I IFN strongly
impaired astrocytes and microglia permissiveness to both WT
and mutant viruses, leaving neurons as almost the only infected
cells. Infection after 7 days of culture, that is, after the develop-
ment of IFN-dependent astrogliosis, led to the same observation
(Ferren et al. 2023). Incidentally, in murine OBCs this time, this
MeV variant strongly induces IFN-stimulated genes (Mathieu et
al. 2021). Interestingly, astrogliosis is a feature of MeV encephalitis
and astrogliosis-related loss of permissiveness of astrocytes and
microglia could thus explain why infection of these cells is barely
detectable in post-mortem patient samples (Allen et al. 1996, Mc-
Quaid and Cosby 2002, Ferren et al. 2019). In this case, OBCs would
mimic MeV encephalitis progression from initial cellular targets
to terminally infected cells at disease outcome (early and late
tropism, respectively).

MeV and CDV early tropism and neurovirulence were com-
pared in olfactory bulb, hippocampal and cortical organotypic cul-
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tures from naturally susceptible hosts (non-human primate, dog,
and ferret). This study showed similar infection levels and ini-
tial tropism between these closely related viruses, with predom-
inant infection of microglia and neurons (Laksono et al. 2021).
In addition, the ability of exogenous T cells to migrate to and
clear neurotropic viruses from infected neuron, and the role of
IFN gamma in this non-cytolytic viral clearance, have been high-
lighted in MeV- and WNV-infected murine hippocampal cultures
(Stubblefield Park et al. 2011). Addressing viral spread in the CNS
is particularly relevant in OBCs. In MeV-infected hippocampal cul-
tures, viral spread occurred unidirectionally, in a retrograde fash-
ion. It seemed to be mainly cell-cell contact-dependent but inde-
pendent of the release of infectious units, suggesting the involve-
ment of microfusion events at synaptic contacts (Ehrengruber et
al. 2002).

Flaviviridae: ZIKV and WNV

Neurotropism of arboviruses, such as ZIKV and WNV, and ef-
fects of infection on CNS physiology, were also tackled in OBCs. In
murine OBCs of different embryonic developmental stages, ZIKV
was found to target preferentially neocortical proliferative and de-
veloping midbrain areas, and to impair neuronal migration. In-
triguingly, apoptosis of uninfected cells was observed, potentially
limiting viral dissemination (Rosenfeld et al. 2017). Combined use
of cerebellar organotypic cultures and brain organoids revealed
that ZIKV-infected monocytes had increased adhesion and trans-
migration ability and promoted infection and viral dissemination
within the neural cultures (Ayala-Nunez et al. 2019).

Neuronal apoptosis is also a hallmark of WNV neuropathogen-
esis, and was suggested to be mediated by death receptor signaling
in infected neurons in murine OBCs. Signaling of death receptors,
cell surface receptors that are members of the tumor necrosis fac-
tor receptors family and whose binding triggers apoptosis notably
via the activation of caspases, is upregulated in WNV-infected
OBCs, and inhibition of Caspase-8 minimizes virus-induced tis-
sue injury (Clarke et al. 2014). Neurons and astrocytes are found
infected in this model, but not microglia, which instead appear
more to phagocyte debris from infected cells. As observed in MeV
studies, data also point out the role of microglia and astrocyte ac-
tivation upon WNV infection, which influences WNV pathogen-
esis (Clarke et al. 2014, Stonedahl et al. 2022). Indeed, depletion
of microglia in OBCs promotes viral growth and cell death, sug-
gesting a role in limiting WNV dissemination in the CNS likely via
phagocytosis of viral particles or infected neural cells (Stonedahl
et al. 2022).

Coronaviridae: SARS-CoV-2

Key aspects of SARS-CoV-2 neuropathogenesis were effectively
modeled in OBCs, which turned out to be a choice model to
rapidly gather knowledge at the beginning of the pandemic about
this rapidly emerged pathogen. It could infect and disseminate
in hamster brainstem and cerebellar organotypic cultures by tar-
geting mainly granular and Golgi neurons, and induce apoptotic,
necroptotic, and pyroptotic signatures (Ferren et al. 2021), consis-
tent with in vivo data involving infection-induced brainstem neu-
ropathology (Bulfamante et al. 2021, Coleon et al. 2024). Other re-
ports mainly indicate infection of astrocytes, and limited or unde-
tectable infection of neurons in human cortical OBCs and hamster
cerebellar cultures (Andrews et al. 2022, Lamoureux et al. 2022).
Such discrepancies could be tied to differences in cellular sub-
populations between the OBCs used, in culture conditions, in viral
doses used for infection, in the method of infection or in the virus

variant used. Interestingly, data obtained in post-mortem human
OBCs and neuronal cultures indicate that retention of SARS-CoV-2
particles in synapses is correlated with impairment of synaptic or-
ganization and functions. Indeed, as observed in brain organoids,
infection increases presynaptic contents and affects synapse or-
ganization. Synaptic dysfunction appears thus to be the result of
synapse reorganization and trans-synaptic accumulation of viral
particles leading to local hindrance, which may contribute to neu-
rological disorders observed in patients (Partiot et al. 2024b).

