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ABSTRACT

Multi-omics integration is key to fully understand
complex biological processes in an holistic manner.
Furthermore, multi-omics combined with new longi-
tudinal experimental design can unreveal dynamic
relationships between omics layers and identify key
players or interactions in system development or
complex phenotypes. However, integration methods
have to address various experimental designs and
do not guarantee interpretable biological results.
The new challenge of multi-omics integration is to
solve interpretation and unlock the hidden knowl-
edge within the multi-omics data. In this paper, we go
beyond integration and propose a generic approach
to face the interpretation problem. From multi-omics
longitudinal data, this approach builds and explores
hybrid multi-omics networks composed of both in-
ferred and known relationships within and between
omics layers. With smart node labelling and prop-
agation analysis, this approach predicts regulation
mechanisms and multi-omics functional modules.
We applied the method on 3 case studies with var-
ious multi-omics designs and identified new multi-
layer interactions involved in key biological functions
that could not be revealed with single omics analy-
sis. Moreover, we highlighted interplay in the kinetics
that could help identify novel biological mechanisms.
This method is available as an R package netOmics
to readily suit any application.

INTRODUCTION

Cost reductions of DNA sequencing in addition to other
high-throughput multi-omics technologies have revolu-
tionized many research fields ranging from personalized
medicine (1,2) to systems biology (3,4). These innovations
have led to new biological insights and a better understand-

ing of living organisms (5–7). Thus, enabling the assess-
ment of most biological layers, this democratisation of high-
throughput technologies has created large datasets repre-
senting different biomolecules that necessitate specific pro-
cessing and statistical methods (8,9). Multi-omics trials typ-
ically collect different types of biomolecules (mRNA, pro-
teins, metabolites, etc.) from the same biological samples
with the ultimate goal of highlighting the interaction be-
tween biological layers that could be responsible for caus-
ing complex phenotype or diseases (2). Even more so most
biological phenomenon involves complex interactions be-
tween layers that vary through time (10). Adapted multi-
omics time-course methods to integrate and accurately cap-
ture interactions among those biological layers are thus now
required of and fully capture interactions within and be-
tween omic layers.

To describe complex interactions and regulatory mech-
anisms behind biological systems, mathematical models,
such as network, are built to interpret and reverse-engineer
cellular functions. Networks are used to represent all rele-
vant interactions taking place in a biological systems (11).
In networks, molecules (genes, proteins, metabolites) are
reduced to a series of nodes that are connected to each
other by edges. Edges represent the pairwise relationships,
interactions, between two molecules within the same net-
work. Molecular networks have become extremely popu-
lar and have been used in every area of biology to model
for example transcriptional regulation mechanisms, phys-
ical protein–protein interactions (12,13), or metabolic re-
actions (14). Networks come with valuable properties and
useful topological features such as degree distribution to
identify highly connected nodes or shortest paths which de-
termine proximity between two nodes. On a different scale,
network modularity defines sub-network units with highly
connected nodes in respect to the rest of the network. These
sub-networks, also known as modules, often share a similar
function. Thus, the ‘guilt by association’ property assumes
that known or unknown highly connected molecules should
be functionally related (15).
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Inference methods for network construction are often ap-
plied to a single omic layer to identify interaction between
molecules. However, this does not directly elucidate interac-
tion across multiple omic layers (16). To connect these lay-
ers, a first approach require prior knowledge of across omic
molecular networks such as publicly-available databases
(17). This approach is based on a legacy limited to model
organisms and may not reflect the current biological condi-
tion. A second method use multivariate data-driven meth-
ods that statistically infers correlations between molecules
based on multi-omics data. However, this approach may
have many possible solutions. A combination of the two
methods could improve multi-omics network construction.

The ultimate goal of multi-omics networks is to con-
nect phenotypes to biological mechanisms and their regu-
lators. Analysis of the interactome identifies direct neigh-
bors and modules linked to a phenotype. However, direct
neighbors can lead to false discoveries. Phenotypes and
molecules may be linked by irrelevant interactions. Further-
more, our knowledge of the interactome is not complete and
we can miss true interactions or interactions with more dis-
tant molecules (18). Based on the work of Page et al. (19),
propagation algorithms recently became the state-of-the-art
to investigate gene disease associations and also gene func-
tion prediction (18–20). From the known association, the
signal is iteratively propagated through the network. When
a steady state is reached, new nodes can be added to the ini-
tial association by their propagation score reflecting their
proximity to the starting nodes. It thus highlights potential
new phenotype-related targets. New advances in randoms
walks algorithms allow to propagate the signal in heteroge-
neous multi-layered networks which improves association
prediction (21).

In this paper, we propose to build hybrid multi-omics net-
works from longitudinal multi-omics data in order to facil-
itate the interpretation of multi-layers systems (Figure 1).
This methodology is based in the first place on the mod-
elling and clustering of expression profiles with similar be-
haviours over time. It relies on both accurate network re-
construction methods and knowledge-based reviewed inter-
actions between either molecules of the same or different
types. Finally, a random walk algorithm was used to iden-
tify and make new hypothesis about links between omics
molecules and key biological functions or mechanisms. The
main objectives of this method is to provide a versatile
framework for multi-omics network-based integration but
also to provide interpretation guidelines to explore these
networks to further highlight key intra-omics and inter-
omics mechanisms and interactions. We illustrate this ap-
proach through three case studies. These studies have dif-
ferent experimental designs with different omics data types,
timepoints and organisms to demonstrate that the proposed
approach is able to deal with a wide range of situations.

MATERIALS AND METHODS

This approach proposes pre-processing, modelling and
clustering steps for multi-omics longitudinal data. It
mainly emphasizes on network-based integration and
multi-layered network exploration (Figure 2) using network
propagation algorithms in order to provide new biologi-

Figure 1. Overview of the proposed approach. (A) Description of the ex-
perimental design: the same biological material is sampled at several time
points across several omic layers indicated in different colors. Each omic
data is normalised using both platform-specific and time-specific nor-
malisation steps. (B) Multi-Omics Network is built using both inference-
based and knowledge-based methods to connect intra- and cross-layered
biological features or molecules (mRNA, proteins, metabolites). Mea-
sured molecules are clustered into groups of similar expression profiles
over time and corresponding nodes formed kinetic sub-networks. Over-
representation analysis is performed to add an extra layer of functional an-
notation. Propagation analysis is performed on specific nodes of interest,
called seeds (biological function, gene, protein, metabolite, etc.) to identify
closely related molecules.

cal insights. We developed the R package netOmics which
wraps the method proposed below. It was developed to sim-
plify and reproduce the integration and interpretation steps.
It provides documentation and practical guidelines to build
and explore (longitudinal) multi-omics networks.

Multi-Omics longitudinal design

We define longitudinal multi-omics designs as follow. From
the same biological sample, omics data are produced (RNA,
proteins, etc.) at different timepoints. Raw data are pro-
cessed to get (NxP) abundance tables by omics data type
with samples in rows and molecules or biological features
(RNA, proteins, metabolites, etc.) in columns. We call these
tables blocks. In this framework, there is no need to have
matching timepoints between blocks because we use a mod-
elling step to interpolate missing timepoints and even out
uneven designs.

Pre-processing of longitudinal multi-omics data

We assume each omics data is a raw count table resulting
from bioinformatics quantification pipelines (22,23). Low
counts are filtered and data are normalized according to
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Figure 2. Workflow diagram illustrating the main steps of network based integration using longitudinal multi-omics data.

the type of data in each table. We also applied a filter on
time profiles and kept only molecules with the highest ex-
pression fold change between the lowest and highest point
over the entire time course, as described in (24). For each
case study, we adapted these filters to take into account
platform-specific dynamic range of values.

timeOmics: modelling and clustering of longitudinal multi-
omics data

The timeOmics approach (24) was used to cluster multi-
omics molecules with similar expression profiles over time.
The framework is based on two main steps:

(1) The first step uses a Linear Mixed Model Spline frame-
work (25) to model every molecule over the time-course
by taking into account the inter-individual variation.
This framework tests different models and assigns the
best model to each molecule according to a goodness
of fit test. One of its benefits is to allow interpolation of
missing timepoints and thus accommodate non-regular
experimental designs with missing data.

(2) The second step clusters the modelled expression pro-
files in groups of similar expressions over time. This is
performed using various multivariate projection-based
methods implemented in mixOmics (26). With a 3-
blocks omic design, we used multi-block Projection on
Latent Structures (block PLS) to cluster time profiles
from multi-omics datasets. Optimal number of clusters
is determined by maximising the average silhouette co-
efficient.

The objective of these preliminary steps is to summarise
each molecule with an expression pattern. This tag will then
be used in the multi-omics network reconstruction to build
cluster-specific sub-networks.

