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We describe a statistical approach to predict gender-labeling errors in candidate-gene
association studies, when Y-chromosome markers have not been included in the geno-
typing set. The approach adds value to methods that consider only the heterozygosity
of X-chromosome SNPs, by incorporating available information about the intensity of
X-chromosome SNPs in candidate genes relative to autosomal SNPs from the same
individual. To our knowledge, no published methods formalize a framework in which het-
erozygosity and relative intensity are simultaneously taken into account. Our method offers
the advantage that, in the genotyping set, no additional space is required beyond that
already assigned to X-chromosome SNPs in the candidate genes. We also show how the
predictions can be used in a two-phase sampling design to estimate the gender-labeling
error rates for an entire study, at a fraction of the cost of a conventional design.
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INTRODUCTION
This work proposes a cost–effective approach to predict sample
gender-labeling errors and estimate gender-labeling error rates in
candidate gene case–control studies, when Y-chromosome data are
unavailable but genotypes and intensities are available for SNPs in
candidate genes. (By the “gender labeling” of a genotyped sample,
we mean the self-reported gender of the study subject associated
with that sample.) As long as the genotyping data set contains SNPs
in candidate genes on the X-chromosome, the approach requires
no extra space for additional gender-prediction SNPs.

For SNP microarray and genome-wide association data that
include SNPs on the X- and Y-chromosomes, sample sexing can
be determined by heterozygosity of the X-chromosome SNPs and
the presence of Y-chromosome SNPs. For studies without X- or
Y-chromosome SNPs, sex typing by PCR is currently the best strat-
egy (Tzvetkov et al., 2010). Methods of sex typing are based on the
human amelogenin gene, whose homologs AMELX and AMELY
are located on the X- and Y-chromosomes, respectively. Current
methods for sex determination for forensic and other labora-
tory purposes rely on genotyping small differences between the
two genes (Graham, 2006), such as a 6-bp deletion in AMELX
(Sullivan et al., 1993). However, this method requires that each
sample be tested by PCR. Alternative high-throughput methods
use single nucleotide differences between the AMELX and AMELY
genes to determine sex (Tzvetkov et al., 2010). While these assays

do not require special laboratory equipment, they all require labor-
intensive laboratory work. In contrast, the proposed method aims
to reduce the labor associated with gender checking while remain-
ing simple and applicable to existing data from candidate-gene
studies. By increasing the feasibility and cost–effectiveness of qual-
ity assurance in laboratory handling procedures, it can play a role
in any integrated laboratory system for candidate-gene association
studies.

If only genotypes of X-chromosome SNPs are available, gender
errors (generally due to samples that have been switched with a
sample of a different sex) can be predicted in male-labeled samples
with excess heterozygosity or in female-labeled samples with excess
homozygosity for X-chromosome SNPs. However, when there is
genotyping error and a small number of X-chromosome SNPs,
this heterozygosity approach can be prone to false-positive results.
Our approach adds precision to heterozygosity methods by incor-
porating information on the intensity of X-chromosome SNPs in
candidate genes relative to autosomal SNPs from the same sam-
ple. To our knowledge, no published method provides a similar
framework incorporating the relative X-chromosome intensities.
In essence, the X-chromosome intensities of different samples are
calibrated using the autosomal intensities as a proxy for the quality
and concentration of the sample. The method is described in Illu-
mina GoldenGate genotype assay data, but may be generalized to
other genotyping techniques for which intensity data are available.
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In addition, by validating true gender in these flagged samples
and in a small proportion of samples that are not suspected to
have gender-labeling errors, our approach can be used to estimate
the overall gender-labeling error rates for a study. The estimation
procedure saves laboratory costs by avoiding exhaustive gender
checking, and yet loses little statistical precision relative to exhaus-
tive checking when predictions correlate well with true gender. Our
methods, which are intended for candidate-gene association stud-
ies rather than forensics applications, were applied successfully to
a study with nine X-chromosome SNPs.

MATERIALS AND METHODS
DATA
Data were from a case–control genetic association study of non-
Hodgkin lymphoma in which 1536 SNPs were genotyped at
The Centre for Applied Genomics, Hospital for Sick Children
in Toronto, using an Illumina GoldenGate genotyping platform
(Illumina Inc., San Diego, CA, USA) in DNA extracted from 428
blood and 811 lymphocyte samples. The samples used in this study
have been previously described (Spinelli et al., 2007). The data and
quality control procedures are described in Data Sheet 1 in Supple-
mentary Material. Illumina GenTrain scores above zero indicated
reliable detection of 1444 SNPs on the autosomes and 11 SNPs on
the X-chromosome. Of the 1239 blood and lymphocyte samples,
1210 passed basic quality control filters. Of the 11 X-chromosome
SNPs, 9 passed basic quality control filters. In the genotyping
quality control step, all intensity data were visually inspected and
SNPs with clustering suggestive of copy number variations were
removed. Self-reported gender information was available for all
samples.