Retroviridae: HIV-1

A model of human OBC from healthy surgical resection of adult
brain tissue was recently developed to study HIV-associated neu-
ropathology, and was shown to be almost fully viable for up to
4 weeks in culture as measured by cell dissociation and flow cy-
tometry. Using patient-matched T cells exposed to HIV-1 and co-
cultured with these human OBCs, mimicking the Trojan horse
mechanism of neuroinvasion, this study demonstrated efficient
infection (of astrocytes and myeloid cells notably), which spread
in the slices without impairing viability. This model has great po-
tential to relevantly investigate mechanisms of HIV neuroinfec-
tion, and evaluate antiretrovirals and neuroprotective treatments
(Van Duyne et al. 2024).

Drawbacks of the model

OBCs are useful tools to establish proof-of-concept and for screen-
ingantiviral molecules, and have the advantage of being more pre-
dictive of the in vivo efficiency and toxicity of the tested drugs than
2D cell cultures. This was shown, for instance, for MeV with fusion
inhibitory peptides and inhibitors of host factors needed for infec-
tion, for a tick-borne encephalitis virus with antiviral small inter-
fering RNA, or for SARS-CoV-2 and the ineffectiveness of remde-
sivir and hydroxychloroquine (Maffioli et al. 2012, Welsch et al.
2013, 2017, Bloyet et al. 2016, Ferren et al. 2021). However, like
organoids, OBCs lack vascular and circulating immune systems.
As mentioned above, development of astrogliosis over time ren-
ders OBCs less susceptible to infection, and similarly, the suscep-
tibility of OBCs from aged animals is generally decreased com-
pared with neonate or young animals (Humpel 2015, Welsch et al.
2017,2019, Ferren et al. 2023). Instead of using OBCs before the on-
set of astrogliosis, it is also possible to culture them for ~2 weeks
until astrogliosis has ceased before performing infection experi-
ments, however, taking into account the tissue remodeling due to
the healing process (Humpel 2015) (Table 1).

Contribution and relevance of ex vivo
models for the understanding of
neurotropic pathogens

As previously mentioned, ex vivo systems are useful tools to ad-
dress basic questions relevant for all families of CNS-targeting
viruses, and allow pertinent mimicking of the in vivo context (Ta-
ble 2). Common study questions typically include viral tropism
thatis readily investigated in these systems, which allow the com-
parison of closely related viruses, as illustrated by the study of
CDV and MeV, or ZIKV and DENV. They also allow to easily as-
sess the antiviral activity of candidate molecules. These are gen-
eral questions that can be tackled for every virus, however, oth-
ers are specific for some viral properties, for example, related to
acute infection, cytopathic effect, viral adaptation, or evolution
within the tissue. As a matter of fact, neural ex vivo models were
differently used depending on the virus families and orders. In-
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Table 2. Selected examples of key findings made in ex vivo neural models and their corresponding in vivo relevance with regard to
neuroinvasive and neurotropic viruses.

Virus

Key insights in ex vivo models

Corresponding in vivo relevance

References

BoDV-1

Neural cultures: neuronal loss due
to viral interference with
neurogenesis

Organotypic cultures: loss of
hippocampal dentate granule cells
upon infection

Neuronal death upon infection of
neonatal animals

Weissenbock et al. 2000, Hans et al.
2004, Brnic et al. 2012, Scordel et al.
2015

Mayer et al. 2005

Neural cultures: neuroprotective
role of the viral X protein, which
inhibits apoptosis induction in
neurons

Neuroprotective role of the viral X
protein in a mouse model of
amyotrophic lateral sclerosis

Szelechowski et al. 2014, Tournezy
et al. 2024

ZIKV

Organoids: reduction of organoid
size, disorganization, apoptosis,
and loss of neural progenitors
induced by infection

Brain development defects and
microcephaly upon fetal infection

Garcez et al. 2016, Qian et al. 2016,
Lietal 2017b

Neural cultures and organoids:
AXL-independent viral entry into
neural progenitors and neurons

Axl knockout in neonatal mouse
does not prevent brain infection

Wells et al. 2016, Li et al. 2017a

HSV-1

Organoids: reduction of organoid
size induced by infection,
destruction at high infection dose

Brain development defects and
microcephaly upon fetal infection

Krenn et al. 2021

Organotypic cultures: viral tropism
targeting neurons and astrocytes,
and virus-induced necroptosis in

fetal OBC

Tropism oriented towards neurons
and astrocytes, and induction of
apoptosis/necroptosis in the brain
of HSV encephalitis cases

Young et al. 1965, DeBiasi et al.
2002, Wnek et al. 2016, Rashidi et
al. 2024

Niv

Neural cultures: efficient viral
replication in primary olfactory
neurons and cytopathic effect

Neuroinvasion via the olfactory
entry route in the hamster model

Munster et al. 2012, Borisevich et
al. 2017, Ozdener et al. 2023

Organotypic cultures: high
susceptibility of the choroid plexus
in infected murine OBC

High susceptibility of the cells of
the ventricular system in ferrets
and pigs

Weingartl et al. 2005, Clayton et al.
2012, Gellhorn Serra et al. 2024

MeV

Organoids and organotypic
cultures: hyperfusogenicity and
preferential neuron tropism of
variants with mutated fusion
protein, linked to IFN pressure and
astrogliosis