Network reconstruction

In order to build a multi-omics network, we started by
building a map for each layer (genes, proteins, metabo-
lites, etc) using a combination of both data-driven and
knowledge-driven building methods. The method used is
specific to the type of data and are described below. As men-
tioned in section 2.3, we kept the clustering information by
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building several sub-networks per kinetic cluster. We also
built an entire network without the cluster labels.

Data-driven network reconstruction. For gene expression
data, we relied on Gene Regulatory Network inference. This
class of method tries to reverse engineer complex regula-
tory mechanisms in the organisms and infer relationship
between genes. ARACNe (27) is a co-expression-based in-
ference algorithm which identify most likely TF–targeted
genes interaction by estimating mutual information, a sim-
ilarity distance between pairs of transcript expression pro-
file. We used ARACNe algorithm on gene expression pro-
file to infer potential TF- targeted genes interaction from
the gene expression dataset.

Knowledge-driven network. Some kind of interactions can-
not be revealed by inference methods and has to be ex-
perimentally determined (e.g. protein–protein interactions,
ChIP). We then relied on reviewed interactions found in
specialized databases to connect molecules of the same
type and also get cross-layered interactions (binding, en-
zyme, regulation) From the measured molecules in the
dataset, we collected all possible interactions through tar-
geted databases. To maximize cross-layered connectivity, we
also included non-measured proteins or metabolites which
were directly connected to measured molecules.

Protein interactions. Physical or functional protein–
protein interaction (PPI) is one kind of interaction that is
difficult to predict and PPI network inference algorithms
for MS data are still in their infancy (28). For human pro-
teomic data, we relied on the BioGRID database (29) which
records >1.8 million proteins and genetics interactions
from major model organisms. This database collects exper-
imentally determined physical protein–protein interactions
and also connects transcriptomics and proteomics layers
with regulatory relationship (TF–gene interactions). For
other model organisations, we can rely on more specialised
or custom databases (30).

Metabolite interactions. We used the KEGG Pathway
database (31) which records a collection of manually drawn
metabolic pathways representing molecular interaction, re-
action and relation networks for human and other model
organisms. We used KEGG to link metabolite compounds
involved in the same reactions. We also connect metabolites
to genes and/or proteins if they are involved in the same
biochemical enzymatic reaction thanks to KEGG Orthol-
ogy database that links genes to high-level functions.

The objective of this building step is to provide an en-
tire multi-omics network composed of three main layers and
several sub-networks specific to kinetic clusters. The next
steps will focus on the analysis of these multi-omics net-
works.

Enrichment analysis

Over representation analysis (ORA) helps to find en-
riched and meaningful biological insights from interacting
biomolecules. This task was achieved using gProfiler2 (32),
first on each kinetic cluster and then on all molecules from

the entire network. We focused on the three Gene Ontology
(GO) terms: Biological Process (BP), Molecular Function
(MF) and Cellular Component (CC). P-values were cor-
rected with gProfiler2 custom multiple testing correction al-
gorithm (g:SCS) (33) and only significant terms were con-
sidered (g: SCS < 0.05). Size and significance of P-values
distributions were compared between both clusters and en-
tire network approaches. We also used Fisher’s combined
probability test (34) for multi-omics P-values comparison.

Random walk

As described in (21), in an undirected graph G = (V, E), the
random walk (RW) starts from a node (v0), called seed, and
simulate a particle that randomly moves from one node vt to
another vt + 1 following the probability distribution: ∀x, y ∈
V,∀t ∈ N

P(vt+1 = y|vt = x) =
{ 1

d(x) if(x, y) ∈ E
0 otherwise,

(1)

where d(x) is the degree of the node x in the graph G. Valde-
olivas et al. (21) also added the possibility to restart at the
initial node to avoid dead ends in multi-layered networks.
When a steady state is reached, the algorithm gives a prob-
ability score to each node of the network which represents
the proximity of that node and the seed.

We then used the R package RandomWalkRestartMH
(21) to apply random walk with restart algorithm on multi-
omics network with three main purposes to guide interpre-
tation. (i) RW can be used to identify multi-omics nodes
and their interactions linked to mechanisms of interest (e.g.
GO:BP). Therefore, a GO term node can be turned into a
seed and RW can be performed from that starting point.
Then, a sub-network with the top 25 closest nodes to that
seed can be built. Naively, all significant GO term nodes
were iteratively turned into seeds. We then screened sub-
networks containing different types of molecules to high-
light the multi-omics aspects of the integration. We applied
this analysis on both kinetic cluster sub-networks and entire
network. (ii) RW can be used for nodes function prediction.
Similar as above, unlabelled nodes can be turned into seeds.
We relied on gProfiler2 annotations to identify nodes with-
out any known functions. For an unlabelled seed, a list of
ranked nodes was produced and the closest GO term node
was assigned to that seed. We repeated this for the three GO
ontologies (BP, MF, CC) on the entire network. (iii) Com-
bined to kinetic clusters, RW can locate regulatory mecha-
nisms and find interacting nodes with different expression
profiles in the entire network. Once again, each node can be
turned into seed and sub-networks were built using the 10
closest nodes. Then we screened sub-networks with differ-
ent cluster labels from the seeds that might reveal underlying
regulatory mechanisms.

Data

In the following section, two published multi-omics case
studies are presented. These applications have longitudi-
nal multi-omics designs, but each block was analysed sepa-
rately. We modelled these dataset with multi-layer networks
to highlight the multi-omics interactions. Specific analysis
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steps for each example are described, along with specific
databases used for each case study.

Case study 1: HeLa cell cycling study. Understanding the
complex relationship between gene expression, translation
product and protein abundance is the key to decrypt biolog-
ical mechanisms. Genes undergo several steps of regulation
before turning into proteins including transcription, trans-
lation, folding, post-translational modification and eventu-
ally degradation (35) studied the poor correlation between
mRNA and related protein levels during cell cycling regu-
lation using triplicate measurement of mRNA expression
(microarray), translation product (PUNCH-P) and protein
quantification (MS) from synchronized HeLa S3 cells. Au-
thors sampled cells during phases G1, S and G2 (Figure 3).

The authors were able to find clusters of patterns in
the expression of genes and their products related to key
functions of the cell cycle. These functions were up- or
down-regulated at different stages. For example, Cell divi-
sion, Cytokinesis, Spindle, Chromosome segregation and Mi-
crotubule based movement biological processes shared sim-
ilar patterns and were down-regulated in G1/S and up-
regulated in S/G2 transitions. Interestingly, multi-omics
showed that a gene and its derivatives can have different
expression patterns during a given time course, which high-
lights underlying molecular mechanisms, such as mRNA or
protein degradation.

In this first case study, we intended to highlight the multi-
omics interactions involved in the control of HeLa cell cycle
during G1, S and G2 phases.

To do so, we filtered the RMA-normalized mRNA with a
2-Fold-Change filter. iBAQ normalized translatome prod-
ucts and proteins were filtered with a different 3-Fold-
Change threshold because of the differences in platform-
specific dynamic ranges.

We modelled the expression of every molecule with
LMMS including the variations of the three replicates for
each of the three timepoints. We built multi-omics clus-
ters of expression profiles based on the direction of varia-
tion between each step. mRNA and proteins networks were
built with ARACNe and BioGrid interaction databases,
respectively. Protein coding and TF regulated informa-
tion were used to connect these layers where UniProtID
were converted into Gene Symbols (https://www.uniprot.
org/uploadlists/) to ensure proper matching. We also in-
cluded metabolite reactions from KEGG connected to pro-
tein enzymes to metabolites. We performed ORA with
mRNA, translatome products and proteins against GO:BP,
GO:MF and GO:CC terms for both clusters and entire set
of molecules. Finally, we performed RW on this multi-omics
network.

Case study 2: dynamic maize responses to aphid feeding.
Maize (Zea mays) is one of the most productive cereal
crops in the world. However, the plant is subject to numer-
ous biotic attacks caused by herbivorous insects and it is
therefore critical to understand the maize defense mecha-
nisms in order to improve its productivity. Aviner et al. (35)
studied the dynamic of maize response to aphid feeding and
they found that mutants in benzoxazinoid biosynthesis and
terpene synthases genes do affect aphid proliferation.

To measure gene expression changes over time, authors
exposed five two-weeks maize plants (B73) to corn leaf
aphid (Rhopalosiphum maidis) during four days (Figure 7).
They also include five control maize plants with the same
growing conditions minus the exposure to aphids. During
this time course, they sampled the five exposed and five con-
trols plants at six timepoints (i.e. 2, 4, 8, 24, 48, 96 h) and
conducted gene expression profiling with RNA-seq, LC-
TOF-MS nontargeted metabolite quantification as well as
amino-acids, phospholipids and terpenes targeted metabo-
lite quantification.

