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Abstract

The formation of spherical aggregates during the growth of cell population has long been
observed under various conditions. We observed the formation of such aggregates during
proliferation of Huh-7.5 cells, a human hepatocarcinoma cell line, in a microfabricated low-
adhesion microwell system (SpheroFilm; formed of mass-producible silicone elastomer) on
the length scales up to 500 um. The cell proliferation was also tracked with immunofluores-
cence staining of F-actin and cell proliferation marker Ki-67. Meanwhile, our complementary
3D Monte Carlo simulations, taking cell diffusion and division, cell-cell and cell-scaffold
adhesion, and gravity into account, illustrate the role of these factors in the formation of
spheroids. Taken together, our experimental and simulation results provide an integrative
view of the process of spheroid formation for Huh-7.5 cells.

Introduction

The study of cell culture in three-dimensional (3D) scaffolds is of considerable intrinsic interest
and is also important in the context of numerous applications including, e.g., tissue engineer-
ing, disease modeling and drug screening platforms [1-3]. The structure and size of the corre-
sponding scaffolds vary in a broad range from two-dimensional (2D) arrays of sub-millimeter
wells to complex 3D structures aiming at mimicking specific organs [2, 3]. Chemically, the
scaffolds are often fabricated by using natural hydrogels [2], synthetic polymers [1], or combi-
nation of such materials [4]. Cells growing in scaffolds typically aggregate. The shape and mor-
phology of aggregates may be different, depending on various factors including the cell type,
design of a scaffold and the corresponding fabrication material [1].

Cellular spheroids represent the most common shape of cell assembly [5, 6]. Aggregates of this
shape were created, e.g., by concave microwell method [7], hanging drop method [5, 8], or rotat-
ing-wall vessel technique [9, 10]. The size (diameter) of spheroids may reach ~1 cm as observed in
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experiments with human colon adenocarcinoma cells [9] and rat hepatocytes [11] (the latter cells
displayed liver-like morphology or, more specifically, a compact structure with tight cell-cell junc-
tions, smooth and rough endoplasmic reticulum and bile canaliculi lined with the microvilli).
Often, the size is smaller. For example, the size of spheroids composed of mammary epithelial cells
was reported to be ~100 um (these spheroids can produce and secrete milk proteins upon hor-
monal stimulation) [5], while in the case of hepatocytes the size was ~200 um [7].

The growth of cell cultures in scaffolds is of interest also in the context of theoretical biology
and statistical physics (for general introduction into this area, see reviews [12-16]). The corre-
sponding models are usually based on the mean-field (MF) kinetic equations or Monte Carlo
(MC) simulations. The MF approach is convenient in the situations where the geometry is sim-
ple. Such models were used to scrutinize the limitations in the nutrient supply and oxygen
transport in porous scaffolds on the coarse-grained level without or with explicit description of
single pores (see e.g. references [4, 17, 18] and [18, 19], respectively, and references therein).
MC simulations, based often on the lattice approximation and describing evolution of an
ensemble of individual cells, are efficient in the situations with complex geometry and/or in the
cases when the focus is on aggregation of cells (as in our present study). The available generic
2D and 3D MC simulations have been focused on the growth and differentiation of stem cells
[20], cell seeding [21], and formation of cell sheets [4]. Related theoretical studies concern
stem-cell niches [22-25] and scaffold-less biofabrication [26].

Herein, we report the results of our study of culturing Huh-7.5 cells in microfabricated low-
adhesion microwells. These cells belonging to a human hepatocarcinoma cell line are widely
used as a liver cell model for the exploration of HCV infection [27]. Earlier, we observed the
formation of Huh-7.5 cell spheroids in PEG-based hydrogels [28] and multilayer cell sheets in
a biofunctionalized 3D scaffold [4, 29]. Our present work is focused on the same cells and has
three novel ingredients.

First, we use a recently designed microwell platform for direct observation of the prolifera-
tion of cells. Its advantages include: (i) The microwell has a total depth that is two times of its
diameter, and walls formed of triangular flat fragments are used to separate adjacent wells. So
in contrast to conventional microfabricated semi-circular wells, this mechanical stress (shear
force)-free design prevents the cells from slipping during medium exchange, and the method
of fluid delivery is diffusion based. (ii) Compared to the hanging drop method [5, 8], the micro-
well system enables flexible medium exchange during incubation, and due to the small radius
of curvature of individual wells (smaller than the size of a water drop), we are able to achieve
fairly similar distribution of cell aggregates in different wells. (iii) Another feature distinguish-
ing it from the conventional plastic round bottom wells is that the base (fabricated from sili-
cone elastomer) is easily oxygen-permeable. The latter allows us to reduce hypoxia of cells in
the centers of aggregates that is inevitable in conventional plastic scaffolds.