Neurovirulence of variants with
mutated fusion protein in brain of
patient with encephalitis, strong
tropism for neurons, and
occurrence of astrogliosis

Allen et al. 1996, McQuaid and
Cosby 2002, Ferren et al. 2019;
Welsch et al. 2019, Mathieu et al.
2021, Ferren et al. 2023

SARS-CoV-2

Organoids and organotypic
cultures: upregulation of LPHN3
and LPHN3-dependent aberrant

enlargement of synapses upon
infection

Upregulation of LPHN3 and its
receptor in the brain of COVID-19
patients

Partiot et al. 2024b

Organotypic cultures: viral
expression levels upon infection
comparable to that of naturally
infected human brain samples,

suggesting physiological replication
levels

Viral RNAs detectable at relatively
low levels in the cortical temporal
lobe of patients who died of
COVID-19

Organotypic cultures: productive
infection of the brainstem with
preferential tropism for granule

neurons in motor and sensory
areas of the tissue

Neuroinvasion via the vagus nerve,
and brainstem productive infection
characterized by
neurodegenerative features tied to
neurological disorders

Bulfamante et al. 2021, Ferren et al.
2021, de Melo et al. 2023, Woo et al.
2023, Andersson and Tracey 2024,
Coleon et al. 2024




12 | FEMS Microbiology Reviews, 2025, Vol. 49

Table 2. Continued

Virus Key insights in ex vivo models Corresponding in vivo relevance References
Organoids: productive infection of Tropism oriented towards microglia Masliah et al. 1992, Kaul and Lipton
microglia, leading to production of and neurons left uninfected in 2006, Dos Reis et al. 2020, Gumbs et
HIV-1 inflammatory cytokines and encephalitis cases, al. 2022, Narasipura et al. 2025

subsequent neuronal loss and
astrocytosis

neuroinflammation

deed, for Rhabdoviruses and RABV in particular, which initially
infects motor neurons at neuromuscular junctions, or HSV, for
which infection starts from mucosal epithelium where the virus
enters the nervous system via axon termini of sensory neurons
(Ludlow et al. 2016), these models have been pivotal to under-
stand retrograde axonal transport of these pathogens and access
to the CNS. On the contrary, very few studies have investigated,
for example, how Paramyxoviruses spread within and between
neural cells and, notably, how their ribonucleoprotein complexes
are transported within these cells. On the contrary, questions re-
lated to the involvement of the paramyxoviral fusion machinery
(the surface glycoproteins allowing viral entry into target cells) in
the neural spread have been widely addressed ex vivo, leading to
the conclusion that mutations destabilizing the fusion machin-
ery facilitate viral spread in CNS tissues. For Bornaviruses, ex vivo
CNS models were particularly used to study the cytopathic effects
of these viruses and the role of their virulence factor. Concern-
ing the ex vivo study of Retroviruses and HIV in particular, the
immunological features of the CNS infection are especially ex-
amined, with a focus on the interaction between the pathogen
and microglia. Co-infection studies would also be of interest, be-
cause opportunistic pathogens can sometimes infect the CNS of
AIDS patients. For instance, measles inclusion-body encephalitis
is a type of encephalitis caused by MeV occurring in immunosup-
pressed patients because of HIV infection, notably. Nobody ad-
dressed the possible interconnexion between measles and HSV
or HTLV-1 in infected patients knowing that this virus can also
spread to the CNS and lead to encephalitis and HTLV-1-associated
myelopathy/tropical spastic paresis, an aggressive neurodegener-
ative disease (Rocamonde et al. 2023a,b). The main CNS-targeting
pathogen in AIDS patients was HCMV before the democratization
of antiretroviral therapy (Ludlow et al. 2016).

The knowledge gap is even more pronounced for viruses requir-
ing high/maximum level of containment (biosafety level [BSL-]3
and 4). BSL-4 pathogens notably include the highly neurotropic
Henipaviruses HeV and NiV, zoonotic viruses causing severe res-
piratory syndromes and encephalitis in humans with case fatality
rates that can be >90% depending on the outbreaks (Li et al. 2023).
In culture, HeV and NiV induce the formation of syncytia (mult-
inucleated cells) and strong cytopathic effect in most cell types
(Eaton et al. 2006). The emerging NiV is highly efficient at entering
and invading hamster brainstem and cerebellar organotypic cul-
tures (Ferren et al. 2021), but more studies are needed to explore
neuroinvasion and decipher neuropathogenesis of Henipaviruses
in OBCs. Indeed, the way by which HeV and NiV can reach the
CNS, the way they spread within the nervous tissue, or what neu-
ral cells are primarily targeted in the early stages of infection, are
still elusive, because the work done in the BSL-2 context for other
Paramyxoviruses like MeV or CDV is more difficult to accomplish
for BSL-4 viruses. NiV is highly neuroinvasive, neurotropic, and
neurovirulent, as shown by numerous studies performed in 2D
models, but only a few in more relevant 3D ex vivo models (Ferren