STATISTICAL SOFTWARE
All statistical analyses were performed within the R free-software
environment for statistical computing (R Development Core
Team, 2010). An R script and two simulated example data sets
are provided in Data Sheets 2–4 in Supplementary Material to
allow readers to apply the approach for predicting gender-labeling
errors and estimating gender error rates.

PREDICTION OF GENDER-LABELING ERRORS
Our approach to identifying potential gender-labeling errors is
based on two ideas. First, X-chromosome SNP genotyping inten-
sities and heterozygosity can be used to predict the true gender of
a sample. Second, a useful prediction equation for true gender can
be built from the labeled gender because the majority of samples
are correctly gender labeled. In essence, predicted values of gender
that are discordant with labeled gender indicate potential gender-
labeling errors. X-chromosome SNP genotyping intensities were
normalized to the intensities of the autosomal SNP genotypes, as
follows.

METHOD TO ADJUST X-CHROMOSOME GENOTYPE INTENSITY
In theory, the sample mean intensity across X-chromosome SNPs
reflects a combination of the gender of the sample, the quality of
the sample, and the sample concentration on the genotyping plate.
Exact sample concentrations vary depending on the quantifica-
tion method used and the stochastics of resampling. Therefore,

variables that might reflect sample concentration were considered
as potential predictors for adjusting the intensity. In our study,
these variables included: (1) sample DNA concentration on the
genotyping plate; (2) sample DNA concentration in the tube from
which the DNA was transferred to the genotyping plate; (3) sample
mean intensity across autosomal SNPs; (4) sample call rate across
autosomal SNPs; (5) sample mean GenCall score (the GenCall
score is an Illumina BeadArray metric for ranking and filtering
out failed genotypes, DNAs, and/or loci; Oliphant et al., 2002)
across autosomal SNPs; and (6) sample type (lymphocyte versus
whole blood). The sample mean intensity, call rate, and GenCall
score were averaged over all available autosomal SNPs. As the sam-
ple call rate across autosomal SNPs was highly correlated with the
mean GenCall score across autosomal SNPs (r = 0.99), we did not
consider sample call rate in further analyses. Other studies might
use different predictor variables.

To check the linear relationship between the mean
X-chromosome intensity and each of the six possible predictor
variables for the intensity adjustment, flexible additive models
were fit to the mean X-intensity using the gam function in the
R package mgcv, with automatic selection of the smoothing para-
meter based on cross-validation. When necessary, predictor vari-
ables were transformed to reduce the influence of high-leverage
points. As all relationships appeared to be linear, a multiple linear
regression model was fit to all the available data, with X-intensity
as the response and the six possible variables (or their transfor-
mations) considered as the predictors. After stepwise deletion at
a significance threshold of p = 0.05, only the sample mean Gen-
Call score and the sample mean intensity across autosomal SNPs
remained in the final model. The sample concentration on the
plate was not predictive of the sample mean intensity across X-
chromosome SNPs; neither was the sample concentration in the
tube, nor the sample type. This could be because the genotyping
plates were constructed as uniformly as possible, with the same
amount of DNA from each sample. This final model was fit to 1210
samples and 9 X-chromosome SNPs that passed quality control,
and the residuals were taken as the adjusted X-intensities.

GENDER-PREDICTION EQUATION
The prediction equation was obtained by fitting a generalized addi-
tive logistic model for labeled gender (Wood, 2006) with automatic
selection of the smoothing parameter based on cross-validation,
as implemented in the mgcv package (Wood, 2008). The addi-
tive predictors were the adjusted X-intensity and proportion of
heterozygous X-chromosome SNPs. Fitting this model gives a
predicted probability of being labeled male.

Y-CHROMOSOME PCR ASSAYS
Two sets of primers were used to amplify two different
genomic regions (Battiloro et al., 1997). The first set (SRY-
FWD 5′-TATAAGTATCGACCTCGTCGGAAG-3′ and SRY-REV
5′-AGCCAATGTTACCCGATTGTCCTA-3′) was used to amplify a
258-bp fragment of the SRY gene coding sequence. The second set
(BLM-FWD 5′-TGGATTCTTTGCTCAGTTGG-3′ and BLM-REV
5′-TTTGGGGTGGTGTAACAAA-3′), which served as a control to
determine the ability of a DNA sample to be amplified by PCR,
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was used to amplify a 553-bp fragment of the BLM gene cod-
ing sequence on chromosome 15. All primers were ordered at
50 nmol scale from Invitrogen by Life Technologies (Carlsbad,
CA, USA). Each PCR reaction contained both sets of primers
for each sample. PCR reactions were carried out in a volume
of 10 μl containing 10 ng of genomic DNA, 1 mM MgSO4, each
of the four primers at 0.5 μM, 0.2 mM dNTPs, 1× Pfx Ampli-
fication Buffer and 0.25 units Platinum Pfx DNA polymerase
(Invitrogen, Burlington, ON, Canada). A programmable thermal
cycler (MJResearch DNA Engine 2 Tetrad) was used for the PCR
reactions for a total of 30 cycles (30 s at 94˚C, 90 s at 60˚C and
30 s at 73˚C).