In the paper, the authors focused on the genes and
metabolites involved in the maize response to aphids. We
intended to go a little further by addressing the complex
regulatory relationships that may exist between these multi-
omic actors over time.

For this example, we focused on the first five timepoints
(i.e. 2, 4, 8, 24, 48 h). We discarded genes which were
not differentially expressed between exposed and control
groups and those having an expression difference <2-fold
over the entire time course. We split TF-coding genes from
other transcripts to get a 3-omics-like experimental de-
sign. Finally, we discarded nontargeted metabolite as they
were not annotated and performed longitudinal clustering
with multiple block PLS. For network reconstruction, we
used ARACNe on genes and TF. We used the Protein-
Protein Interaction database for Maize (PPIM) (36) to iden-
tify protein-coding genes and extracted direct neighbor in-
teractions. PPIM contains more than 2.7 millions inter-
actions between protein, TF and gene interactions. These
interactions are either predicted or experimentally deter-
mined from public databases such as UniProt (37), Bi-
oGrid (29), DIP (38), IntAct (39) and MINT (40) or us-
ing to text mining. We mainly focused on validated inter-
actions and predicted ones qualified as high-confidence in-
teractions that represents 155 845 interactions with top 5%
highest decision scores (36). Then we connected the mea-
sured metabolites and those involved in the same reaction to
the genes/proteins using KEGG. We performed ORA with
genes, TF and proteins on GO:BP, GO:MF and GO:CC
terms. Finally, we performed RW on this multi-omics net-
work.

Case study 3: diabetes seasonal study. Diabetes is the sev-
enth leading cause of death in the world according to the
WHO (41) and its prevalence is constantly increasing (42).
The role of the integrative Human Microbiome Project
(iHMP) is to study the impact of host-microbiome relation-
ships on diabetes mechanisms of appearance and progres-
sion (43).

In the study from Integrative (44), 105 subjects with dia-
betes (Insulin Sensitive and Insulin Resistant) were followed
over a period of more than 4 years. Each patient was sam-
pled every 3 months and every 3–4 days during stress peri-
ods. This resulted in an average of 27 samples per patient. At
each visit, 51 clinical tests were performed. From the blood
samples, transcriptomics, proteomics, metabolomics, cyto-
logical and microbiome data (oral and gut) were produced.

Thanks to this complex design, Sailani et al. (45) identi-
fied several molecules linked to diabetes and important bi-
ological changes related to annual seasonality. They found

https://www.uniprot.org/uploadlists/
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Figure 3. HeLa cell cycling study: overview of the analysis: (A) Experimental design: three samples are collected for each steps G1, S and G2. For each
sample, RNA, translation products and proteins are quantified. (B) Multi-Omics longitudinal clustering: Clustered expression profiles of mRNA, trans-
lation products and proteins. Each line represents the modelled abundance of a molecule during the cycle. 4 clusters were obtained using the timeOmics
clustering approach. Cluster compositions are detailed in Table 2. (C) Multi-omics network layout: represents the connection between entities and their
different types of interactions. The network was composed of four layers: a gene layer build from mRNA expression, a PPI layer build from measured
proteins and BioGRID known interactions, a metabolite layer from KEGG pathways and GO term layer from enrichment analysis.

different shift in expression in all omics molecules and they
group them into two main expression profile clusters. We
expect that network integration will provide a deeper un-
derstanding of the diabetes process and the role of host-
microbiome interaction in that disease.

Since microbiome data is highly variable we decided to
perform the modelling and integration on only one indi-
vidual. We also reduced the time period to one year (7
timepoints) for the same reason. We performed the inte-
gration of transcriptomics, proteomics, metabolomics, cy-
tokines, gut microbiota data and clinical variables. We ap-
plied a Fold-Change filter for each omics block, except the
clinical variables, with a specific threshold. We modelled the
data with LMMS and used a multiple block PLS to cluster
the data. We applied the sparse multi-block PLS to iden-
tify a key signature per cluster. For network reconstruc-
tion, we applied the ARACNe algorithm (27) separately on
transcriptomics, unlabelled metabolomics and clinical vari-
ables. We used the BioGRID interaction database (29) to
build a PPI network from proteins and cytokines and used
the information of TTRUST (46) and TF2DNA (47) to
connect these molecules to the transcriptomics layer. We
applied the SparCC algorithm (|� | ≥ 0.3) to build a mi-
crobiome network as recommended in (48). With limited
knowledge about host-microbiota interactions, microbiota
network were connected to each of the layers listed above
by computing the spearman rank correlation on the expres-
sion data and kept only the highest interactions between
microbiota and other layer (|� | ≥ 0.99). We followed the

same procedure to connect the unlabelled metabolomics
data and clinical variables to the other layers. Lastly, we
performed an enrichment analysis with the transcriptomics,
proteomics and cytokines molecules against Gene Ontol-
ogy and we added the significant GO terms as a GO layer
by connecting the significant GO terms to the correspond-
ing RNA, proteins or cytokines. In addition, we performed
a gene-related disease enrichment analysis with MedlineR-
anker (49) a data mining tool, which searches for publica-
tion abstracts in which genes were linked to diseases (Med-
lineRanker parameters: Min number of citations = 5; min
number of genes significantly associated with a disease =
2; FDR:0.05). Like GO terms, disease terms were added to
the network and connected to the related genes. Finally, we
performed RW on this multi-omics network and the cluster
specific sub-networks.

RESULTS

Case study 1: HeLa cell cycling study

In this example, we studied the HeLa cell cycling from
Aviner et al. (35). This dataset was composed of three omic
layers and three timepoints.

Pre-processing, modelling and clustering of time profile.
HeLa cell dataset was assembled into a single table focused
on proteins. After missing value removal, this dataset was
composed of 6785 mRNA, 4102 translation products and
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Table 1. HeLa cell cycling study: Initial number of mRNA, translation
products and proteins, and remaining molecules after Fold-Change and
noisy modelled profile filtering. A threshold of 2-FC was applied to mRNA
and 3-FC to both proteins and translation products

Raw counts Fold change LMMS filter

mRNA 6785 448 446
Trans. products 4102 2672 2318
Proteins 5023 4295 4237

Table 2. HeLa cell cycling study: clusters composition

mRNA Translation products Proteins

Cluster 1 233 187 4023
Cluster 2 81 1244 119
Cluster 3 35 828 95
Cluster 4 97 59 0

5023 proteins (Table 1). 448 mRNA, 2672 translation prod-
ucts and 4295 proteins remained after the Fold-Change fil-
tering step. Finally, once all molecules were modelled over
time and noisy profiles were removed, 446 mRNA, 2318
translation products and 4237 proteins remained.

Time profile clustering. Once all the molecules were mod-
elled over time and noisy profiles were removed, remaining
expression profiles were clustered according to their differ-
ential expression value between two timepoints. This clus-
tering resulted in 4 clusters (Table 2) with a silhouette coef-
ficient of ssil = 0.75. We compared this clustering with the
timeOmics approach with four clusters for similar parame-
ters. timeOmics resulted in a lower silhouette coefficient (ssil
= 0.63). In the first approach, Cluster 1 included the largest
number of molecules (n = 4443). It is characterized by a de-
crease between the G1 and S phases and then an increase
between S and G2/M. This seemed to be the main kinetic
pattern for proteins since it contained the majority of them
(95%). Cluster 2 (n = 1444), included the largest amount of
translation products (54%) and it was characterized by an
increase in expression from the first to the last step. Cluster 3
(n = 958) showed an opposite pattern compared to the clus-
ter 2 with a decrease across the overall time course. Finally
Cluster 4 (n = 156) included the least number of molecules
and no protein appeared to follow an increase and decrease
pattern.

Multi-layered network reconstruction. The first layer to
be reconstructed was the gene inference network from the
mRNA. We used the ARACNe algorithm to build a net-
work by kinetic cluster but also to build a entire network
composed of all the mRNA. Supplementary Table S1 shows
statistics about the sub-networks such as the number of con-
nected / disconnected nodes and edges.

The second layer was the PPI network. Proteins were
connected to each other using the BioGRID interaction
database. As for the genes, PPI sub-networks were built for
each kinetic cluster but we also built a entire PPI network
composed of all the proteins. In addition, we included Bi-
oGRID proteins which were directly connected to the mea-
sured ones (first degree neighbours). Number of nodes and
edges are detailed in Supplementary Table S1.