et al. 2021, Gellhorn Serra et al. 2024). In the study of Ferren and
colleagues, NiV infection of brainstem and cerebellar slices was
used as a comparison for SARS-CoV-2 infection in these models.
NiV targeted different tissue areas and spread more widely com-
pared with SARS-CoV-2 (Ferren et al. 2021). Murine OBCs were also
used to decipher NiV neurotropism. The virus replicated in these
cultures, but without detectable release of infectious viral parti-
cles, suggesting cell-to-cell spread (Gellhorn Serra et al. 2024). Of
note, the choroid plexus was seemingly found to be strongly in-
fected, in accordance with in vivo data indicating infection of the
ventricular system (Weingartl et al. 2005, Clayton et al. 2012). This
observation supports the hypothesis that NiV could enter the CNS
by infecting the cells of the blood-cerebrospinal fluid barrier (Gell-
horn Serra et al. 2024). However, in this study, slices were not stan-
dardized in terms of size and quality of the explants, and infec-
tion was performed 4 days after isolation, which may not be very
pertinent because of the induction of astrogliosis over the time
in culture (Welsch et al. 2017, 2019, Ferren et al. 2023). Moreover,
mouse is less relevant than, for example, hamster, to study Heni-
paviruses, limiting the interpretations of the results (Wong et al.
2003, Juelich et al. 2023). We and others are currently investigating
infection by NiV and HeV in relevant ex vivo systems (OBCs and
organoids), notably with respect to neurotropism and characteri-
zation and comparison of the fusion machineries of the different
strains of Henipaviruses, or evaluation of antiviral strategies (Fer-
ren 2021).

Interestingly, these viruses can cause acute, but also relapsed
and late-onset encephalitis, up to several years followinginitial in-
fection (Eaton et al. 2006). In the BSL-4 setting, acute infection, cy-
topathic effect, and viral evolution/adaptation are generally stud-
ied over a few days in both in cellula and ex vivo models. On the
contrary, long-term (at the scale of several months or years) ex
vivo studies are not achievable, and it is thus not possible to model
late encephalitis so far and to decipher how the virus stays “inac-
tive”in the CNS for a long time. More globally, high biosafety levels
technically limit the feasibility of the studies, with for instance the
need to inactivate the samples with harsh and strict protocols to
analyze them outside of BSL-4 laboratories. Alternatively, ex vivo
systems could be combined with the use of virus-like particles,
allowing working in BSL-2 conditions.

The questions addressed and further interpretations also de-
pend on the properties of the model used (species and region of
the CNS from which it originates, developmental stage, etc.), no-
tably for OBCs. This is typically illustrated with a study comparing
the neurovirulence of ZIKV, WNV, and the Usutu virus (another
closely related neurotropic arbovirus, which co-circulates with
WNV in Europe) in human fetal OBCs (Marshall et al. 2024), and a
study investigating HSV infection in human fetal OBCs (Rashidi
et al. 2024). While this model is particularly relevant for infec-
tions occurring during pregnancy (e.g. in the case of ZIKV), it is less
true for infections occurring in neonates and adults (in the case
of HSV and WNV), because fetal, neonatal, and adult tissues dif-



fer significantly from each other. For Herpesviruses, specific ques-
tions related to latency and reactivation, and the link with the
immune system, have been tackled ex vivo, with better relevance
compared with classical animal culture models. Indeed, CNS neu-
rons derived from human iPSCs are permissive to HSV-1 (acute
infection), and can also exhibit features of viral latency similar to
those observed in animal models. In human iPSCs-derived brain
organoids, acute infection with evidence of viral trafficking from
the outer surface to inner layers, as well as latency, could also be
observed. Reactivation could be induced in both models but with
less success in organoids, mirroring the low reactivation efficiency
in vivo (D’Aiuto et al. 2019).

Neuronal infection in peripheral organs:
interplay with the CNS and the innate
immunity

Neuroinvasiveness, neurotropism, and neurovirulence of the
aforementioned viruses also manifest in peripheral organs, but
quite a few studies make use of ex vivo systems to investigate
infection of peripheral neurons, notably. Numerous viruses tar-
get neural cells in peripheral organs before eventually reaching
the well-protected CNS. In this regard, the enteric nervous sys-
tem, containing >500 million neurons, can impact the CNS and
be a portal of entry upon infection of enteric neurons, highlight-
ing the increasingly studied gut-brain axis (Valdetaro et al. 2023).
Peripheral infection and inflammation can also affect the CNS,
for instance inducing sensitization and alterations of the BBB,
microglial activation, and parenchymal inflammation (Varatharaj
and Galea 2017). Itis also noteworthy that while some organs such
as the liver only receive innervations, others like the lung contain
intrinsic neurons (Delalande et al. 2004, Freem et al. 2010, Bower
et al. 2014).

Peripheral neurons are notably targeted by HSV-1, SARS-CoV-
2, human coronavirus OC43 (HCoV-OC43), varicella-zoster virus
(VZV), or RABV. Infection of peripheral neurons is almost never
investigated in ex vivo models of peripheral organs. The attention
is probably more focused on the most obvious and abundant cells
present in these tissues, such as enterocytes and other epithelial
cells in the gut, hepatocytes in the liver, or pneumocytes in the
lung. In addition, most peripheral organs possess only nerve end-
ings, which may be difficult to maintain for a long time in cul-
ture. Consequently, most data come from in vivo studies. HSV-1
was shown to infect and persist in enteric neurons in a mouse
model, inducing the recruitment of macrophages and T cells, ul-
timately leading to gastrointestinal inflammation and neuromus-
cular dysfunction (Brun et al. 2018, 2021). Similarly, infection of
mice with WNV results in enteric neurons and enteric glial cells
damage and loss, and subsequent gut dysmotility, via T cells infil-
tration (Janova et al. 2024). VZV, which can also cause encephalitis,
is able to infect dorsal root ganglia and enteric neurons of guinea
pigs infected intradermally (Chen et al. 2011).