Second, the use of microwell platform described above allowed us to observe explicitly in
detail the formation of spherical Huh-7.5 aggregates on the length scale up to 500 um, with
both light microscopy and confocal fluorescence microscopy.

Third, our experimental results are complemented by 3D Monte Carlo simulations to illus-
trate the role of various factors (e.g., cell diffusion, cell-surface adhesion, and gravity) in the
process of cell aggregation and spheroid formation.

Materials and Methods
Pretreatment of 3D SpheroFilm™ for cell culture

The 3D SpheroFilm™ microwell was obtained from Incyto Co. (Chonan, Korea). The inner
diameter of the hemispheres in the microwell is 500 um, and the total well depth is 1000 pum
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Fig 1. Scheme of SpheroFilm™ scaffold and spheroid formation there. (a) Top view of SpheroFilm™
containing 361 (19 x 19) microwells; [(b) and (c)] shape and dimensions of microwells with a diameter of

500 um and the total well depth of 1000 pm; (d) cell seeding and attachment in and outside of microwells; (e)
side and top views of spheroid formation in microwells; (f) side and top views of cell growth in and outside of a
microwell.

doi:10.1371/journal.pone.0161915.g001

(Fig 1). The microwell was made of mass-producible silicone elastomer. For proper cell culture,
the microwell was cut to 1-cm* squares, and was placed at the bottom of wells in a 24 well
plate. 100% ethanol was added into the plate and repeatedly pipetted to remove the air bubbles
from the wells. Once ethanol was removed, the wells were washed three times with phosphate-
buffered saline (PBS), and then incubated with cell culture medium for at least 24 hours. The
cell culture medium was removed prior to cell seeding.

Cell culture and cell seeding in 3D SpheroFilm

Human hepatocarcinoma Huh-7.5 cells, purchased from Apath (NY, USA), were maintained
in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% fetal bovine serum
(FBS), 100 U/ml penicillin and 100 pg/ml streptomycin (Life Technologies) in a humidified
atmosphere with 5% CO, at 37°C. Medium was changed every three days. Cells were detached
with 0.25% trypsin-EDTA solution (Life Technologies) from the tissue culture plate, counted,
and adjusted to 0.05, 0.1 and 0.2 x 10° cell/ml. 1 ml cell suspension was seeded in each piece of
microwell square, cut and placed in 24 well plate. After 10 minutes of cell seeding, suspending
cells were removed by aspiration, and the remaining cells were washed and incubated in fresh
growth media until time of assay.

Immunofluorescence staining and imaging

Cells in the microwells were collected at various stages for immunocytochemistry. Cells were
washed twice with PBS, fixed with 4% paraformaldehyde (PFA) for 10 minutes, permeabilized
with 0.1% Triton X-100 in PBS for 30 minutes, washed again with PBS and incubated in block-
ing buffer (3% bovine serum albumin (BSA) in PBS) for 1 hour. Cells were stained with mouse
primary antibody against Ki-67 (Life Technologies) by overnight incubation at 4°C, and then
washed three times with PBS to remove unbound primary antibody. The cells were then incu-
bated with anti-mouse secondary antibody conjugated with Alexa Fluor@® 488 (Life Technolo-
gies). Meanwhile, filamentous actin (F-actin) was stained with Alexa Fluor®) 555 labelled
phalloidin (Life Technologies) for 2 hours at room temperature (protected from light). After
two washes with PBS, the nuclei were stained with 10 pg/ml DAPI (Life Technologies) for 30
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minutes. Fluorescent cell images were taken on a LSM 710 confocal microscope with ZEN pro-
gram (Carl Zeiss).

Results and Discussion
Cell growth and spheroid formation

The shape and dimensions of 3D SpheroFilm "™ microwells are schematically illustrated in Fig
1. Huh-7.5 cells were seeded in the microwells at density of 0.05 x 10° cell/ml. These cells
underwent several stages of morphological changes in the following 10 days (Fig 2). Initially
they were attached to the bottom of the hemispheres and randomly dispersed. Later on (Fig 2,
day 1), multiple cells started to form clusters due to the seemingly random cell migration and
cell-cell adhesion. After day 1, several small cell clusters as well as a number of individual cells
gradually merged into large cell aggregates at the center of each well of the microwell surface
(Fig 2, day 4). These pre-mature spheroids kept growing bigger and denser, and finally became
mature with significant thickness and clear 3D structure at day 7 and onward (Fig 2, day 7 and
day 10). When Huh-7.5 cells were seeded at higher densities (0.1 and 0.2 x 10° cell/ml, respec-
tively), similar stages of morphological changes can be observed with earlier cell aggregation
and denser spheroids formation (Fig 2).

