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Abstract: The identification of biological mechanisms underlying the development of complex
quantitative traits, including those that contribute to plant architecture, yield and quality potential,
and seed dispersal, is a major focus in the evolutionary biology and plant breeding. The awn,
a bristle-like extension from the lemma in the floret, is one of the distinct morphological and
physiological traits in grass species. Awns are taught as an evolutionary trait assisting seed dispersal
and germination and increasing photosynthesis. Awn development seems to be complex process,
involving dramatic phenotypic and molecular changes. Although recent advances investigated the
underlying morphological and molecular genetic factors of awn development, there is little agreement
about how these factors interact during awn formation and how this interaction affects variation of
awn morphology. Consequently, the developmental sequence of the awn is not yet well understood.
Here, we review awn morphological and histological features, awn development pathways, and
molecular processes of awn development. We argue that morphological and molecular genetic
mechanisms of awn development previously studied in major cereal crops, such as barley, wheat,
and rice, offered intriguing insights helping to characterize this process in a comparative approach.
Applying such an approach will aid to deeply understand factors involved in awn development in
grass species.
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1. Introduction

In monocotyledonous cereal crops, such as rice (Oryza sativa L.), wheat (Triticum aestivum L.),
barley (Hordeum vulgare L.), and rye (Secale cereale L.), as well as several forage grasses, the inflorescence
is characterized by bristle-like extensions, called awns, adhered at the tip end of the lemmas in the
florets [1]. Awn formation and development rely on lemma primordium, which produces awn meristem
as the lemma apex continues to elongate [2]. The sequence of awn development events is a complex
process, involving morphological features, such as inflorescence density and glume length to control
awn length [3], growing conditions [4], and genetic mechanisms [5]. Awns are beneficial in wild species
because they aid in seed dispersal, as the barbed awns adhere the seed to animal fur [6]. They repel
seed-eating birds and animals. Long awns are also easily controlled by external dispersal factors such
as wind, and their movement may propel the seed into the ground, which enables self-planting [7].
Awns are also effective for light interception and CO2 uptake because photosynthates travel easily
from awns to the growing kernels [8]. Evidence in barley [1,5] and in wheat [8,9] revealed that awns
are coupled with grain yield increase, particularly in drier and warmer environments. Despite the
undisputable importance of awns especially in nature, long and barbed awns deter manual harvesting
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and interfere with seed-processing activities, that is, malting and milling [10]. In forage barley cultivars,
long and barbed awns increased bulky fibers, hindering forage quality and palatability [11].

In transverse sections, the awns of barley, wheat, oat, and rye are triangular-shaped with three
vascular bundles and two strands of chlorenchyma tissues, and they may contribute to photosynthesis.
Awns of rice, on the contrary, have a round shape in transverse section with single vascular bundles and
a lack of chlorenchyma tissues, implying their minor contribution to photosynthesis [1]. Supporting
this observation, awn removal experiments revealed a minor impact on grain yield and, consequently,
rice species with shorter or nonexistent awns were preferred by early cultivators to enhance harvesting
and postharvest processing. This is in contrast with some other domesticated cereals, such as barley
and wheat, where the removal of awns led to yield loss. Thus, most cultivated barleys and wheats
possess long awns [12].

Previous genetic studies identified several awn-related quantitative trait loci (QTLs) in several
major cereals, and several genes were recently cloned in some. In this respect, the genetic basis of
awn development was deeply investigated in rice, and allowed researchers to identify many QTLs
associated with awn growth on almost all chromosomes [13,14]; furthermore, some of their causal
genes were dissected molecularly [12–17]. In barley, functional advancements regarding genetic
mechanisms of awn development emerged recently, with the cloning and characterization of genes
such as Lks1 [18] and Lks2 [1]. Although genes causing awn development in wheat are not yet cloned,
scientists identified the main inhibitors of awn development in some wheat cultivars [19].

Despite the undisputable role of awns for inflorescence architecture and their putative impact for
yield determination, details regarding how the awn is formed and how its morphology is variable
among species remain elusive, and a clear model explaining the awn developmental process is needed.
As such, it demands solid and basic skills of the major plant developmental processes. Our aims
in this review are (1) to discuss the phenotypic evolution of awns by illustrating morphological
structures of the awn and physiological changes during awn development, and (2) to assess the
genetic basis associated with awn development and variation in major cereal crops. Understanding
awn development is essential for agriculture, with respect to improving yield and quality traits of
grass species.

