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Abstract: Thermoresponsive dendronized gelatins (GelG1) or gelatin methacrylates (GelG1MA)
were used as precursors to modulate the efficient reduction of Au(III) to form stable gold nanoparticles
(AuNPs) through UV irradiation. These dendronized gelatins were obtained through the amidation
of gelatin or gelatin methacrylates with dendritic oligoethylene glycols (OEGs). Crowded OEG
dendrons along the gelatin backbones create a hydrophobic microenvironment, which promotes the
reduction of Au(III). Gelatin backbones act as ligands through the electron-rich groups to facilitate the
reduction, while the dendritic OEGs provide shielding effects through crowding to form a hydropho-
bic microenvironment, which not only enhances the reduction but also stabilize the formed AuNPs
through encapsulation. The effects of dendron coverage on the dendronized biomacromolecules and
their thermoresponsiveness on the reduction kinetics were examined. Dendronized gelatin/AuNPs
hydrogels were further prepared through the in situ photo-crosslinking of GelG1MA. The modifica-
tion of natural macromolecules through dendronization presented in this report facilitates a novel
platform for the environmentally friendly synthesis of noble metal nanoparticles, which may form a
new strategy for developing smart nano-biosensors and nano-devices.
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1. Introduction

The modification of natural macromolecules has attracted more and more attention
in recent years to create novel environmentally friendly materials, which not only inherit
excellent biofunctions from biomacromolecules, but also can be endowed with new prop-
erties through functional modification [1–4]. Natural macromolecules carry abundant
functional groups, such as hydroxyl, amine and carboxyl groups, which can be readily
used for chemical modification. In recent years, various strategies have been applied
for the modification of biomacromolecules, aimed at different functions and properties.
Modified natural macromolecules show advantages in stability, safety, responsibility, and
sustainability, and have been widely used in fields from smart materials to biomedicine [5].

Gold nanoparticles (AuNPs) exhibit unique physical and chemical properties, and
have attracted extensive attention continuously. They have been applied in various fields,
such as optics, electronics, catalysis [6] and liquid crystal composites [7], as well as in drug
delivery [8], biological imaging [9], and cancer treatment [10]. AuNPs can be prepared
through the reduction of Au(III) by various agents, such as alcohols, amines, carboxylic
acids or borohydride. Since the nanoparticles formed tend to aggregate in aqueous solu-
tions, the effective strategy to avoid this is to protect them by stabilizers, such as thiols,
polymers or polyelectrolytes [11]. For this purpose, many polymer stabilizers, such as
microgels, dendritic macromolecules, hydrogels and latex particles, have been applied.
Polymer stabilizers can control the reduction rate and sizes of formed nanoparticles [12].
Traditional synthesis methods usually use toxic chemicals, which may cause some pollu-
tion to the environment. In addition, the residues of chemical substances may affect the
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biocompatibility of the prepared particles and limit their biomedical applications. It is safer
and greener to use environmentally friendly reductants and stabilizers and mild experi-
mental conditions [13]. Therefore, significant efforts have been given to the development
of clean and environmentally friendly methods for synthesis of AuNPs. For this purpose,
biomacromolecules, including polysaccharides, protein and peptides, have been success-
fully applied to synthesize and stabilize AuNPs [14]. These biomacromolecules can protect
AuNPs after their formation through steric hindrance, and prevent them from further
aggregation [15–17]. For example, red highly fluorescent gold nanoclusters were prepared
by bovine serum albumin (BSA) at physiological temperature (37 ◦C) [18]. Pepsin-mediated
gold nanoclusters were reported, showing blue, green and red fluorescent emission through
pH modulation [19]. AuNPs were also synthesized by chitosan (CS)/poly (methacrylic
acid) hybrid semi-interpenetrating nanogel [20]. Lysosome–dextran protein polysaccharide
nanogel was used to stabilize AuNPs and the composite material was applied for drug
delivery and biological imaging [21].