In COVID-19 cases, SARS-CoV-2 antigens were detected in neu-
rons of the myenteric plexus, which innervates the muscular lay-
ers of the gut and is responsible for peristalsis (Gray-Rodriguez
et al. 2022). In this regard, enteric neurons may be a possible en-
try into the CNS for SARS-CoV-2, notably given that these neu-
rons are trans-synaptically connected to CNS neurons, although
this assumption requires to be thoroughly tested (Valdetaro et al.
2023). Similarly, the virus may also use sensory neurons in the
lung to travel retrogradely towards the CNS, notably via the vagus
nerve (Yavarpour-Bali and Ghasemi-Kasman 2020, Bulfamante et
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al. 2021, Ferren et al. 2021, Woo et al. 2023, Andersson and Tracey
2024). The olfactory epithelium was confirmed as a major entry
route into the brain of hamster infected with SARS-CoV-2, which
was shown to perform retrograde and anterograde axonal trans-
port in neuron-epithelial in vitro microfluidic models, but nerve
terminals of the orofacial mucosa, for example, are also a possible
CNS entry point (Fenrich et al. 2020, de Melo et al. 2023). A simi-
lar mechanism could be at play for the enteric nervous system. By
comparison, HCoV-OC43 travels trans-synaptically along axons in
neuronal cultures (Dubé et al. 2018), TBEV uses autonomic nerves
of the enteric nervous system plexus to reach the CNS in mouse
(Nagata et al. 2015), and EV-A71 is strongly suggested to travel ret-
rogradely in axons of peripheral autonomic nerves to the CNS (Li
et al. 2019).

Although this is still poorly characterized, gut infection can
be a cause of neuroinflammation and, as such, viruses can in-
duce neuropathology at a distance, without necessarily directly
infecting neurons. As an example, exposure of rat gut to HIV-1
Tat protein leads to activation of enteric glial cells, and this neu-
roinflammation also propagates to the CNS via cell-to-cell signal-
ing in the glial network (Esposito et al. 2017). The gut-brain axis
is increasingly studied, including in virology, and in this context,
gut infection and inflammation are proposed or reported to af-
fect the BBB and the CNS at a distance. Besides infecting periph-
eral neurons to eventually enter the CNS, viruses infecting the
gut can cause an inflammatory response that may, for example,
sensitize and permeabilize the BBB (through alteration of the in-
tegrity of tight junctions, induction of endothelial dysfunction and
astrocytic damage), facilitating entry of inflammatory factors or
virus into the brain, inducing a neuroinflammation (Varatharaj
and Galea 2017, Valdetaro et al. 2023, Yata 2024). BBB disruption is
demonstrated in acute COVID-19 cases, but also in patients with
long COVID-associated neurological sequelae, linked to sustained
and systemic inflammation (Valdetaro et al. 2023, Greene et al.
2024).

Other peripheral neurons can modulate host immune and in-
flammatory responses upon infection. Peripheral tissues and or-
gans are innervated by sensory neurons, which are the target for
several viruses. Some sensory neurons can signal to immune cells
via the release of neuropeptides, cytokines, and other molecules
(Saraiva-Santos et al. 2024). In the lung, for instance, sensory neu-
rons were shown to exert anti-inflammatory responses (Tamari
et al. 2024), and in the case of influenza, an airway-to-brainstem
sensory pathway was shown to mediate onset of sickness behav-
ior and response to infection (Bin et al. 2023). HSV and VZV in-
fect sensory neurons and establish latency in sensory ganglia.
From peripheral nerve fibers, they use retrograde axonal trans-
port to reach the cell bodies in sensory ganglia, and anterograde
transport to the skin and mucosa to spread upon reactivation
(Koyuncu et al. 2013). Dorsal root ganglia ex vivo and sensory neu-
ron cultures were shown to be susceptible to HSV-1 infection, and
demonstrated that viral attachment and entry rely on heparan
sulfates expressed at the surface of sensory fibers (Sharthiya et
al. 2017). Regarding antiviral responses to HSV-1, compartmen-
talized cultures of murine sensory neurons from trigeminal gan-
glia showed that these cells respond to IFN beta by axon termi-
nals and soma, enabling control of the infection (Rosato and Leib
2015). Both the neurons and the virus implement complex strate-
gies to antagonize the other party. For instance, the neuropep-
tide calcitonin gene-related peptide (CGRP) is secreted by sensory
neurons and protects Langerhans cells against HSV infection by
downregulating viral entry receptors (Cohen et al. 2022), but con-
versely HSV-1 inhibits CGRP expression of rat primary trigemi-
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nal neurons (Hamza et al. 2007). More recently, sensory and au-
tonomic neurons were shown to be susceptible to SARS-CoV-2 in-
fection in vivo and in primary neuronal cultures. The virus was
detected in trigeminal and dorsal root ganglia (sensory ganglia)
and superior cervical ganglia (autonomic ganglia). The rapid in-
vasion of the peripheral nervous system (PNS) and CNS before
viremia, and the strongest detection of the virus in functionally
connected brain regions (e.g. brainstem for the trigeminal gan-
glia projections), led the authors to postulate an alternative en-
try route into the brain besides the olfactory one (Joyce et al.
2024).