2. Morphological and Histological Characteristics of the Awn

2.1. Morphological Features of the Grass Inflorescence

The grass inflorescence is a unique, complex structure, different from those of most other plants.
It comprises one to several structural units called florets, packed together in a spikelet [20]. The spikelet
is the basic unit of the grass floral structure, usually comprising glumes (either empty glumes or
rudimentary) and one to several florets. The floret, the spikelet’s individual unit, consists of a lemma
(which extends in the functional awn in some grasses), a palea, and reproductive organs, including the
stamens, pistils, and lodicules [21]. The arrangement of spikelets and the number of florets are key
determinants of inflorescence type in grass species. Based on the arrangement of spikelets, the three
most well-known kinds of grass inflorescence are spike, raceme, and panicle. A spike is an unbranched
inflorescence in which spikelets are attached directly to the main axis, as in wheat, barley, and rye.
A raceme is an unbranched inflorescence in which spikelets are attached to the main stem by pedicels,
as in Festuca, some Danthonia, and Avena. A panicle is a branched inflorescence with spikelets attached
to the side branches rather than the main stem with or without pedicels, such as what is found in rice
and oats [22]. The inflorescence meristem may be classified based on floral meristem determinacy.
The inflorescence is determinate, when the main axis always ends in an apical spikelet, as in wheat,
rye, and oats. The inflorescence is indeterminate, when the main axis never becomes terminated
by a spikelet and continues to initiate branches and a number of fertile spikelets, as in barley and
maize [2,23].
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Spikelets are modified units defining the inflorescence structure of grass species. Based on the
presence or absence of pedicel, a small stalk or stem connecting the flower to the main axis, spikelets
may be sessile or pedicelled. Sessile spikelets are connected directly to the axis, whereas pedicelled
spikelets are attached to the axis by the stalk [22]. Scientists also classified spikelets referring to the
position of the spikelets in the main inflorescence. Basal spikelets are located in the bottom, central
spikelets in the center, and apical spikelets on the top of the inflorescence [23]. Variation of the grass
floral morphology contributes greatly to the diversity of grass spikelets. For instance, the presence of
fertile florets (those possessing a caryopsis) and sterile florets (empty glumes) raised arguments in
the classification of spikelets. A fertile spikelet contains one to several fertile florets, whereas a sterile
spikelet contains only sterile florets [2,23]. Furthermore, the grass inflorescence is usually composed of
both male and female structures. In some cases, the spikelet may possess imperfect flowers with only
male or female structures. For instance, the staminate spikelet only contains stamens, whereas the
pistillate spikelet only possesses pistils [24]. Spikelets can also be classified based on the presence or
absence of awns. The awned spikelet possesses at least one but sometimes several awns, while the
awnless spikelet possesses no awn in any form [25–27].

2.2. Awn Anatomy and Histology

Awns are characteristic features of grass inflorescence [7]. While awns’ morphological features
vary among grass species, their description varies among sources. Most cultivated cereals (for
example, wheat, barley, oat, and rye) are awned and possess a single awn per floret, but some cereal
grasses, such as maize and sorghum, are awnless [19,25]. In rice, most wild rice species are known
as long-awned, whereas cultivated cultivars are awnless or remarkably short-awned [6]. In addition,
some wild grasses may have two to several awns per floret, as in grasses from the Aristida genus [28,29].
Thus, awn length is one of the main distinguishing features in grasses, and domestication process via
awn length led to dramatic phenotypic variations through evolutionary processes [6,15]. There are
several arguments in deciding whether the awn is long or short. In barley, awns that are more than
twice the length of the spike are classified as long, whereas awns that are less than twice the length of
the spike are classified as short [30]. In wheat, there is no rule for awns to be long or short, and these
categories are estimated via observations [31].

Straightness is also another distinguishing feature of grass awns. Awns that are extremely bent or
flex from the middle to the tip end are known as curved, whereas awns that are straight or slightly
curved are classified as straight. Also, long awns are usually curved, and short awns are straight [19,32].
Furthermore, the presence of barbs on the outer layer of the awn is also a distinguishing feature in
grasses. Rough (or barbed) awns are entirely covered with barbs, whereas smooth (or barbless) awns
have no barbs on the outer surface [11,15,32].