As one intriguing class of biomacromolecules, gelatin exhibits excellent biocompati-
bility, biodegradability and low antigenicity. Furthermore, it is abundant and quite cheap.
It has been recognized as a generally recognized safe (GRAS) material by the U.S. Food
and Drug Administration (FDA) [22]. Gelatin is usually used as a stabilizer in the synthesis
of AuNPs. For example, AuNPs can be synthesized in the matrix of gelatin through re-
ducing tetrachloroauric acid with sodium citrate [23]. Hybrid nanogels containing AuNPs
were prepared in the presence of protein polyion complexes (PICs) through cross-linking
from gelatin and two proteins: horseradish peroxidase (HRP) and lactoferrin (LTF) [13].
These nanogels exhibited colloidal stability and metal-enhanced luminescence/fluorescence
(MEL/MEF), which are promising for optically enhanced diagnosis and other therapeu-
tic applications. However, these PIC NPs were not stable enough and were found to
disassemble after dilution [24].

Currently, most synthesized AuNPs have a single function, and regulating their func-
tionalization is not always feasible. Furthermore, the stability of AuNPs is not always
satisfactory to meet the application requirements. Therefore, developing a simple and envi-
ronmentally friendly method for the synthesis of multifunctional AuNP composites with
high stability is important. Recently, we found that the dendronization of a polymer with
dendritic oligoethylene glycols (OEGs) can afford the polymer characteristic of thermore-
sponsiveness with a heterogeneous dehydration process [25] and simultaneously create
a confined microenvironment to modulate the physical properties of guest moieties [26]
or even guest biomacromolecules [27]. Through a similar strategy, the dendronization
of chitosan can afford the modified biomacromolecules thermoresponsiveness, showing
microconfinement to promote the formation of silver nanoparticles (AgNPs) [28]. By using
the same method, we also prepared a class of thermoresponsive dendronized gelatins
(GelG1s) [29]. Here, we report on the synthesis of AuNPs by using these dendronized
gelatins as the matrix, without any additional reducing agent (Figure 1). GelG1s carry
dendritic OEGs as pendants, which not only provide characteristic thermoresponsiveness,
but also endow these modified gelatins’ microconfinement [29]. Furthermore, GelG1MAs
carrying additional methacrylate moieties were prepared, allowing the preparation of cor-
responding thermoresponsive hydrogels through in situ photo-crosslinking. AuNPs were
prepared through in situ reduction in the matrix of these dendronized gelatins, assisted by
ultraviolet irradiation. The effects of topological structures and the thermoresponsiveness
of these dendronized gelatins on the reduction of AuCl4− into AuNPs were investigated.
The encapsulation and stability of AuNPs within the dendronized gelatins were examined.
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Figure 1. Illustration of synthesis of AuNPs in the matrix of dendronized gelatins (GelG1s) and 
dendronized gelatin methacrylates (GelG1MAs) triggered by UV irradiation. 

2. Results and Discussion 
2.1. Synthesis and Characterization of GelG1 and GelG1MA 

Dendronized gelatins were prepared through amidation with dendritic OEGs, as de-
scribed previously [29]. In order to examine the dendritic effects on the modulation of the 
reduction of AuCl4− into AuNPs, two dendronized gelatins—GelG115:1 and GelG15:1—
with an OEG dendron substitution degree of 86.7% and 54.4%, respectively, were synthe-
sized and compared to the naked gelatin. In addition, GelG1MA1:1 with methacryloyl 
pendants was synthesized from GelG11:1 (Scheme S1), allowing for the formation of den-
dronized gelatin hydrogels via photo-crosslinking. The substitution degrees of OEG den-
dron and methacryloyl moiety in GelG1MA1:1 were 45.6% and 48.5%, respectively. The 
structures of the dendronized gelatins were confirmed with 1H NMR spectroscopy. Figure 
2 shows the assembled 1H NMR spectra of naked gelatin, GelG11:1 and GelG1MA1:1. Com-
pared to the unmodified gelatin and GelG11:1, two new signals (a and b) at δ 6.19 ppm 
and 5.8 ppm were observed, corresponding to the protons from the methacryloyl moiety. 
The intensity of signal c at δ 1.45 ppm, which corresponds to the methyl group from the 
methacryloyl moiety, increased obviously after modification. This confirms that methac-
ryloyl groups were successfully grafted to the gelatin. These dendronized gelatins exhibit 
characteristic thermoresponsive properties, and the cloud points (Tcps) for GelG115:1, 
GelG15:1 and GelG1MA1:1 at a concentration of 0.5 wt% were found to be 35.7 °C, 45.8 °C 
and 48.6 °C, respectively (Figure S1). 