Table 3. HeLa cell cycling study: number of unique significant enriched
GO terms by omics type and by ontology

GO:BP GO:CC GO:MF

mRNA 255 82 54
translation products 331 124 70
Proteins 353 128 69
Extended Proteins 1490 390 280

These first two layers were combined thanks to two types
of links. First, protein-coding information linked 126 genes
to their corresponding proteins. Second, TF-regulated in-
formation from TF2DNA (47) and TTRUST databases
linked 57 proteins to 403 genes (16 846 interactions). In ad-
dition, KEGG pathway database was also used to link pro-
tein enzymes to metabolite reactions. This new layer was
composed of 1595 metabolites connected to 2213 proteins
(12 694 interactions).

Enrichment analysis. Over representation analysis (ORA)
was performed on mRNA, translation products, proteins
and first degree connected proteins against GO:BP, GO:MF
and GO:CC. This approach was achieved both for each ki-
netic cluster and the entire network. The most significant
GO terms found in clusters were strongly related to cell de-
velopment RNA processing (GO:0006396), ribonucleopro-
tein complex biogenesis (GO:0022613), cellular component
organization or biogenesis (GO:0071840) or RNA splicing,
(GO:0008380). Full results of the ORA are detailed in Sup-
plementary Table S2. With the largest number of molecules,
proteins gathered the most significant GO terms. Table 3 de-
tails the number of enriched GO terms by omic types. En-
riched terms were splited by ontologies. mRNA collected
the fewest enriched terms in the three ontologies, followed
by translation products and proteins. The first degree neigh-
bours (extended proteins) collected the most terms, as they
have the highest number of nodes in the network.

In Figure 4, we compared the number of unique GO
terms and the distribution of P-value between the global or
cluster approach. With the exception of translation prod-
ucts which had more enriched term in clusters than the en-
tire set, both approaches seemed to have a similar num-
ber of unique GO terms but some terms DNA replica-
tion (GO:0006260), mitotic cell cycle (GO:0000278) were
shared between clusters. In addition the clustering approach
gave much more significant terms than the global approach
with the extended proteins. There was no significant differ-
ence in the P-value distributions however the clustering ap-
proach results in smaller p-values. In the Figure 4C, some
GO terms were exclusively found in certain clusters such
as: regulation of cell projection organization (GO:0031344)
and nervous system development (GO:0007399) in Clus-
ter 1, spindle midzone assembly (GO:0051255) and mei-
otic chromosome separation (GO:0051307) in Cluster 2, mi-
totic G2/M transition checkpoint (GO:0044818) and reg-
ulation of DNA endoreduplication (BP) GO:0032875 in
Cluster 3, negative regulation of gene expression, epige-
netic (GO:0045814) and regulation of chromatin silenc-
ing (GO:0031935) in Cluster 4. Moreover some terms
were also only found in the entire set such as chromo-
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Figure 4. HeLa cell cycling study: Over Representation Analysis of mRNA, transcription product and protein term list. (A) Number of distinct go terms
with or without clustering approach. (B) Histogram of P-values resulting from GO term enrichment by clustering approach. We separated the terms
obtained from measured molecules (raw), and terms from with BioGRID first degree neighbours (extended). (C) Intersection of go terms by clusters.
None of the approaches seemed to offer the most enriched go terms. Nevertheless, (C) shows that there were many terms not shared between clusters.

Table 4. HeLa cell cycling study: multi-Omics network composition.
Number of nodes by layer

Gene Proteins Extend Prot. Metabolite GO terms

Cluster 1 233 1813 22 387 1585 1576
Cluster 2 81 53 4726 591 1325
Cluster 3 35 50 4205 559 1328
Cluster 4 97 441
All 252 1916 22 582 1595 1590

some condensation (GO:0030261), regulation of cytokinesis
(GO:0032465) and histone H3 acetylation (GO:0043966).

Finally, significant GO terms were added in the multi-
layer network as another new layer and were connected to
genes, proteins and metabolites. This last building step re-
sulted in a multi-omics network composed of four layers.
Table 4 describe network composition with the different
type of node for each layer.

Random walk.

Molecules involved in specific mechanisms. The first pur-
pose of RW applied to multi-omics network was to iden-

tify molecules involved in a specific mechanisms. Naively,
each of the 2279 significantly enriched GO terms, (union
of GO terms found in cluster and the entire network),
can be a mechanism or a function of interest. Each of
these GO terms was then turned into a seed. RW from
each seed were used to generate sub-networks the 25 top
closest nodes. In order to focus on multi-omics integra-
tion, we only focused on seeds that reached both genes
and proteins. In a second step, we also included seeds
that reached both genes, proteins and metabolites. Table
5 describe the number of GO terms (BP, MF, CC) where
these conditions were met. 16 unique terms were linked to
metabolite nodes (12 BP, 4 MF). Some terms were shared
between clusters. These terms encompassed functions re-
lated to cell development such as histone lysine methyla-
tion GO:0034968 or regulation of mitotic nuclear division
(GO:0007088). In Figure 5, we illustrate in detail the multi-
omics interactions leading to the activation of this last bi-
ological process (GO:0007088). More general terms were
also found: positive regulation of cellular metabolic process
(GO:0031325), mRNA catabolic process (GO:0006402).
Some MF terms seemed also related to cell develop-
ment anaphase-promoting complex binding (GO:0010997),
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Figure 5. HeLa cell cycling study: Random walk with restart result from the seed GO:0007088 . The top 25 results are displayed. From the seed, the
algorithm is able to associate genes, proteins and go terms. Thanks to the addition of knowledge-based layers, it can also access other proteins and
metabolites which were not produced in the original study (Ext. neighbours).

Table 5. HeLa cell cycling study: (A) number of seeds that can reach both
genes and proteins. (B) Same as A but with the addition of metabolites

A. GO:BP GO:CC GO:MF

Cluster 1 127 57 46
Cluster 2 98 59 35
Cluster 3 57 23 25
All 187 82 56
B. GO:BP GO:MF
Cluster 1 7 1
Cluster 2 2
Cluster 3 1 2
All 9 2

S-adenosylmethionine-dependent methyltransferase activity
(GO:0008757). We also found such terms as response to
ionizing radiation (GO:0010212) which could be an arti-
fact of mass-spectrometry analysis. On the other hand, be-
sides the term histone methyltransferase activity (H3-K27
specific) (GO:0046976) other shared terms seemed to be
rather generic : methyltransferase activity (GO:0008168) or
regulation of signal transduction (GO:0009966).

Function prediction. The second purpose of RW was to
predict the function of unannotated nodes (genes, proteins).
In this perspective, 6 genes and 24 proteins were unanno-
tated according to gProfiler. Each of these nodes was then
turned into a seed. We then assigned to each node the clos-
est GO term. Results of function prediction annotation
are detailed in the Supplementary Table S3. The first bio-
logical processes which emerged for almost every unanno-
tated nodes were cell cycle (GO:0007049) and cell division
(GO:0051301) with protein binding (GO:0005515) or RNA
binding (GO:0003723) molecular functions and were re-
lated to the nucleus (GO:0005634). Another interesting ex-
ample was the uncharacterized protein DKFZp781F05101,
which should play a role in the nucleosome formation
(GO:0006334) and in particular in this study those contain-
ing the histone H3 variant CENP-A to form centromeric
chromatin (GO:0034080).

Intersection between cluster. The last objective of the RW
was to be combined with the kinetics cluster in order to
identify connected molecules with different expression pro-
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Figure 6. HeLa cell cycling study: Random walk with restart result analysis from the node PIMREG. (A) Sub-network generated with top 10 RW closest
nodes, colored by kinetic clusters. (B) Expression profiles of measured genes from (A). Each line represent the modelled expression of a measured gene.

files. All the nodes representing a measured molecule were
transformed into a seed. From the 2362 seeds, 438 were con-
nected to molecules from other clusters We kept 47 seeds
that can also reach GO term nodes. These results are de-
tailed in Supplementary Table S3. We identified many bio-
logical processes terms related to the cell development. For
example, the node labelled PIMREG was a protein cod-
ing gene belonging to Cluster 1. With RW, it was linked
to Cell Division (GO:0051301), Cell Cycle (GO:0007049)
and other GO:BP terms. PIMREG is a mitotic regulator
which takes part in the control of metaphase-to-anaphase
transition. It was linked to SETD1B (Cluster 2), an histone
methyltransferase that tri-methylates histone H3 at Lysine
4 and contributes to epigenetic control of chromatin struc-
ture and gene expression. This is an active marker of up-
regulated transcription and this may explain why the expres-
sion of the PIMREG gene is increasing between phases S
and G2/M. In Figure 6PIMREG is also directly connected
to the CDK5RAP2 gene, which has the same expression
profile as PIMREG and plays a role in the formation and
stability of microtubules, essential to the cell development.