In different species, awns are distinct in cell type, structure, and number. Long awns have more
elongated cells in the top and bottom and less in the middle, whereas short awns contain small cells,
and most of the cells occupy the middle part [1]. Except for rye and its relatives lacking chlorenchyma
cells, many species such as wheat and barley have parenchyma cells on both awn sides, and parenchyma
cells occupy a big part of the awn transverse section (Figure 1). Longitudinal sections of the awn show
clear branched and elongated chlorenchyma cells with two or more roundish proteinaceous bodies [33].
Moreover, several grasses contain stomata in their awn’s external tissues, but some cereals such as
wheat and rice contain cuticles in the awn external layers. Long awns also possess more phytoliths
(silica depositions) and adaxial and abaxial terminals in comparison to short awns [34,35].
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Figure 1. Transverse section shows several cell types. Except for rye lacking parenchyma cells, wheat
and barley are similar in most of the cell types despite differences in awn structure. (A,B) In transverse
sections, barley and wheat awns are triangular and show a high number of parenchyma cells compared
to other cell types. (C) Rye awns are triangular in transverse section with a high number of green cells
and thick-walled cells compared to other cells. Gc, green cell; Pc, parenchyma cell; Tc, thick-walled cell;
Vb, vascular bundle.

Awn cells are responsible for several functions assisting in the elongation of the awn, as well
as the development of the seed grain. Parenchyma cells and green cells (chlorophyll-containing
cells) synthesize photosynthate; vascular bundles work together with parenchyma cells to convey
assimilates to the other cells; abaxial and adaxial terminals and stomata regulate water, temperature,
and metabolic chemicals through transpiration; proteinaceous bodies mainly store proteins and
minerals; phytoliths maintain the rigidity and persistence of the awn [36]. It is noteworthy that
improvements in the performance of cereal crops and forage grasses require an in depth understanding
of plant morphological features including those of seed awns.

3. Awn Development Pathways

Plant development analyses revealed that the reproductive phase is simpler in eudicots, such as
Arabidopsis thaliana (L.) Heynh, where the inflorescence meristem (IM) directly generates the floral
meristem (FM) unlike in monocots, such as grasses, where the process can undergo various intermediate
stages that may last several weeks [2]. Although the reproductive process is more complex in grasses,
the vegetative phase is nearly the same. The plant developmental process in grasses is governed
by the shoot apical meristem (SAM) and the root apical meristem (RAM), meristems formed during
embryogenesis. The SAM controls the development of leaves, stems, and flowers, whereas the RAM
controls the rooting system. During vegetative growth, the SAM generates leaf primordia; the leaf
primordia produce the axillary meristems (AMs), and these meristems generate the secondary shoots
or tillers. After the vegetative growth, the SAM shifts its focus to the inflorescence meristem (IM)
and, thus, the reproductive phase is initiated [2,37]. The sequence of reproductive events varies in
grass species, and it involves various intermediate meristems. To better understand the process of
awn development, below, we compare the developmental fate of rice and wheat, two major grasses,
exhibiting different developmental processes.

In rice, florets are developed by spikelet meristems (SPMs) which are initiated by the branch
meristems (BMs), that is, either by primary branch meristems (PBMs) or secondary branch meristems
(SBMs). The IM generates PBMs, which then develop SBMs. The branch meristems (BMs) generate
the SPMs including lateral spikelet meristems and terminal spikelet meristems, SPMs generate FMs,
and FMs initiate spikelets. The empty glumes begin spikelet development, followed by the lemmas,
paleas, and lodicules; then, fertile florets produce the stamens and pistils [21].
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The development of awns in rice is one of the intermediate floral developmental phases. Figure 2
is a generalized diagram of awn development in rice. It also demonstrates several parts of the spikelet.
The initiation of the awn can be defined as the morphological change of the lemma apex as floral
organs continue to grow. The awn primordium is initiated after the lemma primordium [16]. This stage
is followed by the appearance of a pair of ridges, in which the upper ridge generates the panicle
and its parts. As the process proceeds, the lemma continues to grow, and the awn propagates from
the terminal part composing the vascular bundle of the lemma [21]. Although this process clearly
shows that awns protrude from the lemma, problems regarding factors causing awn suppression in
some rice species persist. Luo et al. [12] used both awned and awnless rice cultivars to illustrate awn
development. They found that both awned and awnless cultivars exhibit similar growth before the
lemma primordium. After the lemma primordium, the lemma apex of the awned cultivar elongates,
and the awn primordium differentiates and extends. In contrast, the lemma apex of the awnless
cultivar stops growing and forms a round tip. Thus, awn development in rice is divided into two
main stages: awn formation, which begins after lemma primordia and ends at stamen primordia;
and awn elongation, which begins during stamen primordia and ends during early maturity, the dough
stage [16].
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Figure 2. A generalized diagram of awn development in rice. From heading to a few weeks before
anthesis, awned and awnless spikelets show similar growth. During the anthesis, reproductive organs
differentiate and awned spikelets show higher growth than awnless spikelets. During the milk stage,
the grain starts to develop, and the awn elongates in the awned spikelet, whereas the awnless spikelet
forms a round tip. During the dough and maturity stages, the awn photosynthetic activity drops,
the spikelet decreases in volume, and the awned plant provides a longer and larger seed than the
awnless spikelet. EG, empty glume; LE, lemma; OV, ovary; PA, palea; PE, pedicel; PI, pistil; RG,
rudimentary glume; ST, stigma.
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In wheat, the floral developmental process is more complex. Unlike rice having a single floret
per spikelet, wheat spikelets contain three to six florets [38]. This variation in spikelet patterning
may affect the developmental processes. After the shift from the vegetative to reproductive phase,
the IM initiates the spike meristem (SM). This phase is indicated by the appearance of a pair of ridges.
The upper ridge represents the SPM, and the lower ridge forms the leaf primordium. Both ridges
continue to differentiate until the upper covers and suppresses the lower. As the process continues,
the SM initiates spikelet meristems (SPMs) starting in the middle toward the base and the top of the
floral body. After the initiation of FMs by SPMs, two pairs of glumes differentiate. The first pair
appears on both sides of the SPM as transverse ridges, and the latter appears above the first pair.
The first pair becomes empty glumes, and the second differentiates into the lemmas of the first and
second florets. As the development proceeds, the FM elongates upwardly (from the base to the apex)
until the initiation of the lemma of the sixth floret. The first two florets generate anthers, followed
by the paleas and then the pistils. The third floret generates its parts, followed by the fourth, fifth,
and sixth floret, respectively. In the awned species, lemmas continue to elongate and develop the awns.
The development of awns within the spikelet follows the fate of their respective florets, that is, starting
in the first floret to the sixth [23,37].