Figure 1. Illustration of synthesis of AuNPs in the matrix of dendronized gelatins (GelG1s) and
dendronized gelatin methacrylates (GelG1MAs) triggered by UV irradiation.

2. Results and Discussion
2.1. Synthesis and Characterization of GelG1 and GelG1MA

Dendronized gelatins were prepared through amidation with dendritic OEGs, as de-
scribed previously [29]. In order to examine the dendritic effects on the modulation of the re-
duction of AuCl4− into AuNPs, two dendronized gelatins—GelG115:1 and GelG15:1—with
an OEG dendron substitution degree of 86.7% and 54.4%, respectively, were synthesized
and compared to the naked gelatin. In addition, GelG1MA1:1 with methacryloyl pendants
was synthesized from GelG11:1 (Scheme S1), allowing for the formation of dendronized
gelatin hydrogels via photo-crosslinking. The substitution degrees of OEG dendron and
methacryloyl moiety in GelG1MA1:1 were 45.6% and 48.5%, respectively. The structures of
the dendronized gelatins were confirmed with 1H NMR spectroscopy. Figure 2 shows the
assembled 1H NMR spectra of naked gelatin, GelG11:1 and GelG1MA1:1. Compared to
the unmodified gelatin and GelG11:1, two new signals (a and b) at δ 6.19 ppm and 5.8 ppm
were observed, corresponding to the protons from the methacryloyl moiety. The intensity
of signal c at δ 1.45 ppm, which corresponds to the methyl group from the methacryloyl
moiety, increased obviously after modification. This confirms that methacryloyl groups
were successfully grafted to the gelatin. These dendronized gelatins exhibit characteris-
tic thermoresponsive properties, and the cloud points (Tcps) for GelG115:1, GelG15:1 and
GelG1MA1:1 at a concentration of 0.5 wt% were found to be 35.7 ◦C, 45.8 ◦C and 48.6 ◦C,
respectively (Figure S1).
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Figure 2. 1H NMR spectra of naked gelatin (a), GelG11:1 (b) and GelG1MA1:1 (c) in D2O. Solvent
signals are marked with asterisk (*).

2.2. Preparation of AuNPs in the Presence of Dendronized Gelatins with UV Irradiation

Reduction of AuCl4− in the presence of GelG1 at room temperature through ultravio-
let irradiation was examined first. Aqueous solution of GelG1 containing AuCl4− changed
from colorless to purple after 30 min and to red after 60 min of irradiation (Figure 3a).
UV/vis spectra were, therefore, used to follow the reduction process. As shown in Figure 3a,
a strong absorption around 520 nm appeared and its intensities increased with irradiation
time, corresponding to the surface plasma vibration from AuNP [30]. The plasma resonance
peak intensities of the solution increased with irradiation time, indicating that the amount
of AuNPs formed by reduction increased with time. For comparison, the reduction of
Au(III) in the presence of naked gelatin was performed, and a similar plasma resonance
peak appeared with its intensities also increased with irradiation time (Figure S2a). This
indicates that the reduction of Au(III) can be conducted in either dendronized gelatins
or naked gelatin. We suppose the reduction was driven by phenolic hydroxyl or other
reducing groups from the peptide backbone [31]. However, the reduction kinetics are quite
different when comparing the naked gelatin to that of GelG1. As shown in Figure 3b,c,
after irradiation for a certain time, maximum absorbance (Amax) and reduction rates
((At − A0)/∆t) in the case of GelG1 are much higher than that for gelatin, suggesting
that the dendritic OEGs are supportive to enhance the reduction kinetics. Compared to that
from naked gelatin, the wavelength of the maximum absorption (λmax) from GelG1/AuNPs
is blue shifted (Figure 3d), indicating that the formed AuNPs should have smaller sizes.
The morphology and sizes of the AuNPs were observed by a transmission electron mi-
croscope (TEM). As shown in Figure S2c, uniformed AuNPs with sizes in the range of
8–12 nm were observed from gelatin, while sizes in the range of 5–8 nm were observed
from GelG1 (Figure S2d). The AuNPs formed in the matrix of dendronized gelatins and
gelatin were investigated by dynamic light scattering (DLS). The hydrodynamic radii (Rhs)
of GelG1/AuNPs and Gel/AuNPs at 25 ◦C are plotted in Figure S2e, and it was found
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that Rh of GelG1/AuNPs is approximately 35 nm, which is slightly smaller than that of
Gel/AuNPs (about 38 nm).