PCR products were run on a 2% agarose gel (Lonza; Basel,
Switzerland), stained with ethidium bromide (Sigma-Aldrich,
St. Louis, MO, USA), and visualized on a gel documentation sys-
tem (Fuji LAS-4000) to confirm amplification and sizes of the
products. CEPH 10859 and CEPH 10853 DNA (Coriell Institute
for Medical Research; Camden, NJ, USA) positive controls were
used to confirm the success of the PCR experiments.

ASSIGNMENT OF TRUE GENDER
First we categorized the 1210 samples into 6 strata based on the
labeled gender and the fitted probability of being labeled male,
as summarized in Table 1. In our study, the majority of labeled
males had probabilities >0.8, whereas most labeled females had
probabilities <=0.2. Hence the strata with probabilities >0.8
may be viewed as “likely male,” those with probabilities <=0.2
as “likely female” and those with probabilities between 0.2 and 0.8
as“inconclusive.”Partitioning of these three probability categories
according to labeled gender produces six strata that can be con-
sidered concordant (predicted and labeled gender agree for strata
1 and 6), discordant (predicted and labeled gender disagree for
strata 2 and 5), or inconclusive (predicted gender is inconclusive
for strata 3 and 4). As the strata are based on the distribution of
the fitted probability, they might be defined differently in other
studies. We applied PCR gender checking to blood and lympho-
cyte samples that were either discordant or inclusive (i.e., in strata
2–5), on 16 of the 18 plates in the study, or male-labeled and het-
erozygous at any of the 9 X-chromosome SNPs without GenCall
score restrictions. To assign true gender, we used the results of
PCR checking unless otherwise noted. Two of the female-labeled
samples had no PCR results but had gender errors arising from

known sample switches, and so were counted as errors. We were
able to assign true gender to a total of 190 samples as summarized
in Table 1.

TWO-PHASE SAMPLING DESIGN TO ESTIMATE GENDER-LABELING
ERROR RATES
To estimate the accuracy of the gender prediction algorithm and
the laboratory-processing gender error rates, we used a two-phase
sampling design. The first phase information was comprised of
labeled gender and the estimated gender-labeling probabilities,
as summarized in Table 1. This information was used to direct
efforts in a strategic way for the labor-intensive validation of true
gender in the second phase of the sampling design. Sampling
strata more likely to contain gender-labeling errors were targeted
for gender validation in the second phase. To obtain an idea of
the background rate of gender-labeling error, we also validated
true gender in a small proportion of the samples that were pre-
dicted as unlikely to be gender-labeling errors (see Table 2). A
two-phase design can give comparable precision to exhaustively
determining the true gender on all samples at a fraction of the
cost (e.g., Breslow and Chatterjee, 1999). The efficiency of a sam-
pling design is defined as its ability to yield precise estimators of
parameters (Cain and Breslow, 1988). Stratified sampling is effi-
cient when variation of the second-phase variable within strata is
small compared to variation between strata (Lohr, 1999, section
4.5). Provided true gender is well correlated with labeled gender
and estimated gender-labeling probability, little variation of true
gender within strata is expected. In this case, efficiency gains are
realized by judicious choice of sampling fractions rather than by
extensive gender determination (e.g., Reilly and Pepe, 1995). Two
principles guided our choice of sampling fractions. First, sampling
fractions should be larger in strata with larger variation in true gen-
der as in, for example, Neyman allocation (Neyman, 1938; Lohr,
1999, p. 108). As variation in true gender is expected to be high-
est in the discordant or inconclusive strata, we aimed for 100%
sampling there (Table 1). Second, for a fixed sample-size at the
second phase, the balanced design with roughly equal numbers
per stratum is easily implemented and has good efficiency (e.g.,
Breslow and Chatterjee, 1999). Hence, we also aimed to follow up
a slightly larger number of samples for true gender in the con-
cordant strata than the maximum that were followed up in the
discordant or inconclusive strata. As the maximum number of

Table 1 | Stratum labels (strat), numbers within each stratum (tot), numbers within strata of known true gender (gen) and true gender counts

(tf = true female, tm = true male, tf + tm = gen).