The study by Bonnett [38] unveiled that all parts of the wheat floral structure including awns
become visible before the differentiation of the last floral organ, the peduncle. Despite this, the initiation
time of the awn primordium remains poorly understood. The study by Ponzi and Pizzolongo [39]
in common wheat cv. Ofando found that SPMs and subtending leaf primordia expand and initiate
FMs, the process probably followed by the initiation of awn primordia. The authors revealed that
the initiation of awn primordia at this stage was indicated by the presence of the positive starch
granules (PSGs) at the base of the developing spikelet. As the development proceeded, FMs initiated
floral primordia at the axil of the lemma, while awns expanded rapidly at the top of the lemmas.
The authors also found that awns and anthers might be initiated at the same time because PSGs were
also found in the anthers, but were absent in other floral parts. This finding is consistent with the
study by Bonnett [40] in barley and Bremer-Reinders [41] in rye. In both species, the basal of the
lemma differentiates rapidly and initiates awn primordia during the initiation of anther primordia.
After the initiation of floral parts, the awn expands more rapidly than the lemma and palea to attain a
considerable length. Furthermore, the elasticity in the duration from awn primordium to the time when
the awn is apparent raised several arguments. A study suggests that this duration is controlled by
genetic mechanisms and growing conditions such as vernalization, temperature, and photoperiod [42].

Awn development varies considerably in grass species despite possible little similarities. In the
Danthonieae tribe, the lemma is divided at the apex into three lobes, in which the middle one extends
into a geniculate awn. In the Aveneae tribe, the awn arises on the back of the lemma with oneor two
lobes [43]. This variation is regulated by several genetic switches that may initiate the awn primordia,
inhibit awn differentiation in awnless species, control the duration of the process and, thus, control the
interaction of awns and several signaling centers [12,16]. It is, thus, noteworthy that unveiling the
molecular underpinnings of awn development remains important.

4. Genetic Basis of Awn Development in Grasses

As the awn exhibits complex morphology and development [14,44], identifying its growth
regulators was a challenge for decades [1]. To address this, focus should be put on the genetic
mechanisms given their considerable influence in the development of awns [6,12,37]. This section
reviews strategies that were applied so far to identify quantitative trait loci (QTLs) and causal genes for
awn development. It also discusses how these efforts could provide novel insights into understanding
awn development and how these insights may trigger ongoing and new research initiatives.
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4.1. Awn Development and Recent Genetic and Genomic Advances

The artificial selection by ancient farmers was considered the root of the reduced awn length
in cultivated grasses [5]. However, questions on the variability of awn features among and within
grass species persist. Moreover, the interaction of awns and other domestication traits such as
panicle architecture, grain size, grain weight, and seed shattering obscure the genetic basis of awn
development and, correspondingly, may have far-reaching economic implication in several grass
species [45,46]. To resolve this puzzle, scientists adopted several approaches to reveal the genetic basis
of awn development.