Molecules 2022, 27, x FOR PEER REVIEW 5 of 13 
 

 

found that Rh of GelG1/AuNPs is approximately 35 nm, which is slightly smaller than 
that of Gel/AuNPs (about 38 nm). 

The effect of the grafting ratio of dendritic OEGs on the modified gelatins for the 
preparation of AuNPs was checked. As shown in Figure 3c and Figure S2b, the reduction 
rates of both GelG115:1 and GelG15:1 were greater than that of the naked gelatin, and 
GelG115:1 exhibited the highest rate. The grafting coverage of dendritic OEGs in GelG115:1 
(86.7%) was higher than that of GelG15:1 (54.4%), suggesting that abundant dendritic 
OEGs may have provided enhanced microconfinement to shield the solvation of metal 
anions, resulting in the promotion of the in situ reduction of Au(III) to form AuNPs. 
Therefore, an increase in the grafting ratio of dendritic OEGs is helpful to create the con-
fined microenvironment to increase the reduction rate. 

 
Figure 3. (a) UV/vis absorption spectra of AuNPs obtained by in situ reduction of HAuCl4 (0.1 
mg/mL) with GelG115:1 (2 mg/mL) through irradiation with UV light (365 nm, 30 W) at 25 °C. Inserts 
are photographs of aqueous solutions of GelG115:1 and HAuCl4 after UV irradiation for different 
time. Plots of Amax (b), reduction rate (c) and λmax (d) with irradiation time for in situ reduction of 
HAuCl4 (0.1 mg/mL) with GelG115:1, GelG15:1 and gelatin (2 mg/mL) at 25 °C. 

Reduction of HAuCl4 to form AuNPs was also performed in the presence of 
GelG1MA through UV irradiation. GelG1MA1:1 carried the same dendritic OEGs as 
GelG1 but with a slightly lower grafting ratio (45.6%). The reduction process was fol-
lowed by UV/vis spectroscopy, and the spectra are shown in Figure 4a. Similar to the case 
from GelG1, there was a plasma resonance absorption near 550 nm after UV irradiation 
and its intensity increased with irradiation time, indicative of forming AuNPs. The aque-
ous solution of GelG1MA1:1 containing AuCl4− changed from colorless to purple after UV 
irradiation for 60 min at 25 °C (Figure 4b), which also indicates the reduction of Au(III) 
into Au(0). For comparison, the reduction of AuCl4− was also performed in the presence 
of GMA, where gelatin carries no dendrons but only the methacrylol pendants (Figure 
S3a), and the solution turned light blue. Compared to the case of GMA/AuNPs, the 

Figure 3. (a) UV/vis absorption spectra of AuNPs obtained by in situ reduction of HAuCl4 (0.1 mg/mL)
with GelG115:1 (2 mg/mL) through irradiation with UV light (365 nm, 30 W) at 25 ◦C. Inserts are
photographs of aqueous solutions of GelG115:1 and HAuCl4 after UV irradiation for different time.
Plots of Amax (b), reduction rate (c) and λmax (d) with irradiation time for in situ reduction of HAuCl4
(0.1 mg/mL) with GelG115:1, GelG15:1 and gelatin (2 mg/mL) at 25 ◦C.

The effect of the grafting ratio of dendritic OEGs on the modified gelatins for the
preparation of AuNPs was checked. As shown in Figure 3c and Figure S2b, the reduction
rates of both GelG115:1 and GelG15:1 were greater than that of the naked gelatin, and
GelG115:1 exhibited the highest rate. The grafting coverage of dendritic OEGs in GelG115:1
(86.7%) was higher than that of GelG15:1 (54.4%), suggesting that abundant dendritic
OEGs may have provided enhanced microconfinement to shield the solvation of metal
anions, resulting in the promotion of the in situ reduction of Au(III) to form AuNPs.
Therefore, an increase in the grafting ratio of dendritic OEGs is helpful to create the
confined microenvironment to increase the reduction rate.