Prob. male Labeled gender

Female Male

strat tot gen tf tm strat tot gen tf tm

[0, 0.2] s1 534 42 42 0 s2 6 5 5 0

(0.2, 0.8] s3 1 1 1 0 s4 3 1 0 1

(0.8, 1] s5 12 10 0 10 s6 654 131 0 131

Each stratum is defined by a combination of labeled gender and the probability of being labeled male (Prob. male) estimated by our approach.
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Table 2 | Stratum labels (strat), second-phase sampling fractions (frac), numbers in second-phase sample (sam = frac × tot, where tot is given

inTable 1), and true gender counts (tf = true female, tm = true male, tf + tm = sam).

Prob. male Labeled gender

Female Male

strat frac sam tf tm strat frac sam tf tm

[0, 0.2] s1 0.028 15 15 0 s2 0.833 5 5 0

(0.2, 0.8] s3 1.000 1 1* 0 s4 0.333 1 0 1†

(0.8, 1] s5 0.833 10 0 10 s6 0.023 15 0 15

Each stratum is defined by a combination of labeled gender and the probability of being labeled male (Prob. male) estimated by our approach. Gender-labeling errors

are marked in bold.

*Estimated probability of being labeled male is 0.49.
†Estimated probability of being labeled male is 0.33.

samples per stratum in the discordant or inconclusive strata was
12 (see Table 1), we decided to confirm true gender for 15 sam-
ples each in the concordant strata, for sampling fractions of 2.8
and 2.3%, respectively (see Table 2). From the 190 eligible sam-
ples whose true gender could be assigned, we randomly selected
15 samples each from the concordant strata. In the discordant or
inconclusive strata, we were able to assign gender to all but one
sample in stratum 2, two samples in stratum 4, and two samples in
stratum 5. As summarized in Table 2, this sampling strategy led to
a total of 47 samples in the second phase. The true gender assign-
ment for the 47 second-phase samples is summarized in Table 2.
To verify that within-strata variation in true gender is small rel-
ative to between-strata variation, we estimated the proportion of
total variation in the true gender captured by the strata. A pro-
portion near unity suggests little is to be gained from sampling
more than 15 samples in the concordant strata. We emphasize that
the second-phase sample of 47 is intended to illustrate the poten-
tial savings in laboratory effort arising from a two-phase sampling
design. The extra information about the true gender of the 190
samples was used to validate the results of the two-phase sampling
approach.

ACCURACY OF GENDER PREDICTION
The accuracy of the prediction algorithm depends on how well it
separates the samples according to their true gender. Tradition-
ally, accuracy is measured by the AUC, defined by the area under
the receiver operating characteristic (ROC) curve, with an AUC
of 1 representing perfect prediction and an AUC of 0.5 represent-
ing random predictions. We used inverse-probability weighting
(e.g., Lumley, 2004) to estimate the ROC curve based on stratified
samples of true gender for 47 and 190 samples.

CALCULATION OF THE GENDER ERROR RATES
Let Z be the true gender with males coded as Z = 1 and females
coded as Z = 0. Let Y be the labeled gender with labeled males
coded as Y = 1 and labeled females coded as Y = 0. We used
the function svyglm in the survey package of R (Lumley,
2010) to fit a logistic regression model of the probability of
being labeled male given true gender: logit(P(Y = 1|Z )) = β0 + β1

Z. The package uses inverse-probability weighting to adjust for

the biased sampling. Within each of the six strata, we assume
that any of the samples that are missing true gender status (due
to failed PCR) are missing completely at random. Under the
logistic model,

P (Y = 1|Z = 0) = exp (β0)
/

[1 + exp (β0)]

is the gender-labeling error rate in females and

P (Y = 0|Z = 1) = 1
/

[1 + exp (β0 + β1)]

is the gender-labeling error rate in males.
We used these gender-labeling error rates and Bayes rule to

estimate how well the gender labeling predicts the actual gen-
der of a sample as follows. Let X be the three-category ver-
sion of the fitted probabilities of being male (i.e., probabilities
<=0.2, 0.2–0.8, and >0.8). Let S = S(X, Y ) be the stratum vari-
able for the second-phase sampling of the true gender Z, with
S = i, for i = 1, 2, . . ., 6. We estimated P(Z |Y ) using the equa-
tion P(Z |Y ) = P(Y |Z )*P(Z )/P(Y ), where P(Z ) was calculated
as P(Z |S = 1)P(S = 1) + P(Z |S = 2)P(S = 2) + . . . + P(Z |S = 6)
P(S = 6); and P(Y |Z ) is the gender-labeling error rate calculated
above. The stratum-specific conditional probabilities P(Z |S = i)
were estimated from the 47 samples in the second phase of the
study which had information on true gender. The stratum-specific
probabilities P(S) and the gender label probabilities P(Y ) were
estimated from all 1210 samples in the study.