Case study 2: dynamic maize responses to aphid feeding

Pre-processing, modelling and clustering of time profile.
The maize dataset included a gene expression assay com-
posed of 41 716 transcripts identified using the B73 maize
reference genome (AGPv3.20), with 2254 transcripts iden-
tified as TF-coding genes and a targeted metabolite assay
with 45 molecules measured. 1606 maize genes, 123 TF and
all metabolites were differentially expressed between aphid
and control groups for at least 1 time points. 331 genes,
36 TF and 29 metabolites were filtered after the 2 Fold-
Change filtering step. Once all the molecules were modelled

and noisy profiles were removed 1208 genes, 31 TF and 29
metabolites remained in the exposed group (Table 6).

Time profile clustering. Next step was the clustering with
timeOmics using genes, TF-coding genes and targeted
metabolites. This resulted in optimally 4 clusters (ssil =
0.82). Table 7 gives the cluster composition. Clusters 1 and
2 recorded most of the molecules (42%; 40%). These were
mainly composed of linear models representing an increase
(cluster 1) or a decrease (cluster 2) in the time course. Clus-
ter 3 (7%) was characterised by a rapid decrease followed
by a slight increase from t = 24 h. Cluster 4 (11%) showed
the opposite of cluster 3 with a rapid increase followed by a
relatively steady state.

Multi-layered network reconstruction. The first layer to
be reconstructed was the gene inference network from the
mRNA and TF using ARACNe. We used unmodelled fil-
tered data from aphid and control samples to build this first
layer. As the first case study, we build sub-network for each
cinetic cluster and a global network composed of all the
mRNA/TF. Networks composition is detailed in Supple-
mentary Table S4.

The second layer was the PPI network. Filtered PPIM
database was used to build protein-protein interaction net-
work from measured protein-coding genes. We also in-
cluded proteins which were directly connected to the mea-
sured protein coding genes (first degree neighbours). Gene
kinetic cluster sub-networks and global network were ex-
tended with PPI interactions.

The third network contained metabolic reactions.
Metabolites converted to KEGG Compound ID were
linked to each other with KEGG Pathways. Metabolites
involved in the same metabolic reactions were also included
in this layer. As for genes and proteins, kinetic cluster
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Figure 7. Dynamic response to maize aphid feeding study: (A) Experimental design: five samples are collected for each condition and for each timepoint
(2,4,8,24,48,96 h). For each sample, RNA and targeted metabolites are quantified. (B) Multi-Omics longitudinal clustering: Clustered expression profiles
of mRNA, TF–coding genes and metabolites. Each line represents the modelled abundance of a molecule during the time-course. (C) Multi-omics network
layout: represents the connection between entities and their different types of interactions.

Table 6. Dynamic response to maize aphid feeding study: Initial number
of genes, TF-coding genes and metabolites and after each pre-processing
step (DE: differentially expressed molecules; FC: molecules above 2 Fold-
Changes, LMMS filter: number of molecules after linear model filtering)

Raw count DE filter FC filter LMMS filter

Genes 39 462 1606 1295 1208
TF-coding
genes

2254 123 75 42

Metabolites 45 – – –

Table 7. Dynamic response to maize aphid feeding study: number of gene,
TF-coding genes and targeted metabolites per cluster identified with multi-
block PLS longitudinal clustering

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Genes 496 495 84 133
TF-coding genes 18 15 6 3
Metabolites 24 7 4 10

sub-networks and entire network were extended to con-
nect genes and proteins to metabolites. Composition of
multi-omics networks is detailed in Table 8.

Enrichment analysis. ORA was performed on genes and
proteins against GO:BP, GO:MF and GO:CC. This ap-
proach was achieved both for each cluster and combined
network. We first performed ORA on measured molecules
only and with PPIM’s first-degree neighbours. All the re-
sults of ORA analysis are detailed in Supplementary Ta-
ble S5 and Table 9 summarise the number of unique GO

terms by ontology and cluster. Cluster 1 with more genes
gathered the largest number of significant terms. Terms spe-
cific to this cluster were molecular functions related to nu-
cleotide bindings (GO:0035639, GO:0032555, GO:0017076,
GO:0032553). Other clusters grouped terms related to
bindings or kinase activity (GO:0043546, GO:0043424).
Figure 8 represents the number of significant enriched GO
terms and their p-value distribution. Measured molecules
tended to produce more significant terms when ORA was
performed on the entire set of genes rather than with the
clustering. Nevertheless, with PPIM’s first-degree neigh-
bours, there were more significant term in the clusters than
in the entire set. Neighbours also gave smaller p-values.
Lastly, ORA identified unique terms per cluster, not found
in the entire set, and vice versa. Therefore, we found the
terms mentioned for Cluster 1. Concerning the unique
terms in the entire set, they included terms corresponding to
defence response to other organism (GO:0098542) or other
biological processes that can be linked to defence mecha-
nisms such as lignin metabolic process (GO:0009808), inter-
species interaction between organisms (GO:0044419), cellu-
lar response to chemical stimulus (GO:0070887) or trans-
membrane transport (GO:0055085). Stranger, defense re-
sponse to oomycetes (GO:0002229) was also significantly
enriched in the entire set.

Random walk. Like the HeLa cell cycling study exam-
ple, RW was used on the multi-omics network with three
purposes: Identify multi-omics molecules linked to mecha-
nisms (GO term nodes as seed), function prediction (unla-
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Table 8. Dynamic response to maize aphid feeding study: Multi-Omics network composition. Number of nodes by layer

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Entire Network

Genes 514 510 90 136 1250
Ext. Proteins 1473 2000 176 1102 2545
Metabolites (measured) 17 12 14 10 38
Metabolite (KEGG reactions) 77 85 65 46 250
GO terms 121 131 57 100 148

Figure 8. Dynamic response to maize aphid feeding study: Over Representation Analysis. (A) Number of distinct go terms with or without clustering and
by approach. (B) Histogram of p-values resulting from GO term enrichment. (C) Intersection of go terms by clusters

Table 9. Dynamic response to maize aphid feeding study: over represen-
tation analysis of mRNA term list by cluster. (A) Number of significant
GO terms per cluster and entire network with genes. (B) Same as (A) with
PPIM first degree neighbours

A. GO:BP GO:CC GO:MF

Cluster 1 4 5 17
Cluster 2 7 6 5
Cluster 3 - 1 -
Cluster 4 5 - 5
Entire network 37 5 31
B. GO:BP GO:CC GO:MF
Cluster 1 123 14 78
Cluster 2 124 627 586
Cluster 3 19 1 39
Cluster 4 100 -14 569
Entire Network 122 530 104

belled nodes as seeds), and identify regulatory mechanisms
with nodes between kinetic clusters.

Molecules involved in specific mechanisms. Each of the 89
significantly enriched GO terms was iteratively turned into
a seed and subnetworks with the top 25 nodes were build.
Within a multi-omics perspective, only three seeds were
able to reach at least one gene and one metabolite: molyb-
dopterin cofactor binding (GO:0043546), cell surface recep-
tor signaling pathway (GO:0007166) and phenypropanoid
metabolic process (GO:0009698). The latter is specific to
plants and gathers information on cell development and de-
fence mechanisms. Phenypropanoid metabolic process was
found in clusters 2 and 4 as well as in entire network ap-
proach. Part of the shikimate pathway that allows the pro-
duction of aromatic amino acids in plants, the phenyl-
propanoid pathway is known to be activated under abiotic
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Figure 9. Dynamic response to maize aphid feeding study: Random walk with restart result analysis from the node AC209374.4 FG002. (A) Sub-network
generated with top 10 RW closest nodes, colored by kinetic clusters. (B) Expression profiles of measured genes from (A). Each line represent the modelled
expression of a measured gene.

stress including salinity, drought, heavy metals, pesticides,
ultraviolet radiation and temperature stress (50). In the en-
tire network, this node reached the metabolites L-Tyrosine
(C00082) and L-Phenylalanine (C00079) which were both
aromatic amino acids measured in the initial study. In ad-
dition, it reached non-measured metabolites such as trans-
Cinnamate (C00423) and 4-Coumarate (C00811) which
were connected to Tyrosine and Phenylalanine respectively.
These connections were enabled by the L-phenylalanine
ammonia-lyase and L-tyrosine ammonia-lyase reactions in
which both measured and non-measured compounds were
involved. In this same sub-network, we obtained several iso-
enzymes involved in these reactions such as pal1,5,6,9. In-
terestingly, several gene models without functional anno-
tation are connected to the network (GRMZM2G063679,
GRMZM2G087259). RW from Phenypropanoid metabolic
process on clusters 2 and 4 networks also returned Tyrosine
and Tryptophan since they were classified in clusters 2 and
4 respectively and were involved in the same metabolic re-
action. It also reached genes connected to similar pathways
in both clusters: dhurrin biosynthesis acting as a plant de-
fense compound and also suberin monomers, cuticular wax
and cutin biosynthesis for plant development. Specificaly to
cluster 4, one protein (GRMZM2G164036) was linked to
DIBOA-glucoside biosynthesis, a benzoxazinoids dervived
from indole that is a volatile compound used in parasitic
defence (51).