As previously detailed, numerous studies rely on in vivo ani-
mal experimentations or post-mortem investigations (notably im-
munostainings), which are not necessarily representative of the
initial steps of infection, virus repercussions on the BBB and the
CNS (neuropathology at a distance), and viral spread towards the
CNS. While primary peripheral neuron cultures and ganglia ex-
plants are to some extent used to study viral neuroinfection, more
complex ex vivo PNS models, such as ganglia organotypic cul-
tures, PNS organoids, PNS-CNS assembloids (Rockel et al. 2023,
Koyanagi et al. 2024), or peripheral organoids containing inner-
vation, are lacking in this line of research. Likewise, gut ex vivo
systems are not commonly used to investigate the infection of
peripheral neurons (Barreto-Duran et al. 2024, Lulla and Sridhar
2024, Yata 2024), although models containing gut plexuses could
be (and are already to some extent in the form of gut slices kept on
culture inserts, for instance) implemented, provided that the via-
bility and renewal/proliferation of epithelial cells are better man-
aged (Schwerdtfeger et al. 2016, Biel et al. 2022, Jung and Kim 2022).
Oher ex vivo models of organs of interest for the study of neu-
rotropic virus, in particular organotypic cultures of lung (Nicholas
et al. 2015, Ferren et al. 2021) or liver for example (Ogire et al.
2024, Lalande et al. 2025), are in their infancy. Of note, a study
reports the culture of murine embryo lung explants containing
intrinsic neurons (Bower et al. 2014). In this sense, examining
and monitoring neuronal infection in ex vivo models of periph-
eral organs, whose development and use are still rather late in
virology (Lalande et al. 2025)—although mainly neuronal termini
might still be present (probably for a few hours/days) in the tis-
sues in the case of organotypic slice cultures—and even combin-
ing them with CNS ex vivo models, could be pivotal in understand-
ing neuropathogenesis. Alternatively, explants could be prepared
from animals infected in vivo, and used to address basic questions
such as viral tropism or dissemination from non-neuronal cells to
nerves.

Next-generation ex vivo model technologies

Overall, organoids are a new technology still in development that
needs to be further characterized, and their use for the study of
neuroinfectious viruses is in its infancy. Further improvements
will likely include the use of assembloids (combined organoids
that could be used to study viral spread among brain regions, for
example), transplantation of human organoids in an immunod-
eficient animal model to enable viral infection of human neural
cells in vascularized and more mature organoids, and brain- and
organoid-on-chip technologies (Pasca 2018, 2019, Castiglione et al.
2022, Fan et al. 2022, Widerspick et al. 2023). Usually of higher
complexity compared with organoids, organ-on-chip and more
specifically brain-on-chip have been developed in recent years
and their use in virology research is still in its early stages. Sev-
eral designs exist but they basically consist of different cell types
of the CNS (or brain organoid) in a compartmentalized microflu-

idic chip including biosensors that enables the biomimicry of the
brain, recapitulating cell interactions, tissue/organ functions, bio-
physical forces, while allowing real-time monitoring and assess-
ment of multiple parameters (Tang et al. 2020, Shahabipour et
al. 2023). These 3D engineered microfluidic devices reconstitute
several physiological aspects and functions of the organ. The few
studies using this technology for neurotropic viruses focused, for
example, on pseudorabies virus spread between cells and trans-
portin axons (Liu et al. 2008, Johnson et al. 2016, Tang et al. 2020),
or SARS-CoV-2 impact on BBB and neuroinflammation in a com-
bined lung-brain chip model (Wang et al. 2024). Similarly, there are
very limited examples of genetic editing of cerebral ex vivo models
to study viral infections, compared with the study of neurodegen-
erative diseases or cancer (Lafaille et al. 2019, Hendriks et al. 2020,
Nassor et al. 2020, Zhou et al. 2021, Meier et al. 2025, Pagliaro et
al. 2025). An interesting case of genetic engineering of organoids
to investigate virus-host interactions is the establishment of a
gene knockout biobank of intestinal and airway organoids to study
host factors involved in infection by coronaviruses. CRISPR-Cas9-
driven gene editing was used to mutate host proteins exploited
by the virus and identify putative therapeutic targets (Beumer
et al. 2021). Such methodologies applied to CNS organoids and
even organotypic cultures will surely be far more relevant than
genetic screens and investigations performed in 2D cultures, be-
cause the former are more representative of the in vivo environ-
ment and pathogenesis, which should lead to findings that are
clinically translatable.