SUMMARY OF STATISTICAL METHODS AND THEIR GOALS
In summary, we apply a multiple linear regression model to adjust
X-chromosome intensity for sample characteristics such as auto-
somal intensity, quality of the sample and sample concentrations.
We then use these adjusted X-chromosome intensities along with
the proportions of heterozygous X-chromosome SNPs as predic-
tors in a generalized additive logistic model of labeled gender.
The resulting gender predictions along with the labeled gen-
der define the sampling strata for a two-phase sampling design.
After balanced sampling of true gender from the strata, we apply
inverse-probability weighting to estimate the accuracy of the gen-
der prediction algorithm and the gender-labeling error rates for
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the entire study. By applying Bayes rule, the gender-labeling error
rates can be used to estimate how well the gender-labeling predicts
the true gender of a sample.

OTHER GENDER PREDICTION METHODS
We compared our approach for predicting gender-labeling errors,
with an arbitrary probability threshold of 0.5, to the approaches
implemented in PLINK (Purcell et al., 2007), Golden Helix
(Bozeman, MT, USA, www.goldenhelix) and PLATO (Grady et al.,
2010). Briefly, the heterozygosity-based approach in PLINK uses
X-chromosome genotypes to calculate a moment estimator of
the inbreeding coefficient F and makes a male call if F > 0.8
and a female call if F < 0.2. We took PLINK predicted gender
errors to be samples whose call disagrees with their gender label-
ing. The heterozygosity-based approach in Golden Helix uses
non-missing X-chromosome SNPs to predict gender errors in
female samples with heterozygosity values <0.1 and in male-
labeled samples with heterozygosity values >0.1. In the absence of
Y-chromosome markers, the intensity-based approach in Golden
Helix uses the average of log intensity ratios (logR) for a sample
across X-chromosome SNPs. The measurement logR is commonly
used to determine copy number status and can be calculated
by log2(observed intensity/reference intensity), where reference
intensity is calculated using a reference panel of mixed gen-
der to determine the normal baseline intensity expected at each
marker. For example, because females have two copies of the X-
chromosome, their mean logR values should be greater than zero
whereas males, with only one copy, should have mean logR val-
ues less than zero. Thus, Golden Helix flags female-labeled samples
with mean logR less than zero and male-labeled samples with mean
logR greater than zero. PLATO flags male-labeled samples with
heterozygosity values greater than a user-specified upper thresh-
old or less than a user-specified lower threshold. We took PLATO
predicted gender errors to be male-labeled samples with positive
heterozygosity (i.e., upper threshold 0).

RESULTS
PREDICTION OF GENDER-LABELING ERRORS
We started by considering the normalized genotyping intensity
(R value) available in the raw data of the Illumina GoldenGate
genotype data set. For a given sample, we focused only on suc-
cessfully called X-chromosome SNPs and defined the mean X-
intensity and proportion of heterozygous X-chromosome SNPs
to be, respectively, the sample’s average genotype intensity and
the proportion of heterozygous calls in these SNPs. As males are
hemizygous at X-chromosome SNPs, they are not expected to be
called as heterozygotes, and the intensities (R values) of their
X-chromosome SNPs should be about half of those of females.
These observations motivate a simple plot of the sample mean X-
intensity versus proportion of heterozygous X-chromosome SNPs
for all the samples. Ideally, one should see two separate clusters
for males and females. However, this simple plot ignores the noise
in the intensity measurements that is introduced by the quality of
the sample and its concentration on the genotyping plate. Better
clustering of male and female samples was obtained by statistically
adjusting the sample mean X-intensity for variables related to the
quality and concentration of the sample.

The adjusted sample mean X-intensity plotted against the
proportion of heterozygous X-chromosome SNPs is shown in
Figure 1. In the figure, data forms into vertical bars because,
with nine X-chromosome SNPs, a given sample may be heterozy-
gous at zero, one, two, and theoretically up to nine SNPs. We see
only eight main vertical bars because, for the majority of samples
with genotypes for all nine SNPs, none were heterozygous at eight
or more. Intermediate heterozygosities result from samples with
genotypes available for fewer than nine SNPs. From this plot, it is
evident that a small number of labeled males have heterozygous
calls. Such calls could be the result of genotyping error or sample
switches involving different genders. For the most part, however,
the female- and male-labeled samples are clearly separated. We
therefore used the adjusted mean X-intensity and the proportion
of heterozygous X-chromosome SNPs as predictor variables in
subsequent model fitting. The fitted model gives a predicted prob-
ability of being labeled male. In our study, the majority of labeled
males had probabilities >0.8, whereas most labeled females had
probabilities <=0.2.