QTL mapping (traditional linkage mapping) was an important tool in chasing awn development
regulators for many years [47]. QTL mapping depends on molecular markers such as restriction
fragment length polymorphisms (RFLP), amplified fragment length polymorphism (AFLP),
sequence-related amplified polymorphism (SRAP), simple sequence repeat (SSR) or single-nucleotide
polymorphism (SNP), and mapping populations, including F1, F2, backcross (BC), recombinant
inbred lines (RIL), doubled haploid (DH), and multiparent advanced generation intercross (MAGIC)
lines [48]. Several studies adopted QTL mapping and identified a huge number of QTLs that control
awn development in major grasses such as rice, wheat, and barley [49,50]. QTL mapping enabled
scientists to develop recombinant inbred lines (RILS), which were used to illustrate awn development
in grasses (for example, in rice) and disclose the interaction of awns and yield traits [51]. However,
unlike rice species, compatible with this tool, defining a few megabases and covering thousands
of genes was a hindrance in many species, such as polyploidy wheat and barley, having huge and
complex genomes [48]. To resolve this issue, scientists envisaged several other approaches, such as fine
mapping and QTL cloning. These approaches displayed several QTLs underlying awn development in
rice [49,51], barley [18], wheat [19], and sorghum [52] despite being a time-consuming and expensive
approach. They also assisted to dissect several causal genes for awn development in some major
cereals such as rice [12] and barley [1].

The interactions among awn development QTLs and grain yield QTLs and the environment were a
drawback for breeding strategies in grasses. Therefore, QTL cartographer (that is, a software suite which
uses molecular markers to map quantitative traits) and QTL networking (that is, bioinformatics-based
software which analyzes QTL data of large genotypes and phenotypes collected from many groups
of related individuals) are alternatives to resolving this issue [53]. Recently, research by Masoud et
al. [50] applied these approaches and intriguingly found six additive awn length QTLs using QTL
cartographer and three additive and two epistatic QTLs using QTL networking.

Genome-wide association analysis (GWAS) offers a new approach to gene discovery unbiased with
regard to presumed functions or locations of the causal variant. It was a powerful tool in displaying
QTLs and genes underlying awn development. This approach applies linkage disequilibrium (LD) to
unveil polymorphisms associated with a trait of interest [48]. Using this approach, Magwa et al. [46]
identified several QTLs linked to awn length and one QTL linked to AN1 (the main gene controlling
awn development in rice). Interestingly, they also identified an association SNP in a region near
the seed shattering gene (qSH1), indicating that awn development and seed shattering may exhibit
molecular interactions. Finally, these approaches enabled researchers to identify several genes and
QTLs underlying seed awning especially in major cereals. Thus, additional advances are required
to further explain awn development in several species, particularly forage grasses, and unveil the
interaction between awns and other seed traits.

4.2. Molecular Mechanisms Underlying Awn Development in Grasses

4.2.1. Mechanisms of Awn Development Causal Genes

Awn development is a polygenic trait that is regulated by many genes, with several genes
identified in rice, along with their role in the initiation and growth of the awn (Figure 3; Table 1).
Although awns have a negligible effect on rice performance [1], this species received considerable
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interest in displaying the genetic basis of awn development due to its small genome size and its
relationship with several other cereal crops. Additionally, rice species exhibit variation in awn features.
For example, wild rice species such as Oryza rufipogon Griff. and Oryza barthii A. Chev. are long-awned.
Most cultivated rice species such as O. sativa cv. Indica and Oryza glaberrima Steud. are awnless,
whereas O. sativa cv. Japonica is short-awned [6]. This variability reflects that awn development in rice
is controlled by drastic genetic changes. Matsushita et al. [13,14] used the introgression lines generated
from wild rice (Oryza meridionalis Ng.) and cultivated rice (O. sativa) and uncovered five genes (An6,
An7, An8, An9, and An10) for awn development in O. meridionalis. The authors discovered that An6,
An7, and An8 generated longer awns than other genes and An10 generated a short-awn phenotype.
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Table 1. Genes that underlie awn development in major grass species.