Reduction of HAuCl4 to form AuNPs was also performed in the presence of GelG1MA
through UV irradiation. GelG1MA1:1 carried the same dendritic OEGs as GelG1 but with
a slightly lower grafting ratio (45.6%). The reduction process was followed by UV/vis spec-
troscopy, and the spectra are shown in Figure 4a. Similar to the case from GelG1, there was
a plasma resonance absorption near 550 nm after UV irradiation and its intensity increased
with irradiation time, indicative of forming AuNPs. The aqueous solution of GelG1MA1:1
containing AuCl4− changed from colorless to purple after UV irradiation for 60 min at
25 ◦C (Figure 4b), which also indicates the reduction of Au(III) into Au(0). For comparison,
the reduction of AuCl4− was also performed in the presence of GMA, where gelatin carries
no dendrons but only the methacrylol pendants (Figure S3a), and the solution turned
light blue. Compared to the case of GMA/AuNPs, the reduction rates for GelG1MA1:1
were higher (Figure 4b) and the maximum absorption from GelG1MA1:1/AuNPs solution
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stronger (Figure 4c). These suggest that reduction efficiency for GelG1MA1:1 was signifi-
cantly enhanced when compared to that for GMA. This again supports that dendritic OEG
pendants may have provided a hydrophobic microenvironment through their crowded
packing along the gelatin chains, which strengthened the interactions between the polymers
and Au(III) to promote the reduction.
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Figure 4. (a) UV/vis absorption spectra of AuNPs obtained by in situ reduction of HAuCl4 (0.1 mg/mL)
with GelG1MA1:1 (2 mg/mL) through irradiation with UV light (365 nm, 30 W) at 25 ◦C. Plots of
Amax and photographs (b), reduction rate (c) and λmax (d) with irradiation time for in situ reduction
of HAuCl4 (0.1 mg/mL) with GelG1MA1:1 and GMA (2 mg/mL) at 25 ◦C. X-ray photoelectron
spectroscopy (XPS) spectra (e) and TEM photographs and particle size distribution (f) of the AuNPs
obtained from GelG1MA1:1 (2 mg/mL) under UV irradiation at 25 ◦C.
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Compared to that from GMA, the wavelength of the maximum absorption from
GelG1MA1:1/AuNPs blue shifted (Figure 4d), indicating that the formed AuNPs should
be smaller in size. The XPS spectra of the AuNPs were recorded, and the binding energies
of the Au (4f7/2) and Au (4f5/2) peaks appeared at 84.17 eV, 87.79 eV, respectively, which
can be assigned to Au(0) (Figure 4e). This further supports the reduction of Au(III) to form
Au(0). The morphology and sizes of the AuNPs was further observed by TEM. As shown
in Figure 4f, uniformed AuNPs with sizes in the range of 4–8 nm were observed from
GelG1MA1:1. The lattice plane spacing was found to be 2.15 Å, which corresponds to the
(111) plane of the face-centered cubic gold crystals [32]. Differently, AuNPs with much
larger sizes in the range of 8–12 nm were observed from GMA (Figure S3b). As shown in
Figure S3c, the Rh of GelG1MA1:1/AuNPs is approximately 52 nm, slightly smaller than
that of GMA/AuNPs (about 55 nm). The particle size of AuNPs prepared in the presence of
GelG1MA is smaller, which may be due to the hydrophobic microenvironment provided by
the crowded OEG dendrons. This makes the interaction between the dendronized gelatins
and Au(III) stronger, which promotes the reduction. In addition, the steric hindrance effect
from the dendrons affords better stability to the formed AuNPs.

2.3. Effects of the Thermoresponsive Properties of the Dendronized Gelatins on the Formation
of AuNPs

Since these dendronized gelatins are thermoresponsive, their modulation of the reduc-
tion at elevated temperature was examined. The effect of the thermoresponsive properties
of dendronized gelatins on the preparation of AuNPs can be investigated by UV irradiation
above the cloud point (50 ◦C), compared to that below the cloud point (25 ◦C). From the
UV/vis spectra in Figure 5a, when irradiated at 50 ◦C, which is above the Tcp of GelG1,
plasma resonance with much stronger intensities than that at room temperature appeared
(Figure 5b). This indicates that reduction kinetics can be greatly enhanced by increases
in temperature. To verify whether this enhancement was originated from temperature
increase itself or the combined effects from the thermally induced dehydration and collapse
of the dendritic OEGs, the reduction of Au(III) at elevated temperature in the presence of
naked gelatin, which is not thermoresponsive, was performed and compared (Figure S4).
As shown in Figure 5c, reduction kinetics increased in both naked gelatin and GelG1 with
temperature, with the latter more pronounced. This indicates again that crowded dendritic
OEGs are supportive to the reduction. Furthermore, the maximum absorption wavelength
of AuNPs blue shifted to 525 nm from 575 nm (Figure 5d), indicating that the size of AuNPs
gradually decreased at elevated temperature.