VALIDATING PREDICTED GENDER-LABELING ERRORS
PCR assays were used to check the samples flagged with poten-
tial gender-labeling errors. Samples flagged included those with

FIGURE 1 | Adjusted X-chromosome intensity versus proportion of

heterozygous X-chromosome SNPs. Data forms into vertical bars
because, with nine X-chromosome SNPs, a given sample may be
heterozygous at zero, one, two, and theoretically up to nine SNPs. We see
only eight main vertical bars because no samples with genotypes for all
nine SNPs were heterozygous for eight or more SNPs. Intermediate
heterozygosities result from samples with genotypes for fewer than nine
SNPs. X-chromosome intensity values on the vertical axis have been
adjusted for the sample mean GenCall score and sample mean intensity
across autosomal SNPs, as described in the text.
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intermediate fitted probabilities of being labeled male (0.2–0.8),
female-labeled samples with high fitted probabilities of being
labeled male (0.8–1), and male-labeled samples with low fitted
probabilities of being labeled male (0–0.2). Results for samples
flagged for potential gender-labeling errors are given in Tables 3
and 4 for male-labeled and female-labeled samples, respectively.
Table 3 includes male-labeled samples not flagged by our approach
that would have been flagged by heterozygosity-based approaches
because they are heterozygous at least one X-chromosome SNP.
However, to conserve space and effort, Table 4 excludes the
64 female-labeled samples not flagged by our approach that
would have been flagged by heterozygosity-based approaches

because they are homozygous at all nine X-chromosome SNPs.
Based on estimated haplotype frequencies, we expect about 60
female samples to have X-chromosome heterozygosity values
of zero.

In general, the approach marks female-labeled samples with
low intensities and homozygosity and predicts them to be male,
whereas male-labeled samples with either heterozygous calls or
high intensities are predicted to be female. Figure 2 shows the
plot of adjusted mean X-intensity versus proportion of heterozy-
gous X-chromosome SNPs for labeled males and labeled females,
respectively, with different symbols used for predicted gender
errors in labeled males and labeled females.

Table 3 | Summary of results for male-labeled samples flagged by our approach or by positive heterozygosity values.

Sample No. het No. called Heterozygosity Prob. Proposed PCR

X-chromosome SNPs X-chromosome SNPs only1 male2 method3 result

1 3 9 F 0.04 F F

2 1 9 F 0.06 F F

3 3 9 F 0.07 F U*

4 5 9 F 0.09 F F

5 5 9 F 0.11 F F

6 1 9 F 0.12 F F

7 0 9 M 0.33 F M

8 0 9 M 0.76 M U

9 0 9 M 0.78 M U

10 1 9 F 1 M M

11 1 9 F 1 M M

12 1 9 F 1 M M

1Gender inferred based only on presence of any heterozygous genotypes.
2Fitted probability of being labeled male under the proposed method.
3Gender call based on an arbitrary threshold of 0.5 for fitted probability of being labeled male.

*U indicates sample could not be checked due to low DNA amounts.

Table 4 | Summary of results for female-labeled samples flagged by our approach.

Sample No. het X-chromosome SNPs No. called X-chromosome SNPs Prob. male1 Proposed method2 PCR result

13 0 8 0.49 F F

14 0 9 0.91 M U*

15 0 9 0.97 M M†

16 0 9 0.92 M M

17 0 9 0.92 M M

18 0 9 0.93 M M

19 0 9 0.94 M M

20 0 9 0.94 M M

21 0 9 0.98 M M

22 0 9 0.99 M M

23 0 9 0.99 M M

24 0 9 0.97 M M†

25 0 7 0.93 M U

1Fitted probability of being labeled male under the proposed method.
2Gender call based on an arbitrary threshold of 0.5 for fitted probability of being labeled male.
†Confirmed as sample errors involving switched genders, likely due to sample switches.

*U indicates sample could not be checked due to low DNA amounts.
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Based on an arbitrary threshold of 0.5 for the fitted probabil-
ity of being labeled male, we predicted seven gender errors in
male-labeled samples, ascertained true gender for six of these
seven predicted gender errors and confirmed five of them as
true females. In the male-labeled samples, the error discovery
rate, defined as the number of confirmed gender errors in the
flagged samples divided by the number of flagged samples whose
true gender was ascertained, is thus 5/6 = 83.3%. The standard
approach to predicting male-labeled gender errors on the basis
of one or more heterozygous genotypes at X-chromosome SNPs
has an error discovery rate of 5/8 = 62.5%. We also predicted 12
gender errors in female-labeled samples based on the same gender-
calling threshold of 0.5. We were able to ascertain true gender for
10 of these 12 predicted gender errors and all 10 were confirmed
as males. Eight of these 10 confirmed male samples were iden-
tified through Y-chromosome PCR assays and two were known
switches with samples of a different gender during processing or
extraction. In female-labeled samples, the error discovery rate was
thus 100%.