Function prediction. Unlabelled gene nodes (n = 96) were
turned into seeds and the closest GO terms were assigned to
these nodes. 347 unlabelled nodes were disconnected from
the network therefore it was not possible to apply the algo-
rithm for these ones. These results are detailed in Supple-
mentary Table S6. Many seeds were connected to various

biosynthesis process such as cinnamic acid (GO:0009800),
ceramide (GO:0046513), galactolipid (GO:0019375). We
found unlabelled genes linked to defense response pro-
cesses (GO:0006952) or jasmonic acid metabolic process
(GO:0009694) which is an hormone that can be produce
during biotic or abiotic stress. Other nodes were connected
to various molecular functions such as hydrolase, chitinase,
methyltransferase or bindings.

Cluster intersection. All measured nodes were turned into
seeds and sub-neworks were build with the to 10 highest
scored nodes from the entire network. 678 seeds were able
to reach both nodes with different assigned kinetic cluster
and GO term nodes. Results are detailed in Supplemen-
tary Table S6. We found molecular functions correspond-
ing to different enzymatic activities (ATP binding, kinase,
oxidoreductase ). Less frequently, we observed a toxin activ-
ity (GO:0090729) for the rip2 gene (GRMZM2G119705),
also connected to defense response (GO:0006952). In Fig-
ure 9, gene AC209374.4 FG002, assigned to cluster 2, were
indirectly connected to nodes from both clusters 1, 3 and
4. They were linked to DNA-binding transcription factor ac-
tivity (GO:0003700). This regulatory mechanisms may be
explained by the opposite expression profile as illustrated
in Figure 9B.

Case study 3: diabetes seasonal study

Pre-processing, modelling and clustering of time profile.
The diabetes seasonal study dataset (Figure 10) was com-
posed of 10 339 mRNA, 302 proteins, 66 Cytokines, 724
metabolites, 95 gut Operational Taxonomic Units (OTU)
and 39 clinical variables 10. After the preprocessing step
and the fold change filtering step (FC > 1.5), there were
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Figure 10. Diabetes seasonal study: (A) experimental design: one individual was sampled for each timepoint (days: 48, 57, 61, 75, 8, 170, 295). For each
sample, RNA, Proteins, Cytokines, Metabolites (untargeted), gut OTU and clinical variables are quantified. (B) Multi-Omics longitudinal clustering:
Clustered expression profiles of RNA, Proteins, Cytokines, Metabolites (untargeted), gut OTU and clinical variables. Each line represents the modelled
abundance of a molecule during the time-course. (C) Multi-omics network layout: represents the connection between entities and their different types of
interactions.

Table 10. Diabetes seasonal study: initial number molecules, number of remaining molecules after the fold-change filtering step, cluster compositions and
sparse cluster composition by omics

RNA Proteins Cytokines Metabolites Gut OTU Clinical var.

Raw data 10 339 302 66 724 96 39
Fold change 775 30 16 105 58 39
Cluster 1 164 14 9 56 33 17
Cluster 2 611 16 7 49 25 22
(sparse) cluster 1 19 1 6 3 8 11
(sparse) cluster 2 38 2 4 1 2 15

775 mRNA, 30 proteins, 16 cytokines, 105 metabolites, 58
OTU left. No FC filter was applied to the clinical vari-
ables since the fold change for all these variables was below
the threshold. The remaining molecules were modelled as a
function of time over the entire year t = {48, 57, 61, 75, 85,
170, 295}.

The modelled time profiles from the 6 blocks were clus-
tered using the multi-block PLS and resulted in two clus-
ters (ssil = 0.26). The first cluster (Cluster 1) was composed
of 293 molecules and characterised by an increase until the
middle of the year (t = 75) then a decrease. The second clus-
ter (Cluster 2) was composed of 730 molecules and had an
opposite pattern to Cluster 1 with a decrease until the mid-
dle of the year then an increase. We used the sparse multi-
block PLS to identify a signature of the cluster and the num-
ber of selected molecules by sparse cluster is displayed in
Table 10.

Multi-layered network reconstruction. The first layer of the
multi-omics network was the gene inference network from
mRNA expression using ARACNe algorithm. As the first

2 case studies, we build sub-networks with cluster-specific
mRNA and a general network with all the molecules. We
also applied ARACNe to build networks of clinical vari-
ables and unlabelled metabolites.

As in the HeLa cell cycling case study, we build a PPI net-
work with the BioGRID (29) interaction database with pro-
teins and cytokines. This layer was connected to the mRNA
layer using TFome information described above (TF2DNA
(47), TTRUST (46)).

Specific to this case study, we build a microbiome cor-
relation network from gut OTU using SparCC algorithm
and cluster-specific sub-networks. We connected this layer
to the other layer by computing the Spearman rank cor-
relation and kept only the highest correlation between gut
OTU and other molecules (|� | ≥ 0.99). With a correlation
above the threshold, 58 OTU were linked to five RNA, one
metabolite and two clinical variables (AG, EGFR) with a
total of 132 interactions.

Unlike the other two case studies, the metabolites were
not annotated, therefore we could not use the KEGG reac-
tion database to connect this layer to genes and proteins.
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Table 11. Diabetes seasonal study: multi-omics network composition.
Number of nodes by layer

Cluster 1 Cluster 2 Entire Network

RNA 169 621 775
Proteins (mesured) 11 17 23
Proteins (BioGRID
interaction)

138 741 848

Cytokines (mesured) 3 4 8
Cytokines (BioGRID
interaction)

11 20 29

Metabolites 56 49 105
Gut OTU 33 25 58
Clinical Var. core 18 22 39
GO terms 20 63 96
Disease 110 174 178

Table 12. Diabetes seasonal study: over representation analysis of RNA,
proteins and cytokines term list by cluster. (A) Number of significant GO
terms per cluster and entire network. (B) Same as (A) with first degree
neighbours from BioGRID

A. GO:BP GO:CC GO:MF

Cluster 1 72 43 12
Cluster 2 135 128 69
Entire network 226 140 89
B. GO:BP GO:CC GO:MF
Cluster 1 229 70 19
Cluster 2 1204 249 151
Entire network 1356 263 162

Instead, we applied the same method as the microbiome
layer to connect the metabolite layer to the network. The
105 metabolites were linked to 11 mRNA, 8 OTU and 3
clinical variables (EGFR, LYM, ALKP), with a total of 231
interactions.

Finally, we applied the same method for the clinical vari-
able layer. The 39 clinical variables were linked to 775
mRNA, 16 cytokines, 30 proteins, 105 metabolites and 58
OTU, with a total of 1026 interactions.

The network composition is detailed in Table 11.

Enrichment analysis. ORA was performed on mRNA,
proteins and cytokines data against Gene Ontology (BP,
MF and CC). It was performed on both cluster-specific
terms and the combined list of molecules. Unsurprisingly,
with more molecules than Cluster 1, Cluster 2 gathered
more significant GO terms (Table 12, Supplementary Ta-
ble S7). Figure 11 represents the number of significant en-
riched GO terms and their P-value distribution. Measured
molecules tended to produce more significant terms when
ORA was performed on the entire set of genes rather than
with the clustering. In Cluster 2, we found a lot of GO
terms linked to cell organization and biogenesis such as cel-
lular component organization or biogenesis GO:0071840,
regulation of organelle organization GO:0033043, positive
regulation of neurogenesis GO:0050769, regulation of or-
ganelle organization GO:0033043, cellular component bio-
genesis GO:0044085, membrane organization GO:0061024,
actin cytoskeleton organization GO:0030036, cell-cell junc-
tion GO:0005911. These enriched terms suggest important
changes in the mechanical properties of tissues such as skin.
In winter, cold and low humidity increase skin permeability

and epidermal thickening (45,52). This is consistent with the
kinetic of cluster 2 which displayed a decrease in expression
until in the winter and spring seasons and an increase in
summer. In Cluster 1, we found more generic terms linked to
cell activities such as translational initiation (GO:0006413),
biological regulation (GO:0065007) or positive regulation
of cellular process (GO:0048522). We also found the term
viral infection (GO:0016032) which can also be explained
by the seasonal nature of the data and can be increased in
patients with diabetes (53).