Similar to the case at room temperature, the aqueous solution of GelG1MA1:1 contain-
ing AuCl4− irradiation with UV light at 50 ◦C transformed from a colorless solution into
purple, as shown in Figure S5a. From the UV/vis spectra in Figure 6a, when irradiated
at 50 ◦C, which is above the Tcp of GelG1MA1:1, the maximum absorption showed much
enhanced intensities at the same UV irradiation time when compared to the case at room
temperature (Figure 6b), indicating that the reduction rate was obviously accelerated by
the increased temperature. However, the reduction rate of AuNPs by GMA at elevated
temperature remained relatively slow, as shown in Figures 6c and S5b. This again suggests
that the enhanced hydrophobic microenvironment from the dehydrated dendritic OEGs at
elevated temperatures enhanced the reduction. Furthermore, when irradiated at 50 ◦C, the
maximum absorption wavelength of AuNPs blue shifted to 525 nm from 560 nm (Figure 6d),
indicating that the size of AuNPs gradually decreased at elevated temperature.
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2.4. Stability of AuNPs Formed in the Matrices of Dendronized Gelatins

The above results show that dendronized gelatins can reduce Au(III) to form well-
defined AuNPs through UV irradiation. This method does not need the addition of any
external reducing agent. To explore the feasibility of the methodology developed in present
work, the stability of the AuNPs formed in the matrix of dendronized gelatins were in-
vestigated. After storage at 25 ◦C for 30 days, the pink solutions from GelG115:1/AuNPs
or GelG1MA1:1/AuNPs remained clear and homogeneous, as shown in Figure 7a, indi-
cating their high stability. In contrast, Gel/AuNPs became turbid and precipitation was
observed. UV/vis spectroscopy was also applied to follow the stability of the AuNPs.
After 20 days of storage at room temperature, Amax from the dendronized gelatins did not
change significantly (Figure 7b), while Amax from the Gel/AuNPs showed the most obvious
change. The above results indicate that dendronized gelatins act as reducing agents for the
transformation of Au(III) into Au(0), and at the same time, as a stabilizer to the formed
nanoparticles. The electrostatic or coordination interactions between the dendronized
gelatins and the formed AuNPs should have contributed to their stability in aqueous media.
On the other hand, crowding from the dendritic units in the dendronized gelatins may
have also provided an enveloping effect to prevent the AuNPs from agglomeration, making
them dispersed with high stability [28].
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2.5. Fabrication of Dendronized Gelatin/AuNP Hydrogels

GelG1MA contains unsaturated double bonds. Through UV irradiation, they can
act as a matrix for in situ reduction to form AuNPs, and simultaneously transform into
hydrogels via photo-crosslinking polymerization (Scheme S2). Therefore, a mixture of
GelG1MA1:1 (10 wt%), HAuCl4 (2.5 mmol/L) and photo-initiator 2959 (2 wt%) was illu-
minated by ultraviolet light (30 W, 365 nm), which changed from colorless solution into
dark purple hydrogel (Figure 8a). For comparison, GelG1MA1:1 hydrogel was prepared
by the same method without HAuCl4, which exhibited a light-yellow color. Both hydro-
gels can keep their shape when heated to 50 ◦C, indicating chemical crosslinking. The
reduction of HAuCl4 in the presence of GelG1MA1:1 to form AuNPs and transform into
hydrogel was traced by UV/vis spectroscopy. The plasma resonance absorption peak of
AuNPs appeared at 520 nm after UV irradiation for 5 min (Figure 8a), and the intensity of
the absorption peak remained unchanged after about 15 min (Figure 8b), indicating that
GelG1MA1:1 had reduced most of Au(III) into AuNPs at that condition. The λmax exhibited
a blue shift to 505 nm from about 508, indicating that the elongation of irradiation afforded
AuNPs with slightly smaller sizes. The dendronized gelatin/gold nanoparticle composite
hydrogels were successfully obtained through in situ reduction and photo crosslinking
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polymerization, prompted by UV irradiation. This method has the advantages of fast
photo crosslinking to form hydrogels and the high efficiency of Au(III) reduction into gold
nanoparticles. This work provides a simple, rapid and in situ reduction method for the
preparation of gold nanoparticles’ composite hydrogels, which may have broad application
prospects in biomedical fields such as bioimaging, biosensing and drug delivery. We believe
these thermoresponsive dendronized gelatin hydrogel combined AuNP composites could
be important in promising bioapplications.
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3. Materials and Methods
3.1. Materials