The cell growth patterns were further examined by fluorescent staining of Ki-67 and F-
actin. Ki-67 is used as a marker of proliferating cells [30-32]. The expression of Ki-67 is known
to be upregulated in the G1, S, G2 and M phases of cell cycle, and reaches maximum in G2 and
M phases [33, 34]. In spheroid cell culture (Fig 3), Huh-7.5 cells showed intense Ki-67 staining
(green fluorescence) at day 1 after cell seeding, but the green fluorescence was markedly
reduced at day 4 compared to day 1. The expression of Ki-67 at day 7 and 10 was similar to day
4. This observation indicates that the rate of cell proliferation was fastest at day 1, and it slowed
down at day 4 and the rate was somewhat held constant till day 10. Another interesting obser-
vation is the spatial distribution of Ki-67 expression across the spheroid. At day 1, Ki-67 stain-
ing is evenly distributed across the cell aggregates; however, at days 4, 7 and 10, strong Ki-67
cells were found scattered on the periphery of spheroids (see white arrows), meaning that cell
proliferation was globally suppressed after day 4, but some cells on the periphery still

2h 1d 4d 7d 10d

Fig 2. Cell growth and spheroid formation in the microwells. Three different densities of Huh-7.5 cells
(0.05, 0.1 and 0.2 x 10° cell/ml) were seeded into the platform and the cells were observed under light
microscope over 10-day period. Scale baris 100 um.

doi:10.1371/journal.pone.0161915.9g002
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Fig 3. Ki-67 and F-actin staining of Huh-7.5 cells in the microwells. Huh-7.5 cells were seeded at

0.05 x 10° cell/ml density, and after 1, 4, 7 or 10 days of incubation, cells were stained with DAPI for nucleus
(blue), Alexa Fluor 488 for Ki-67 (green) and Alexa Fluor 555 for F-actin (red). DIC stands for differential
interference contrastimages. The bright green and red circles observed at days 4, 7 and 10 are cells that
strongly express Ki-67 and F-actin (see white arrows). Scale bar is 100 ym.

doi:10.1371/journal.pone.0161915.g003

maintained their proliferation activity. Interestingly, although cells in the spheroids showed
suppressed growth rate, the cells growing outside the microwells (those attached to the flat sur-
face) demonstrated consistent high expression of Ki-67 (Fig 4).

The expression of F-actin displayed similar trend with Ki-67 (Figs 3 and 4). Concerning this
aspect, we note that Chang and Hughes-Fulford earlier observed remarkable difference
between actin cytoskeleton of cells in monolayers and spheroids [35]. In particular, F-actin
stress fibers were found in cells of monolayer culture, while cells in spheroids featured cortical
actin that clearly distributed at the outline of the cells [35]. They also reported the upregulation
of structural genes including cytoskeletal molecules in monolayers. Thus, it seems to be reason-
able to attribute the strong F-actin staining of cells in the microwells at day 1 (Fig 3) as well as
cells outside microwells at all the time points (Fig 4) to the cell-substrate interaction and mono-
layer morphology, whereas when there is more cell-cell interaction in cell spheroid (Fig 3), the
F-actin expression is weaker.

Monte Carlo simulations

In reality, the proliferation of cells is usually accompanied by their aggregation due to cell-cell
adhesion. In microwells, the aggregation may take place near the microwell walls due to adhe-
sion of cells to the wall surface, and it may result in the formation of cell layers attached to the
walls. The size and structure of cell aggregates depend on various factors including the adhe-
sion strength, balance between the rates of cell division and diffusion, structure of the
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Fig 4. Ki-67 and F-actin staining of Huh-7.5 cells on flat surface outside the microwells. Scale bar is
100 pm.

doi:10.1371/journal.pone.0161915.g004

microwell, cell-cell communication, and limitations in the nutrient or oxygen supply, etc. Our
present 3D lattice MC simulations are focused on the proliferation of cells in a single well of
the microwell system (Fig 1). The emphasis is on adhesion, diffusion and the likely role of grav-
ity in this process. The corresponding parameters are varied in a wide range in order to provide
a general view on the pattern formation in the system under consideration. Some other general
factors are ignored in our simulations (which is inevitable due to the complexity of the system).
In particular, the cell-cell communication is not taken into account primarily because at the
moment we have no data specifying this factor. Concerning this aspect, we may note that the
use of the Ki-67 marker indicates that in our experiments the cell growth occurs mainly at the
periphery of aggregates. It may be related to cell-cell communication and also to spatial con-
straints on the cell division. Our simulations take the latter factor into account, and accordingly
the results are expected to be robust even if the former factor is ignored. The limitations of the
nutrient or oxygen supply are not taken into account either. Such limitations are expected to be
significant roughly on the aggregate length scale larger than 200-400 um [36]. The aggregates
we observe (Fig 3) are smaller than or comparable to this length scale, and accordingly the
nutrient or oxygen supply is not expected to terminate the cellular growth.