In addition to GO enrichment analysis, we performed a
disease-related gene enrichment analysis using MedlineR-
anker in this case study (49). We found significantly en-
riched diseases such as Hemoglobinopathies (P-value =
1.7 10e–3) or Thalassemia (P-value = 3.3 10e–3) a blood-
related genetic disorder. People with this hemoglobinopa-
thy are likely to develop autoimmunity, insulin resistance
and disease such as type 1 or 2 diabetes (54). We also found
Renal Tubular Acidosis (P-value = 2.10e–2) (Supplemen-
tary Table S7) which is also known to be a diabetes-related
disease (55,56).

Finally, we used this enrichment information to add two
more layers to the network. Each GO or disease term was
linked to the corresponding RNA, protein or cytokines used
for the enrichment analysis. The final network was com-
posed of 8 layers of molecules/terms and the final compo-
sition of the entire network and the kinetic cluster specific
subnetworks is available in Table 11.

Random walk. In this case study, random walk was used
to identify multi-omics interaction from diseases and bio-
logical functions (GO terms). It was also used to identify
molecules between kinetic clusters. Unlike the other case
studies, any gene or protein nodes were unannotated and
we did not predict any function.

To identify molecules linked to biological mechanisms,
the random walk starting points were significant GO terms
and Disease nodes. After the random walk from each of
those seeds, we ranked the nodes and extracted the top 15
first nodes related to the seed. We then had a list of 274
initial seeds (96 GO, 178 diseases). X seeds were able to
reach at least two omic layers within the 15 closest nodes
and the seeds were linked to a maximum of three differ-
ent layers. For example, the disease node labelled Renal
Tubular Acidosis was linked to one cytokine, three pro-
teins and 12 RNA despite that this disease was only related
to two known RNA (SLC4A1, CA2) in this network (Fig-
ure 12). In addition, in this sub-network, we detected the
RNA MEIS1 which was found in the signature. The gene is
a protein-coding gene from the family of homeobox genes
(HOX). It is associated with restless legs syndrome (57). We
did not find any relevant literature about a potential link
between this gene and diabetes mellitus but associations be-
tween restless leg syndrome and diabetes mellitus are well
documented (58–60).

RWR was also applied to identify seeds linked to both ki-
netic clusters. The disease node Renal Tubular Acidosis was
connected to molecules which belong to both 2 kinetic clus-
ters. We therefore have a clear demonstration of the ben-
efits of building and annotating longitudinal multi-omics
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Figure 11. Diabetes seasonal study: over representation analysis. (A) Number of distinct go terms with or without clustering and by approach. (B) His-
togram of p-values resulting from GO term enrichment. (C) Intersection of go terms by clusters.

networks for the identification of potential mechanisms and
revealing new interactions in diabetes mellitus.

DISCUSSION

Improvements and cost reductions in high-throughput
omics technologies have resulted in the emergence of in-
creasingly complex experimental designs that combine both
multi-omics data and longitudinal sampling from the same
biological samples. These complex designs are implemented
to provide a comprehensive view of biological systems in or-
der to identify complex relationships between omics layers
and answer various biological questions such as disease sub-
typing, biomarker discovery, models and predictions (2,61–
63). Appropriate integration of the multiple omics profiled
must be performed to fully take advantage of the interac-
tions between omics and their interdependencies. The chal-
lenge of multi-omics integration is to offer interpretation
guidelines adapted to the multiplicity and heterogeneity of
designs (data types, number of conditions, samples, time-
points, etc.). In order to identify cellular mechanisms with
multi-omics regulation, we propose to use a combination of
both data-driven and knowledge-driven integration meth-
ods from longitudinal multi-omic data to highlight inter-
actions not only between molecules of the same biological

type but also between omic layers linked to cellular mecha-
nisms.

Multi-omics network integration in literature

Multi-omics networks are the key to illustrate topologi-
cal relationships between different molecular species (64).
The HetioNet network is currently one of the most impres-
sive multi-omics networks. Composed of 18 different types
of nodes (genes, SNPs, proteins, compounds, tissues, dis-
eases) and 19 different types of edges between these lay-
ers (65). Its main objective is to provide a natural repre-
sentation of the human system hierarchy and to propose
genetic-disease association prediction. Although very com-
prehensive, some relationships evolve in time and the addi-
tion of these dynamic interactions as well as specific expres-
sion data should be very valuable to study complex disease
mechanisms. On a smaller scale, MetPriCNet (66) is a 3-
level network composed of genes, metabolites, diseases and
associations between each cross-layer pair. Its objective is to
prioritize candidate metabolites for known diseases or phe-
notypes. Although very useful for therapeutic target predic-
tion, these networks should be connected to expression data
to further address the needs of personalized medicine. In an-
other paradigm, OmicsNet (67) offers to build customized
multi-omics networks from a list of molecules of interest
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Figure 12. Diabetes seasonal study: random walk with restart result from the seed ‘Acidosis, Renal Tubular’. Within the closest nodes, the algorithm were
able to link RNA, proteins, a cytokine and a disease. The nodes are colored by omic type and by kinetic cluster.

(genes, proteins, metabolites, TF, miRNA). It does not pro-
vide association prediction but the connection between the
nodes is ensured by several databases (STRING, miRBase,
KEGG, ENCODE, etc.). Its main advantage is to propose
in a web browser a user friendly 3D representation of the
resulting network. Like other networks, it is specifically de-
signed for the human organism and still too few integration
networks target other model organisms.

Like OmicsNet, MiBioMics (68) also offers a web ser-
vice and an easy-to-use user interface. The method of-
fers the user to directly upload their data, and performs
pre-processing and multi-omics integration with multiple
co-inertia analysis. It also offers network inference using
WGCNA (69). Although the interface is dynamic, network
exploration is limited to module detection.

A recent contribution to multi-omics networks with time
series data was proposed in (70). From time series expres-
sion data, the authors defined time events with Minardo-
Model. These events have significant shifts in expression
on a specific time window. They identified groups of
molecules with similar time events. The analysis of the suc-
cessive time events resulted in an expected causal directed
graph between the molecules. This was applied on a multi-
omics dataset (phosphoproteomics, transcriptomics, and
proteomics) where each block was analyzed independently

and the results were combined during the final event order-
ing step. Complementary to our approach and if the exper-
imental design allows it (Kaur et al. (70) used 7+ evenly
spaced timepoints), one can easily imagine that the order
of events can be embedded into another layer of the graph
and provide unique interpretation results.

Interpretation guidelines for multi-omics networks: advan-
tages and limitations

Ranging from expression modelling over time, multivariate
clustering to network reconstruction, in the following sec-
tion we discuss the pros and cons of the choices made at
each stage of this methodology.

Data requirement and experimental design. Each experi-
mental design is different, in terms of type of data, num-
bers of replicates, conditions and timepoints. As illustrated
in the different case study, the framework can handle a large
variety of data. Special care must be taken in designing the
study. To improve the integration, interpretation and reduce
false positive discoveries, one should study events with large
variation over the same time period and when the varia-
tion between omics blocks is expected to happen on the
same time scale (71). Normalisation can also impact the net-
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work building process, we recommend to using gold stan-
dard normalisation and preprocessing approaches appro-
priate for each omic layer. Longitudinal data and Multivari-
ate clustering: our previous timeOmics framework (model-
ing and clustering step) was designed to identify highly as-
sociated temporal profiles between multiple and heteroge-
neous datasets. In order to maximise the method perfor-
mance, we made recommendations about experimental de-
sign, including the number of data blocks (3) and evenly
spaced time points (5–10) (24). In addition, the interpola-
tion procedure which infer missing timepoints for uneven
designs may have a large impact on the clustering result as
demonstrated in (24). We also used cases when they were
numerous timepoints or high inter-individual variability. A
filtering step was implemented to increase interpretability,
based on highly variable profiles within the time period
above a set fold-change. This naive threshold can be refined
with the addition of condition specific differential expres-
sion or other models according to the experimental design
(25,45).

Network and kinetic clusters. In this framework, we have
proposed to use multi-layer networks to help with the inter-
pretation and the visualization of multi-omics interactions.
Although we built a global gene network, we also used the
inference method on each of the clusters separately. We first
tried to extract cluster-specific sub-networks from the gen-
eral network. The second approach is clustering first, and
then building a network per cluster. We kept the second ap-
proach because it gave a higher number of connected nodes
and edges than the network-first approach. Furthermore,
with the addition of knowledge data for which we do not
have temporal profiles, some nodes will be shared between
clusters.