Dendronized gelatins GelG1s were prepared as described previously [29]. Gelatin was
purchased from Sigma-Aldrich Chemical Co., Shanghai, China. Tetrachloroauric hydrate
hydrochloride, 2-hydroxy-4’-(2-hydroxyethoxy)-2-methylpropiophenone, and ethylene
diamine tetraacetic acid were purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). Phosphate-buffered saline (PBS, pH 7.4) containing 0.0067 M phosphate
without calcium and magnesium was purchased from Hyclone Thermo Fisher (Logan,
QLD, USA). Other reagents and solvents were purchased at reagent grade and used without
further purification.

3.2. Instrumentation and Measurements
1H NMR spectra were recorded on a Bruker AV 500 (500 MHz) spectrometer. UV/vis

measurements were conducted on a JASCO V-750 spectrophotometer equipped with a
thermostatically regulated bath. Aqueous polymer solutions were placed in the spectropho-
tometer (path length 1 cm). Fluorescence (FL) spectra were recorded in a fluorescence
spectrometer (Horiba Jobin Yvon Fluorolog-3) equipped with a temperature control device.
Dynamic light scattering (DLS) measurements were performed on a DynaPro Nanos-
tar. X-ray photoelectron spectroscopy (XPS) spectra were recorded on an AXIS Supra+
(Shimadzu, Manchester, UK). This system uses a focused monochromatic Al Kα X-ray
(1486.7 eV) source for excitation. The binding energies were referenced to C1s at 284.8 eV
from hydrocarbon to compensate for the charging effect. The micromorphology of in situ-
formed spherical AuNPs was imaged by using a field-transmission electron microscope
(JEM-2100, INCAX-Max80) with an accelerating voltage of 160 kV. Sample preparation:
An appropriate amount of solution was taken into the centrifuge tube, and centrifuged with
a rotating speed 10,000 RPM for 15 min. The supernatant was discarded, and ultrapure
water was added to the ultrasonic dispersion and centrifuged twice. After discarding the
supernatant, absolute ethanol was added to the ultrasonic dispersion, which was then
dispersed on copper wire.
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3.3. Synthesis of GelG1MA

GelG1 (5 g) was dissolved in Dulbecco’s phosphate-buffered saline (DPBS) solution
(50 mL) at 50 ◦C, followed by the addition of methacrylic anhydride (MA) at a rate of
0.5 mL/min. The molar ratio of the amino group from gelatin to MA was set to be
1:20. After stirring for 4 h, the reaction mixture was diluted with DPBS and dialyzed for
7 days against distilled water with dialysis membranes (MWCO 12–14 kD). Freeze-drying
afforded the product as a white solid with a yield of 48%. The structure of GelG1MA1:1
was confirmed by NMR spectroscopy. 1H NMR (500 MHz, D2O): δ = 1.28–1.45 (br, CH3),
3.67–3.95 (br, CH2), 4.31–4.44 (br, CH2), 5.19 (s, CH2), 5.79 (br, C=CH2), 6.18 (br, C=CH2)
6.94 (s, Ar–H).

3.4. Fabrication of AuNPs in the Matrix of Gelatin or Modified Gelatins

Gelatin or modified gelatins (4 mg) were mixed with HAuCl4·4H2O (0.2 mg) in
aqueous solution (1 mL). The mixture was stirred by a vortex oscillator, then irradiated
by ultraviolet light (365 nm, 30 W) for a designed time period (60–90 min). The distance
between the lamp and the sample was fixed at 10 cm. UV/vis spectroscopy was applied to
follow the reduction process. AuNPs obtained from the matrix of naked gelatin, gelatin
methacryloyl, dendronized gelatin, and dendronized gelatin methacryloyl are named as
Gel/AuNPs, GMA/AuNPs, GelG1/AuNPs, and GelG1MA/AuNPs, respectively.