To mimic the hemispherical well, we use a 60 x 60 x 80 slab of a cubic lattice. This slab is
cut down to a hemisphere in the lower part (at z < 30, where z is the vertical coordinate mea-
sured in the lattice spacing units) and a cylinder in the upper part (at 30 < z < 80). Each lattice
site can be either vacant or occupied by one cell. Cells can diffuse and divide. As usual in the
lattice models, the diffusion of cells is realized via jumps of monomers to vacant nearest-neigh-
bour (nn) sites. Diffusion (sedimentation) of aggregates is not taken into account partly due to
the lack of simple suitable algorithms and partly because in our case (during the cell
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proliferation) this process is expected to be important only at the initial stage of the whole pro-
cess (when the aggregates are small and their number is large) while we are more interested in
the situation when the aggregates are relatively large.

Division of a cell is also considered to be possible provided it has a vacant nn site. After divi-
sion, the cell remains on the same site and another (newly born) cell occupies a vacant nn site.
Both for diffusion and division, we use the so-called no-flux boundary conditions, i.e., a jump
or division is possible if an nn vacant site belongs to the array of sites representing the well.

To mimic the cell-cell and cell-surface adhesion, we introduce the effective attractive dimen-
sionless (i.e., normalized to kgT) interaction, €.. < 0, between two cells located in nn sites and
the effective attractive dimensionless cell-surface interaction, e, < 0, for cells contacting the
boundary representing the wall of microwells. In this case, the aggregation is known to occur at
|€cc| > 0.89 [37]. In our calculations, we set €. = —1.2. The value of the other interaction, e, is
varied to illustrate various situations.

To specify diffusion of monomers in the lattice models, one can use various prescriptions,
e.g., those corresponding to the initial-state, Metropolis, or Kawazaki dynamics [38]. We
employ the initial-state dynamics which reasonably predict rapid diffusion of single cell and
slow diffusion inside aggregates. In this case, the jump rate is reduced by exp(ne..) if a cell has
n neighbours. If a cell contacts the boundary, the jump rate is reduced by the additional factor,
exp(me), where m is the number of the corresponding contacts. To characterize the relative
rates of division and diffusion, we use the dimensionless parameter pg;,. The rates of division
and diffusion are considered to be proportional to pg;, and 1 —pgy,, respectively.

With the specification above, our MC algorithm consists of sequential trials to realize diffu-
sion or division events. A site is chosen at random. If the site is vacant, the trial ends. Other-
wise, a cell located in the site tries to diffuse if p > pg;, or to divide if p < pasy, where p (0 < p <
1) is a random number. In both cases, one of the nn site is selected at random and if the latter
site is vacant, the division is performed with unit probability, while the diffusion jump is real-
ized with the probability exp(ne.) or exp(ne.. + me.;) depending on the local arrangement.
After each trial, the time is incremented by [In(p)| / N, where N is the number of lattice sites,
and p (0 < p < 1) is another random number. With the latter prescription, the unit time is, as
usual, identified with MC step (MCS). On average, one MCS corresponds to N MC trials. All
the MC runs were started with five cells located on the lattice at random (for the representative
results with rapid diffusion, the details of the initial arrangement of cells are insignificant). To
characterize the cell concentration, we use the average occupation of sites, 9. The MC runs
were performed up to reaching 9 = 0.4.

In reality, the diffusion of cells is relatively rapid, and accordingly the value of pg4;, should be
small. To get an integrated view on the process, it is instructive, however, to show typical pat-
terns and kinetics at various rates of diffusion. Following this line, we first show patterns for
Pav =1, 1072, and 10~* in the absence of the cell-surface interaction, i.e. e.s = 0 (Figs 5-7). If the
diffusion is negligible (p4;, = 1), the growth takes place around the seed cells and there are only
a few aggregates (Fig 5). In the case of slow diffusion (pg;, = 1072), the aggregates are numerous
and their size is small (Fig 6). In the case of relatively rapid diffusion (pg;, = 10™*), the number
of aggregates becomes smaller and their size is larger (Fig 7).