Network inference. We relied on ARACNe algorithm for
gene inference network. More mathematically advanced al-
ternatives exist (72) recently applied Gaussian graphical
model with graphical lasso to infer gene interactions in
15 specific types of human cancer using RNA-Seq expres-
sion data from The Cancer Genome Atlas. Nevertheless,
ARACNe is a well-cited, reliable coexpression-based infer-
ence method and it provides an easy to use implementa-
tion. As mentioned by (73), the inference problem is NP-
complete and only the combination of the results of several
methods might help uncover true interactions. Moreover,
of omics data should influence the choice of the inference
method. With microbiome abundance data, co-occurrence
network inference is often applied to identify synergism or
competition relationships between species and their envi-
ronment (74,75). In terms of multi-omics interaction, the
recent tool OmicsAnalyst (76) proposes an interesting im-
provement. This method used two filters to control corre-
lation strengths for intra-omics and for inter-omics interac-
tions.

Knowledge-based interaction. The proposed hybrid multi-
omics networks were composed of expression data and
knowledge links. Therefore, known links can be limited by
incomplete databases. In the first case study, we merged Bi-
oGRID, TTRUST and TF2DNA to connect proteins to

genes. However, more specialised databases could also be
added to include more links. In the second case study, since
maize is not as studied as humans, the PPIM database cov-
ers all known to date interactions for this organism and
some unknown interactions may be missing. In addition,
these links represent potential interactions that may append
in the studies but not measured interactions and these net-
works are referred to as maps. An additional integration
step would consist in constructing a dynamic signal flow
where the directionality and intensity of the interactions
would be represented in the form of flows or pathways. Un-
fortunately, this type of representation requires a time-series
design using precise multiple doses of stimulation under
the same condition (16). On the contrary, the use of erro-
neous databases can lead to false discoveries and thus we
believe that only knowledge databases with trusted interac-
tions should be used. Alternatively, overlapping interaction
between several databases can be selected to improve pre-
dictions (77).

Multi-omics interpretation. The use of clusters enables
kinetic-specific enrichment analyses to be performed. These
results can be compared with those obtained from the en-
tire network. Both approaches tended to provide the same
number of significant terms are instead complementary. It
was possible to identify terms unique to each approach
and terms only found in a particular cluster. Addition of
non-measured molecules in ORA provided more significant
terms with lower p-values. However, these extra molecules
were highly shared between cluster or were linked to simi-
lar functions. Thus it did not bring cluster specific enrich-
ment. The sparse multi-block PLS allows the identifica-
tion of a signature of kinetic clusters. This signature is of-
ten composed of a small list of molecules and does not al-
ways allow a positive biological enrichment. However, the
use of this sparse signature adds additional information on
the network and allows the identification of nodes of inter-
est. A good interpretation strategy is to use these signature
molecules as seeds in the propagation analysis or if any seed
can reach these nodes of interest.

Propagation analysis. Although random walk propaga-
tion analysis is the state of the art for association prediction,
its application on heterogeneous multi-layered networks is
still in its early stages. Multi-layer network describes a net-
work composed of several layers. The layers contain the
same nodes but the edges connecting these nodes are dif-
ferent. For example, a gene network may have coexpression
links on a first layer and PPI interactions on a second layer.

In addition, to depict the relationships between different
species of molecules, it is recommended to use heteroge-
neous networks with a bipartite relationship that describe
all possible interaction between two sets of nodes. With
more links and more possibilities to fine-tune the transition
between layers, more complex network structures would im-
prove the prediction of the random walk (21). As com-
plex biological networks have several types of molecules
and several types of interactions, it becomes essential to
use heterogeneous multi-layer networks to describe all the
relations of the system. However, tools to build such net-
works are limited by the number of layers or the num-
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ber of heterogeneous relations. Therefore, we were encour-
aged to use monoplex networks for each application. Al-
though monoplex networks highlighted relevant interac-
tions, comparison with heterogeneous multi-layer networks
would have been worthwhile. Finally, merging data from
different sources must be performed with care. Depending
on the source of the data, the quality of the interactions
can be heterogeneous and can lead to wrong predictions.
To overcome this issue, it would be possible to use weighted
edges according to the level of confidence granted to the in-
ference algorithms or the given databases. However, using
data with very heterogeneous quality scores can result in the
highlighting of the same interactions and potential discov-
eries can be missed. It is recommended to mix inference ap-
proaches and databases to improve interaction predictions
(78,79).

Contribution of network-based integration on public datasets

The reanalysis of multi-omics data with new methods can
lead to a better understanding of the system. Both cases
proposed in this paper are no exception. With the study of
HeLa cells during the cell cycle, the authors were able to
highlight functional groups, expressed by proteins, which
may be over or under-regulated at different phases of the
cycle. Combined with the other omics layers, they were
able to compare the dynamics of an mRNA, its translation
product and the associated protein and thus highlight the
regulation mechanism during the cycle. Nevertheless, our
methodology, based on network-based multi-omics integra-
tion could, in addition to answering the same questions, of-
fer the advantage of going even further.

From a key function (Cell division, Chromosome seg-
mentation, Telomere maintenance) it is possible to predict
the molecules involved but also to know the events, interac-
tions, regulation, which have allowed its expression. More-
over, by adding other molecular layers (e.g. metabolites) it
is possible to observe the implications of this function at the
system level.

The second case examining the response of maize to an
aphid attack highlighted the dynamics of certain genes in-
volved in the defense mechanisms, associated with the evo-
lution of known metabolites. Although the initial analy-
ses identified genes and metabolites that are highly variable
with the presence of aphids, the authors did not take advan-
tage of all the multi-layer interactions. Indeed, with a very
targeted list of metabolites, having roles in defense mech-
anisms but also in other pathways, it is difficult to iden-
tify relevant multi-omic interactions. By adding other layers
but also directly connected molecules, we have been able to
considerably increase the diversity of the interactions that
could be detected and thus increase the chances of iden-
tifying other potential targets to better understand maize
defense mechanisms against aphids and possibly orient the
development of future biological pesticides.

Finally with the third case study, we studied Type 2 di-
abetes with a more complex experimental design than the
other case study with microbiome and clinical variables.
This case study investigates the seasonality of omics expres-
sions throughout the year. Aside from the GO terms, we
enriched the network with a disease layer. This layer adds

informative interactions regarding possible diabetes-related
complications as well as the prediction of key genes in these
mechanisms.

The widespread use of high-throughput technologies has
enabled the profiling of multiple omics layers across mul-
tiple time points. This has opened the door to new study
designs that can now address questions and identify novel
biological mechanisms regulated by different biomolecular
layers. However, one of the biggest challenges in this era of
multi-omics is the integration and interpretation of the di-
verse large-scale omics data in a way that provides new and
more complete biological insights.

To facilitate the interpretation of longitudinal multi-
omics data we have proposed an analytic strategy that con-
sists of multi-omics kinetic clustering and multi-layer net-
work. The use of multi-layer networks can evolve and be en-
riched by the addition of new layers (for example miRNA,
disease, drugs, environmental variables, microbiome) and
their respective cross-layered interactions (gene–disease as-
sociation, host-microbe interaction, miRNA-mRNA reg-
ulation) and also intra-layered interactions that could de-
fined different kinds of interactions for the same layer (co-
expression, functional relationship, expression delays).

The analysis of three multi-omics longitudinal studies in
three previously published datasets demonstrates that new
multi-layered interactions can be unravelled. This approach
can be applied to many fields such as pharmacology or der-
mocosmetics where the addition of information and the ex-
ploration of multi-omics networks can lead to the discovery
of new therapeutic targets. Eventually, and with highly con-
trolled experimental designs, we expect that dynamic net-
works can be built to model an entire biological system.
Therefore, this methodology will open new avenues for ex-
ploration and interpretation from multi-omic studies.

DATA AVAILABILITY

The netOmics R package is available at https://github.com/
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Törn,C., Burkhardt,B.R., Briese,T., Hagopian,W.A., She,J.-X. and
et,al. (2017) Respiratory infections are temporally associated with
initiation of type 1 diabetes autoimmunity: the TEDDY study.
Diabetologia, 60, 1931–1940.

54. Barnard,M. and Tzoulis,P. (2013) Diabetes and thalassaemia.
Thalassemia Rep., 3, e18.

55. Reddy,P. (2011) Clinical approach to renal tubular acidosis in adult
patients. Int. J. Clin. Pract., 65, 350–360.

56. Karet,F.E. (2009) Mechanisms in hyperkalemic renal tubular
acidosis. J. Am. Soc. Nephro., 20, 251–254.

57. Sarayloo,F., Dion,P.A. and Rouleau,G.A. (2019) MEIS1 and restless
legs syndrome: a comprehensive review. Front. Neurol., 10, 935.
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