Species Locus Name Locus Symbol Associated Makers Physical Position a Chr. b Phenotypic Function Reference

Oryza sativa AWN1 AN1 M6298, RM6285 5.88 Mb (region) 4 Awn formation Luo et al. [12]

O. sativa AWN2 AN2 FM5, FM6 56 kb (region) 4 Awn elongation Gu et al. [16]

O. sativa AWN3 AN3 - - 3 Awn elongation Takamure et al. [54]

O. sativa AWN4 AN4
RT1-8a*T65
RT1-8c*T65
RT8-10*T65

-
-
-

8
Awn elongation,

inflorescence
development

Sato et al. [55]

O. sativa AWN5 (An5) AN5 RZ740
RG122

21.2 cM
24.5 cM 4 Awn elongation Xiong et al. [56]

O. sativa An-10 [An5(t)] An10 C1677
G1316

2.4 cM
2.2 cM 3 Awn elongation Kubo et al. [57]

Oryza glumaepatula An-11(An7) An11 RM3419
RM289

3.6 cM
3.6 cM 5 Awn elongation Matsushita et al. [13]

O. glumaepatula An-12(An8) An12 RM261
RM1359

12.2 cM
7.1 cM 4 Awn elongation Matsushita et al. [13]

Oryzameridionalis An-13(An6) An13 RM3496 11.7 cM 8 Awn elongation Matsushita et al. [14]

O. meridionalis An-14(An9) An14 RM8111
RM8051

3.0 cM
3.6 cM 1 Awn elongation Matsushita et al. [14]

O. meridionalis An-15(An10) An15 RM237
RM265

15.1 cM
3.0 cM 1 Awn elongation Matsushita et al. [14]

O. sativa Chromogen for
Anthocyanin C XNpb165-1

XNpb200
16.4 cM
17.1 cM 6 Lemma, palea, and

awn color Kishimoto et al. [58]

O. sativa Long and Barbed Awn 1 LABA1
(RAE1) M3, RM17242 34.6 kb (region) 4 Awn elongation Hua et al. [15]

O. sativa
Grain Number, Grain

Length, and Awn
Development 1

GAD1
(RAE2) MX14, MX16 6 kb (region) 8 Awn elongation,

grain number Jin et al. [17]

O. glabberima Regulator of Awn
Elongation 3 RAE3 6KG28331, 6KG30196 1.9 Mb (region) 6 Awn elongation Furuta et al. [6]
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Table 1. Cont.

Species Locus Name Locus Symbol Associated Makers Physical Position a Chr. b Phenotypic Function Reference

Triticum aestivum Hooded Hd
WABM229716,
WABM117400,

WABM23373517.1
0.9 cM 4AS Awn suppression Yoshioka et al. [19]

T. aestivum Tipped 1 B1 Xgwm291 1.3 cM 5AL Awn suppression Yoshioka et al. [19]

T. aestivum Tipped 2 B2 WABM232658
WABM243094

1.3 cM
1.9 cM 6BL Awn suppression Yoshioka et al. [19]

Aegilops tauschii Anathera Antr S57615-1
Xctg211719

1.3 cM
3.9 cM 5DS Awn suppression Nishijima et al. [18]

Hordeum vulgare Awnless 1 Lks1 SNP 1_0619
SNP 1_1533

133.59 cM
141.56 cM 2HL Awn suppression Franckowiak and

Lundqvist [59]

H. vulgare Long Awn2 Lks2 k06123
k04151

0.27 cM
1.0 cM 7HL Awn elongation Yuo et al. [1]

H. vulgare Hooded lemma 1 Kap1
(Knox3) glf3 25.1 cM 4HS Hood formation, awn

suppression Müller et al. [60]

H. vulgare Six-rowed spike 1 vrs1 e40m36-1110S
BC12348

0.01 cM
0.06 cM 2H Reduces awn length Komatsuda et al. [61]

H. vulgare K Suppressor loci suKB suKB E34M46
E35M39

16.9 cM
9.9 cM 7H Reduces awn length,

Hood formation Roig et al. [62]

H. vulgare K Suppressor loci suKC suKC E35M44
E41M46

0.0 cM
7.8 cM 7H Reduces awn length,

Hood formation Roig et al. [62]

H. vulgare K Suppressor loci suKD suKD E37M38
E41M36

15.9 cM
1.1 cM 5H Reduces awn length,

Hood formation Roig et al. [62]

H. vulgare K Suppressor loci suKE suKE E40M43
E36M44

5.6 cM
0.0 cM 7H Hood formation Roig et al. [62]