The estimated AUC of the gender prediction procedure,
based on second-phase samples of true gender for either 47 or
190 samples, was essentially unity, representing essentially ideal
predictions.

ESTIMATING GENDER ERROR RATES
In what follows, all probabilities are with respect to the population
of 1210 genomic DNA samples from whole blood or lymphocytes
with DNA on the genotyping plates. We emphasize that the 47 sam-
ples taken in the second phase are not random samples from this
reference population. Rather, we have used biased sampling with
preference going to certain strata defined on the basis of labeled

gender and the predicted probability of being male, as indicated
in Table 2.

Based on the true gender observed for the 47 biased sam-
ples in the second phase, we estimated the conditional prob-
abilities of incorrect gender labeling to be P(labeled male|true
female) = 0.011 (approximate 95% CI 0.005–0.025) and P(labeled
female|true male) = 0.018 (95% CI 0.010–0.032). Note that
gender-labeling error rates will tend to be lower than the laboratory
error rates, as mislabeling of same-sex samples will go undetected.
We also estimated the predictive probabilities of gender labeling to
be P(true female|labeled female) = 0.998 and P(true male|labeled
male) = 0.991.

EFFICIENCY OF THE SAMPLING DESIGN
To compare the efficiency of the two-phase design relative to a
naive design that verified the true gender for all the samples,
we estimated the proportion of total variation in the true gen-
der captured by the sampling strata. As shown in Table 2, within
each sampling stratum, there was no variation in the true gender.
Hence all variation in the observed values of true gender can be
explained by the sampling strata, and the two-phase design should
be efficient. To verify this, we applied the same approach to all
190 samples with true gender assigned (Table 1), and obtained the
same point and interval estimates of the error rates and the same
true gender prediction probabilities as with the 47 second-phase
samples. These results suggest that the design is highly efficient
and that there is little to be gained by testing additional samples
by PCR.

COMPARISON TO OTHER GENDER PREDICTION METHODS
There were 77 female-labeled samples that were homozy-
gous at all non-missing X-chromosome SNPs. All 77 of these

FIGURE 2 | Plot of gender-labeling errors predicted by our

approach. Subjects in the left panel are labeled male samples;
“predfemale”: predicted probability of being male less than 0.5. Subjects
in the right panel are labeled female samples; “predmale”: predicted

probability of being male greater than or equal to 0.5. X-chromosome
intensity values on the vertical axes have been adjusted for the sample mean
GenCall score and sample mean intensity across autosomal SNPs, as
described in the text.
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female-labeled samples were flagged by PLINK and the Golden
Helix heterozygosity-based approach. PLATO does not consider
female-labeled samples when checking for potential gender errors.
There were nine male-labeled samples that were heterozygous at
any X-chromosome SNP. All nine of these male-labeled samples
were flagged by the Golden Helix heterozygosity-based approach
and by PLATO. There were 15 confirmed gender errors, 10 in
labeled females and 5 in labeled males. In the female-labeled sam-
ples, our approach, PLINK, and the Golden Helix heterozygosity-
based approach identified 10/10 and the Golden Helix intensity-
based approach identified 8/10 of the confirmed errors. In male-
labeled samples, our approach, PLATO and the Golden Helix
heterozygosity-based approach identified 5/5; the Golden Helix
intensity-based approach identified 4/5 and PLINK identified 3/5
of the confirmed errors. Thus, our approach and the Golden Helix
heterozygosity-based approach were able to identify all confirmed
errors. As summarized in Table 5, our approach flagged far fewer
female-labeled samples than the other approaches and, as a conse-
quence, its error discovery rate was higher in labeled females. All
approaches flagged a comparable number of male-labeled sam-
ples, except for the Golden Helix intensity-based approach which
flagged far more. Of the methods considered, overall, our approach
had the lowest number of false-positive results.

DISCUSSION
We have described a statistical approach to predict gender-
labeling errors and estimate gender-labeling error rates in
candidate-gene association studies when Y-chromosome data
are unavailable, but some X-chromosome SNPs are in the
genotyping set. In the prediction step of our approach, we iden-
tify potential gender-labeling errors by using the genotypes of
the X-chromosome SNPs and their intensities, normalized to the
intensities of the autosomal SNP genotypes of the same sample.
In the subsequent estimation step, we use the samples identified
as potential gender-labeling errors, along with a small proportion
of the samples not suspected to have gender-labeling errors, to
estimate the gender-labeling error rates for the entire study. The
strategic sampling in the second step enables efficient estimation

of the gender-labeling error rates without having to validate the
true gender for all study samples. Taken together, these two steps
provide a useful tool for laboratory-processing quality assurance.