In order to model viral neuroinfections even more pertinently,
integrative ex vivo approaches should undoubtedly be imple-
mented in the near future. Because neurological manifestations
can also occur following peripheral infections, and virus-induced
CNS damages can also impact peripheral organs, it is critical
to develop models and tools to study inter-organ communica-
tion. A combination of organotypic cultures, organoids and organ-
on-chips technologies may be among the future keys to explore
such routes used by encephalitic viruses. The virology field widely
adopted several techniques presented through this review, and pi-
oneered some of them. The use of developing cutting-edge models
is ongoing in the field, but maybe to a lower extent so far than in
cancer research and developmental biology in particular, which
are at the forefront for the implementation of these new systems
(Karzbrun et al. 2018, Zhu et al. 2023). We believe that neurovi-
rology research shall implement systems combining ex vivo mod-
els (e.g. organoid-on-chip, organotypic culture-on-chip, and even
multiorgans-on-chip consisting of organoids and/or organotypic
cultures from different organs on the same chip). This would allow
to recreate a circulatory system and inter-organ communication
in order to model neuroinfections in a quasi-physiological way. For
example, to study the neuroinvasiveness of a neurotropic virus
such as NiV or SARS-CoV-2, an organotypic lung culture could be
combined with an OBC in a chip, with a BBB organoid at the in-
terface, enabling the monitoring of the infection from the initial
natural site of infection and the entry into the CNS. This would
thus be advantageous to explore the remote events linked to these
viruses, such as the influence of the permeabilization of the BBB,
of its inflammation and that of peripheral organs, the remodeling
of neurons at a distance, or the production of early markers impli-
cated in the encephalitogenesis for instance. Adding organotypic
liver cultures (Ogire et al. 2024) or liver organoids to the system
could benefit antiviral and drug testing studies by mimicking the
hepatic metabolism of drugs. Such models would complement the
limits of each individual model, namely the fact that organoids are
aggregates of self-assembled cells but are not originated from the



organ itself, chips are an artificial construction, and organotypic
cultures come from the organ itself but lack blood flow.

The latest developments of the OBC model for virology research
consist notably in their use as a preclinical platform for antivi-
ral studies combined with artificial intelligence. In a proof-of-
concept study, electrical activity (local field potential more pre-
cisely, used as a proxy for neural health) was measured in human
post-mortem OBCs placed on 3D microelectrode arrays upon in-
fection with a neurotropic virus (Tahyna virus) and antiviral treat-
ment. In this set-up, microelectrodes penetrate deep in the OBC,
allowing relevant electrical measurement. Infection was shown to
disturb local field potential, and machine learning was used to an-
alyze antiviral efficiency via evaluation of OBC neurohealth based
on electrical activity (Partiot et al. 2024a).

Keys to progress in neurovirology mainly reside in the transpo-
sition of tools from neurobiology. Among them, electromonitoring
of OBCs is not a recent development. A dense literature reports
the use of electrophysiological recordings in OBCs to characterize
the model and study neuronal behaviors, brain processes, and dis-
eases. Set-ups consisting of single tip electrodes inserted into the
tissue, which can be used for electrical stimulation or recording,
allow to investigate synaptic activity, neuron excitability, viabil-
ity, and plasticity, while keeping the cells in their native environ-
ment (Stoppini et al. 1991, Dong and Buonomano 2005, Johnson
and Buonomano 2009, Ting et al. 2018, Romero-Leguizamoén et al.
2019, Bak et al. 2024). Three-dimensional microelectrode arrays,
on which OBCs can be directly grown, have also been extensively
optimized and enable larger-scale, multisite electrophysiological
simultaneous recordings from a large number of neurons, includ-
ing during long-term culture (Kristensen et al. 2001, Blake et al.
2010, Ito et al. 2014, Ravi et al. 2019, Romero-Leguizamoén et al.
2019, Forro et al. 2021). Electromonitoring allows to address ques-
tions related to the impact of the infection on neuronal homeosta-
sis, health, and activity, or whether a virus can leave a trace that
can be detectable after the infection by analyzing the alterations
of the electrical activity, for example.

These types of system are, for example, used in fundamental
neuroscience to compare the neuronal network circuitry of dif-
ferent brain areas (Ito et al. 2014), in neuro-oncology to analyze
neuronal activity and viability of human cortical OBCs (Ravi et al.
2019), or to investigate neuronal network activity and remodel-
ing in the context of neurodegenerative diseases and other neu-
ropathies (Croft et al. 2019, Bouillet et al. 2022). They are also
applied to brain organoids, whose structure imposes the devel-
opment of 3D electrophysiological devices covering or incorpo-
rated into the organoid to monitor the whole surface and the in-
ner electrical activity (Passaro and Stice 2020, Forro et al. 2021,
McDonald et al. 2023). For instance, a recently developed mi-
croelectrode array with protruding cantilevers that insert deeply
into cerebral organoids allows access to internal neuronal cells
(Phouphetlinthong et al. 2023). Other strategies consist of slicing
cerebral organoids and culturing them at the air-liquid interface,
similarly to OBCs, a technique that improves neuronal network
viability and electrical activity (Giandomenico et al. 2019, Qian et
al. 2020). However, the use of electromonitoring in CNS models
is sorely lacking for the study of neuroinvasive and neurotropic
viruses, even although it could be a key tool to decipher how in-
fections impact the neural circuitry, neuronal and synaptic activ-
ity/plasticity, both in the early stages when the virus enters the
CNS and in the long term.