H. vulgare K Suppressor loci suKF suKF E35M40
E43M32

5.3 cM
22.4 cM 7H Hood formation Roig et al. [62]

a Physical position: bp, base pair; cM, centimogan; kb, kilobase; Mb, megabase. b Chr, chromosome.
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Several years later, Luo et al. [12] used genetic mapping in O. rufipogon and O. sativa to identify
further mechanisms underlying awn development. They found some major genes related to cytokinin
regulated awn development. AN1, the major domestication gene located on chromosome 4, encodes a
basic helix-loop-helix (bHLH) transcription factor linked to awn development in wild rice (O. rufipogon).
The authors also used in situ hybridization to unveil the cause of awnless habits in cultivated rice
(O. sativa), and they surprisingly found the an1 allele in O. sativa, which reduces cytokinin in awn
primordia and, thus, inhibits awn differentiation. This indicates that the absence of awns in cultivated
rice may be caused by the mutation in AN1 during awn elongation. The authors also observed that
the expression of AN1 in wild rice ceased during the late flowering stage, suggesting that the further
elongation of awns after flowering might be induced by other genes. In this respect, Gu et al. [16]
revealed that the complete action of AN1 in wild rice relies on the mutual effect with other genes.
Intriguingly, they cloned AN2 (AWN2), a major gene that encodes a Lonely Guy Protein 6 (OsLOGL6),
which catalyzes the final step of cytokinin synthesis and, thus, promotes awn elongation in O. rufipogon.
The authors also stated that the mutual effect of AN1 and AN2 could remarkably promote awn
development in O. rufipogon, implying that AN1 controls the initiation and formation of awns, whereas
AN2 regulates the elongation of awns. The authors also suggested the awnless phenotype in some rice
species may be caused by the suppression or mutation in AN1, while the short-awned phenotype may
be caused by the mutation in AN2. In conclusion, cytokinin is one of the important plant hormones
promoting cell division and differentiation during plant organ development. Rice an1 mutant showed a
reduced cytokinin level in awn primordia, while AN2 encodes a cytokinin synthesis protein OsLOGL6,
which further confirmed the role of cytokinin in awn development at the molecular level.

In barley, awn development is mainly controlled by Lks1 and Lks2 genes located on chromosome
arms 2HL and 7HL, respectively. Lks1 (Awnless1) is a dominant gene, which causes the awnless
phenotype in barley [59]. Lks2 (LONG AWN2) encodes the SHORT INTERNODES (SHI) family
transcription factor that promotes awn elongation [1]. By contrast, its mutant gene, SHORT AWN2
(lks2), reduces number of longitudinal cells in the awn and, thus, shortens awn length up to 50% [5].

In wild wheat (Aegilops tauschii Coss.), Nishijima et al. [18] identified the awnless locus (Antr) on
chromosome arm 5D, which inhibits awn formation and, thus, affects the awnless phenotype in wild
wheat. The identification of this novel gene provided intriguing insights into the genetic basis of awn
development in wheat species. However, further investigation is needed to unveil whether this gene is
involved in the development of awns in cultivated wheat.

4.2.2. Functions of Floral Meristem Genes

The shift from vegetative to reproductive development in grass species is under strict genetic
control, in which each pathway involves genetic factors that affect the architecture of secondary
inflorescence meristems. Genetic advances reported ample evidence that gene mutations may obstruct
the growth of floral meristems and thus transform floral parts into functional awn-like structures.
In rice, the growth of shoot apical meristem is regulated by many genes, including SHOOTLESS2 (SHL2),
SHOOT ORGANIZATION1 (SHO1), and SHOOT ORGANZATION2 (SHO2). Genetic experiments
revealed that these genes have strong mutant alleles (shl2, sho1, and sho2) that encode proteins acting
in trans-acting small interfering RNA, acting in the verification and silencing of some plant genes and,
thus, inhibiting the growth of apical shoot meristem. This process may cause plant abnormalities,
including the transformation of the lemma and floral meristems into awn-like structures [63,64].
TOB1 (TONGARI-BOUSHI1), DL (DLOPPING LEAF), and several other members of the YABBY
gene family encode transcription factors that are involved in the upholding of plant meristems and
development of floral organs in rice. Interestingly, DL interacts with OsETT2 of the ARF gene family
to initiate cell divisions in the awn primodium and, thus, regulate awn length; tongari-boushi1 (tob1)
mutants possess similar functions, but also control the formation and elongation of lemma and
palea [65,66].
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Evidence also shows that the overexpression of genes that are involved in the expansion of floral
meristems can control awn development. In wheat, for example, Wknox1a, Wknox1b, and Wknox1d
genes are located on the 4AS, 4BS, and 4DS chromosome arms, respectively. In some wheat cultivars,
such as Chinese spring, the overexpression of these genes in the floral meristem may actuate awn
formation [67]. This supports the idea that, although the causal genes for awn development arenot yet
cloned in cultivated wheats, this process is controlled by several interacting genes. The current data
suggest that variation in awn length and hood phenotype in wheat is a result of alterations in genes
underlying floral meristems [19].