3.5. Fabrication of GelG1MA/AuNP Hydrogel

The mixture of GelG1MA1:1 (100 mg/mL), HAuCl4 (1 mg/mL) and photo-initiator
2959 (20 mg/mL) was oscillated for 30 s in the scroll oscillator to form a uniformly mixed
solution. The mixture was illuminated for 30 min by ultraviolet lamp (30 W, 365 nm), and
the mixture changed from a colorless solution into a dark purple hydrogel.

4. Conclusions

We have developed a green and convenient method in the present work to generate
stable AuNPs by using dendronized gelatins or dendronized gelatin methacrylates as pre-
cursors, triggered by UV irradiation. The reduction can be processed efficiently without any
additional reducing chemicals. Dendronized gelatins act as both a reducing agent for the
transformation of Au(III) into Au(0) and a stabilizer for the formed nanoparticles through
crowded dendritic OEG units. The dendritic OEGs provide a hydrophobic microenviron-
ment to promote the formation of AuNPs, and the reduction rate can be enhanced with
an increase in grafting coverage of the dendritic OEGs, as well as the thermally induced
aggregation of polymer chains. The high stability of the nanoparticles in the matrix of
dendronized gelatins has been verified through long-term storage. Therefore, the formation
of AuNPs within the envelope of dendronized gelatins avoids cumbersome operation and
environmental pollution. Dendronized gelatin/AuNP composite hydrogels can be readily
prepared from dendronized gelatin methacryloyl via UV irradiation through simultaneous
reduction and photo-crosslinking polymerization. This clean and environmentally friendly
method for the synthesis of AuNPs may be extended for the fabrication of other noble
metal nanoparticles and shed light on promising applications in nano biosensors and
nano devices.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27186096/s1. Scheme S1: Synthetic procedures for den-
dronized gelatin GelG1MA. Reagents and conditions: methacryloyl anhydride, GelG1, water, 50 ◦C,
4 h (88%); Scheme S2: Preparation of GelG1MA hydrogel by UV irradiation; Figure S1: Plots
of transmittance vs. temperature for GelG115:1, GelG15:1 and GelG1MA1:1 in water. Polymer
concentration = 0.5 wt%. Heating rate = 0.2 ◦C/min; Figure S2: UV/vis absorption spectra of gold
nanoparticles obtained by in situ reduction of HAuCl4 under UV irradiation at 25 ◦C in the presence
of gelatin (a) and GelG15:1 (b). TEM photographs of the AuNPs obtained through UV irradiation at
25 ◦C from gelatin (c) and GelG15:1 (d). Hydrodynamic radii of nanoparticles (intensity) obtained
by in situ reduction of HAuCl4 by GelG15:1 and gelatin through UV irradiation at 25 ◦C (e). Insets
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in (c,d) are particle size distribution of the nanoparticles. HAuCl4 concentration = 0.1 mg/mL.
Polymer concentration = 2 mg/mL; Figure S3: UV/vis absorption spectra of gold nanoparticles
obtained by in situ reduction of HAuCl4 with GMA through UV irradiation at 25 ◦C (a). TEM
photographs of AuNPs obtained from GMA through UV irradiation at 25 ◦C (b). Hydrodynamic
radii of nanoparticles (intensity) obtained by in situ reduction of HAuCl4 by GelG1MA1:1 and GMA
through UV irradiation at 25 ◦C (c). Inset in (b) is particle size distribution of the nanoparticles.
HAuCl4 concentration = 0.1 mg/mL. Polymer concentration = 2 mg/mL; Figure S4: UV/vis ab-
sorption spectra of gold nanoparticles obtained by in situ reduction of HAuCl4 (0.1 mg/mL) with
naked gelatin (2 mg/mL) under different UV irradiation time at 50 ◦C; Figure S5: (a) Photographs of
aqueous solutions of GelG1MA1:1 (2 mg/mL) and GMA (2 mg/mL) with HAuCl4 (0.1 mg/mL) after
irradiated by UV light (365 nm, 30 W) after 30 min at 50 ◦C (Bottle 1: GelG1MA1:1/AuNPs, bottle 2:
GMA/AuNPs). (b) UV/vis absorption spectra of gold nanoparticles obtained by in situ reduction of
HAuCl4 (0.1 mg/mL) with GMA (2 mg/mL) under different UV irradiation time at 50 ◦C.
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