Similarly, techniques that are commonly used in neuroscience
research such as optogenetics shall be of interest for the study of
CNS-targeting viruses in ex vivo models. The generation of pho-
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tocontrollable neurotropic viruses, whose gene expression and
replication can be temporally and spatially switched on and off by
light, further supports this claim (Tahara et al. 2019, 2024). Robotic
techniques could also be applied in the near future for precise mi-
cromanipulation of cells and microinjection of, for example, virus
or specific molecules, for example, in specific cells, in the synaptic
cleft or other specific areas of the CNS tissue, in 3D ex vivo models
(Wong et al. 2014, Shull et al. 2019, 2021). In this way, these tech-
nologies could give significant insights into how viruses propagate
between neural cells and impact their physiology, and that of spe-
cific compartments like synapses, for instance, as illustrated with
SARS-CoV-2-induced perturbation of synaptic homeostasis (Par-
tiot et al. 2024b), while also giving information on neural physiol-
ogy itself.

Currently, the major limitations of the ex vivo models are that
they mostly come from animals because of limited access to hu-
man samples, and that those of human origin generally entail an
inherent variability. In addition, although protocols for prepara-
tion of human OBCs exist, the model is not as well standardized
as animal model OBCs. Human OBCs can come from surgical re-
sections, biopsies, post-mortem donors, or fetal samples, which
means a certain degree of randomness in the areas of CNS be-
ing sliced and in the donor more globally. As an example, pro-
tocols to generate short-term human OBC maintained in liquid
medium have been used for the study of Oropouche virus, an
emerging neuroinvasive arbovirus that can induce neurological
symptoms. In this model, mature human neural cells were shown
to be susceptible to infection and to support the production of
infectious virions. The main infected cells were microglia. Some
neurons are also found infected, contrary to astrocytes. The re-
lease of pro-inflammatory tumor necrosis factor alpha was also
noted upon infection, as well as an impairment of cell viability. A
potential improvement could be to limit the hypoxia related to the
immersion that can impact maintenance of microglia in the tis-
sue and responses to the infection (Fernandes et al. 2019, Almeida
etal. 2021). Regarding animal OBCs, reproducible and well-defined
slices representative of the whole brain, from the olfactory bulb
to the brain stem, or coronal slices, are still lacking, although at-
tempts have been reported (Staal et al. 2011, Ullrich et al. 2011,
Joost et al. 2017, McKenna et al. 2022, Ugar et al. 2022). Such a
whole-brain model would be of great interest to investigate vi-
ral dissemination between cerebral substructures, susceptibility
of the different substructures and cell types, global response of
the cerebral tissue to the infection, virus evolution, for example,
in a context where all the brain elements are present and still
connected, and easily accessible for analysis.

Concluding remarks

Through this review, we aimed at showing how CNS models can
be used to study neuropathogenic viruses and to highlight key dis-
coveries made thanks to them (Fig. 1 and Table 2). Ex vivo models
are highly useful to better understand brain-targeting viruses, but
these pathogens themselves (such as HSV or RABV) are also valu-
able tools with which to investigate CNS biology. The most obvi-
ous examples are their use for optogenetics, where they serve as
vectors for the delivery of photoreceptors, or for neuronal tracing
and, more generally, transgene expression. To date, organotypic
cultures appear to be the most complex and physiologically rele-
vant system, while being relatively easy to implement compared
with organoids, for example. However, one must keep in mind that
the ex vivo models of infection presented here are not represen-
tative per se of how infection naturally occurs in vivo. They give
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insights of what a virus is able to do (or not) in a specific CNS con-
text, notably whether it can infect such models, when delivered
in a non-physiological way. Putting the virus directly on neural,
organotypic cultures, or organoids is not the same as an airborne
virus, for example (such as MeV, NiV, or SARS-CoV-2), entering its
host by its natural route of infection, and which possibly circu-
lates through the body, infects target peripheral tissues, makes
local and systemic damages, evolves, before potentially reaching
the brain. This should thus be remembered when interpreting re-
sults and putting them in perspective with in vivo pathogenesis, to
avoid over-speculation, and further supports the need for devel-
opingintegrative multiorgans models. Considering the big picture,
we perceive that while detailed molecular information regarding
infection by neuroinvasive and neurotropic viruses is available in
cell lines, non-ex vivo or non-neural models, the amount of data is
to some extent sparser in more relevant CNS ex vivo models. Many
studies focus their observations on the tissular and cellular scales,
and less on the molecular one. Neurovirology research is some-
what late in integrating more advanced techniques and technolo-
gies to its models, compared with other fields of research, but has
the limitation of dealing with infectious material. This is particu-
larly true for BSL-3 and BSL-4 pathogens. There is still much to do
to optimize and improve the ex vivo models presented throughout
this review, notably in terms of standardization and characteriza-
tion, but they warrant to be more widely used to obtain deeper
molecular insight, beyond relatively basic questions, such as, for
example, neurotropism. A major benefit of ex vivo models com-
pared with in vivo experimentation that supports the incentive
to see a greater use of these models is related to animal ethics,
with drastic reduction of animal use, while preserving pertinent
physiological contexts. Lastly, future combination of ex vivo mod-
els with artificial intelligence usage will surely allow better inte-
gration and correlation of the obtained data with the observations
made in vivo and the pathogenesis descriptions in humans.
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