4.2.3. The Role of Interacting Genetic Factors

Several molecular experiments showed that awn development is controlled by multiple interacting
genetic factors. In barley, for instance, LONG AWN2 (Lks2) and HvKNOX3 genes and suK alleles (suKD,
suKB, suKC, suKE, and suKF) exhibit molecular interactions, resulting in the variation of awn length.
The HvKNOX3 and suK alleles possess a dominant mutant K, which either shortens awn length or
inhibits awn formation [62,68]. This dominant mutant K may also divert the initiation and growth
of awn meristem and forms a hooded (flower-like) phenotype [60]. Other studies observed that the
mutation in suK alleles and Lks2 gene may inhibit the expression of HvKNOX3 and, thus, promote
awn development [19,21,62]. Furthermore, recombinant inbred lines (RIL) from two barley accessions,
Azumamugi and Kanto Nakate Gold, displayed a QTL for awn length near the vrs1 locus, which is
known to be involved in regulating spike development and plant statute traits. Molecular analyses
revealed that interactions between these genetic factors have pleiotropic effects that result in reduced
awn length [67]. Genomic studies in barley also detected molecular interactions between vrs1 and
Awnless1 (Lks1) locus and mutants for reduced awn length, which caused awnless and short-awned
phenotypes, respectively [67]. Analysis of the gene controlling the spike density in barley, dsp1,
revealed that interaction of this gene with the short awn 2 (lks2) gene underlays short and thin awns in
Aizu Hadaka 3, a six-rowed barley variety [69]. These observations support the view that awn length
in barley is controlled by a wide variety of molecular interactions. They also leave open interesting
questions on the molecular interactions among vrs1, lks2, dsp1, and suK alleles. Furthermore, a recent
study detected Vrs2, the gene responsible for the floral organ patterning in barley, in several floral parts
including the lemma [20]. Identifying whether this gene is expressed in the awn remains a goal for
future studies.

4.2.4. Regulation of Awn Formation and Length by Dominant Inhibitors

In wheat, awn development is strictly controlled by three dominant inhibitors: Hooded (Hd),
Tipped1 (B1), and Tipped2 (B2). Molecular advances detected Hd on chromosome arm 4AS, B1 on
chromosome arm 5AL, and B2 on chromosome arm 6BL [19]. Full-awned phenotypes carry three
homozygous recessive (hd, b1, and b2) alleles. Awnless phenotypes possess two dominant alleles and
one recessive allele, that is, either HdHdb1b1B2B2 as in the Chinese spring cultivar or hdhdB1B1B2B2 as
in the Federation cultivar [19,70]. Furthermore, Yoshioka et al. [19] used RILs derived from short-awned
common wheat cultivars (Chinese Spring and Mironovskaya 808) to investigate the further impact of
these inhibitors on the variability of awn traits. Intriguingly, they found that wheat RILs that possess
Hd developed very short awns that are bent at the base. Wheat RILs with B1 generated short awns at
the base and middle of the spike, but awn length rose at the top of the spike reaching 1cm. RILs with
B2 produced short, curved awns that were not bent at the base as in Hd. Despite the undisputable role
of these inhibitors during awn development in wheat, none were characterized molecularly. A study
attempted to associate Hd with the Wknox1a gene. Also, Hd and B2 were found near the DL and
RAE2 genes, respectively; however, neither of these genes is directly coupled with awn development
in wheat [19]. Thus, future investigations should continue to improve our limited knowledge on
molecular genetic factors coupled with awn development in wheat.
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5. Conclusions and Future Perspectives

Awn development was described morphologically and genetically, especially in major cereal
crops like rice, wheat and barley. These advancements not only offer an intriguing paradigm for
studying the evolution and domestication of grasses, but also have significant implications for future
breeding programs. From a breeding standpoint, identifying the interactions between seed characters
and agronomic traits, including those determining yield and quality potential, remains an essential
goal to realizing the potential of agricultural research and innovation. In this respect, combining
morphological- and molecular-based approaches will yield comparative data that will help to unveil
the pleiotropic impacts of awns in grass species. All these essential perspectives should enable us to
unravel the link between awn morphology and several genetic factors in major cereal crops, but the
question regarding how we can achieve the same level of understanding in forage grasses remains.
In the future, these important genes for awn development identified in major crops, such as AN1, AN2,
GAD1, LABA1, Lks1, and Lks2, can effectively be used as a source of candidate genes for other grass
species, and they can also facilitate comparative genome research between crops and forage grasses.
The application of the information presented here should considerably aid in this quest.
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