Secondly, using pai, = 10~* and e = €. = —1.2, we show the likely role of the cell-surface
adhesion (Fig 8). In this case, the cell-surface adhesion is appreciable and the cells are located
primarily near the walls of microwells.

In the simulations described above, the aggregates are located either at random (Figs 5-7)
or near the walls (Fig 8). In our experiments, however, the cells aggregate primarily at the bot-
tom of microwells near the center (Fig 2). This feature can be reproduced by taking the gravity
into account. This factor is usually ignored in MC simulations of cell proliferation, and it was

PLOS ONE | DOI:10.1371/journal.pone.0161915  August 29, 2016 7/13



o ®
@ : PLOS | ONE Cellular Spheroid Formation and Monte Carlo Simulations

Fig 5. Monte Carlo simulation of cell proliferation and spheroid formation in the microwells. Cross
sections of a microwell along the main axis at 3 = 0.2 (a) and 0.4 (b) in the absence of cell diffusion and cell-
surface adhesion (pgiy = 1, ¢cs = 0). The well and cells are represented by black and red circles, respectively.

doi:10.1371/journal.pone.0161915.g005

ignored in our simulations above as well. To mimic the effect of gravity, we reduce the proba-
bility of jumps upwards by a factor of exp(e,), where €, < 0 is the corresponding effective
energy. The results of MC simulations with pg;, = 1074 € = -1.2, € = 0, and €g = —0.03 show
that due to the gravity the proliferation takes place near the bottom of a microwell (Fig 9).

Fig 6. Monte Carlo simulation of cell proliferation and spheroid formation in the microwells. Cross
sections of a microwell along the main axis at ¢ = 0.2 (a) and 0.4 (b) with slow cell diffusion (pgy, = 1072) and
no cell-surface adhesion (ess = 0).

doi:10.1371/journal.pone.0161915.g006
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Fig 7. Monte Carlo simulation of cell proliferation and spheroid formation in the microwells. Cross
sections of a microwell along the main axis at 9 = 0.2 (a) and 0.4 (b) with relatively rapid cell diffusion (pgi, =
10~*) and no cell-surface adhesion (ecs = 0).

doi:10.1371/journal.pone.0161915.g007

Figs 5-9 exhibit typical cell growth and aggregation patterns obtained in simulations. The
corresponding kinetics of cell proliferation are shown in Fig 10. In the absence of diffusion, the
kinetics are slow. With diffusion, the kinetics become faster. The growth of the cell population
is predicted to be exponential initially and then becomes close to linear.

Fig 8. Monte Carlo simulation of cell proliferation and spheroid formation in the microwells. Cross
sections of a microwell along the main axis at 3 = 0.2 (a) and 0.4 (b) in the presence of adhesion (e.s =—1.2) of
cells to the bottom and side area of the microwell. The adhesion to the top boundary is neglected because in
reality the corresponding plane crosses the solution. The diffusion of cells is relatively rapid (pgy, = 107%). The
well and cells are represented by black and red circles, respectively.

doi:10.1371/journal.pone.0161915.g008
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Fig 9. Monte Carlo simulation of cell proliferation and spheroid formation in the microwells. Cross
sections of a well along the main axis at 9 = 0.2 (a) and 0.4 (b) in the absence of cell-surface adhesion (ecs =
0). Cell diffusion is relatively rapid (o4 = 107%). In addition, the gravity is taken into account (¢ = —0.03).

doi:10.1371/journal.pone.0161915.g009

Conclusion

In this work, using a new microwell system for cell proliferation and MC simulations, we have
demonstrated that the combination of experimental observation and modeling is a powerful
tool for the study of cell spheroid formation. The results suggest that in the 3D cell culture plat-
form used in our study, the cell spheroids would form on the basis of strong cell-cell interaction
and weak cell-surface adhesion, and growth of spheroids mainly depends on the cell

0.4

0.0

Fig 10. Kinetics of cell growth in the Monte Carlo simulations. Lines 1-5 represent the cell growth
kinetics of MC runs shown in Figs 5-9, respectively.

doi:10.1371/journal.pone.0161915.g010
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proliferation on their periphery. The likely role of the gravity in the spheroid formation was
demonstrated as well. We believe that this strategy could potentially be applied to simulate
even more complicated cell systems in the future. Furthermore, the capability to direct specific
cells to the formation of aggregates of different types on diverse platforms, including cell spher-
oids in the microwells (as demonstrated in this study), cell spheroids in hydrogels of different
stiffness [28], and multilayer cell sheets in biofunctionalized 3D microscaffold [4], could have
significant implications for the construction and development of in vitro tissue models.
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