By incorporating information about the intensity of X-
chromosome SNPs, the approach adds value to standard methods
of error prediction based solely on heterozygosity. To our
knowledge, no published methods formalize a framework in which
to use the X-chromosome intensity values adjusted for autosomal
intensity, as well as heterozygosity. The proposed approach works
well in both male- and female-labeled samples from our candidate-
gene association study. The results helped reveal a small number
of sample processing issues.

We explored alternate models for predicting gender-labeling
errors. For instance, we tried using both the GenTrain score (a
genotype clustering score for Illumina GoldenGate genotyping
data) and the proportion of called X-chromosome SNPs to con-
struct two sets of weights defining the proportion of heterozygous
X-chromosome SNPs. We also tried a third predictive model based
on the number rather than the proportion of heterozygous X-
chromosome SNPs. All three of these alternate models led to the
same results as the proposed approach. Finally, we tried fitting a
model using binary indicators of heterozygous calls for each of the
nine X-chromosome SNPs; the use of this model did not improve
predictions relative to the proposed approach. Though each of
these alternate models for predicting gender-labeling errors gave
similar results with our data on nine SNPs, there may have been dif-
ferences between the approaches had more X-chromosome SNPs
been included.

We have also shown how the predictions for gender mislabel-
ing can be used to estimate the gender-labeling error rates for
the entire study in a cost–effective manner. Relative to exhaustive
validation of gender, the proposed estimation approach costs
considerably less and yet loses little precision, provided that
predictions correlate well with true gender in both male- and
female-labeled samples (e.g., Reilly and Pepe, 1995). Efficiency
is achieved by strategic follow up of problematic samples iden-
tified in the prediction step. By checking only 4% of the sam-
ples, we were able to estimate the gender-labeling error rates

Table 5 | Method-specific numbers of flagged samples (flag) with true gender ascertained (gen), numbers of confirmed gender errors (tf = true

female, tm = true male) among these, and error discovery rate (edr).

Method Labeled gender

Female Male

flag gen tm edr flag gen tf edr

Our method 12 10 10 1.000 7 6 5 0.833

PLINK 77 18 10 0.556 4 3 3 1.000

Golden Helix-H* 77 18 10 0.556 9 8 5 0.625

Golden Helix-I† 103 15 8 0.533 115 29 4 0.138

PLATO‡ – – – – 9 8 5 0.625

*Golden Helix heterozygosity-based approach.
†Golden Helix intensity-based approach.
‡PLATO does not consider female-labeled samples when checking for potential gender errors.
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for the whole study, enabling substantial savings in time and
laboratory work.

With nine X-chromosome SNPs, we observed improved preci-
sion to predict gender errors from incorporating intensity infor-
mation relative to approaches based on heterozygosity alone. In
light of this, it is natural to ask the general question of how
many markers are needed before heterozygosity-based methods
catch up in precision. The answer depends on factors such as the
variability of intensities at each X-chromosome SNP, the geno-
typing error rates at each X-chromosome SNP, their minor allele
frequencies (MAFs) and their dependence structure in the pop-
ulation. We therefore consider the related but simpler question
of how many SNPs would be required to clearly separate the
547 female samples and 663 male samples based on heterozy-
gosity alone. For this optimal number of SNPs, incorporating
additional intensity information will be pointless. To address this
simpler question, we predict a gender error whenever a sample’s
heterozygosity is more likely under the opposite gender. To ren-
der calculations tractable, we assume X-chromosome SNPs with
independent genotypes, common MAF p and common genotyp-
ing error rate ε = 1/1000. Assuming independent and identically
distributed genotyping errors at each SNP, such that heterozy-
gotes are equally likely to be miscalled as either homozygote
but homozygotes are miscalled only as heterozygotes, the num-
ber of heterozygous genotypes in either gender is a binomial
random variable with number of trials equal to the number of
X-chromosome SNPs and success probability equal to ε in males
and 2p(1 − p) + ε(1 − 2p)2 in females. We define female and male
samples to be clearly separated if the expected numbers of false
predictions in 547 females and in 663 males are both no more than
one. As possible values for p, we consider the minimum (0.060),
median (0.257), and maximum (0.418) MAF of X-chromosome
SNPs in our study. In this idealized scenario, 88, 19, and 14
SNPs, respectively, are required to achieve separation. However,
it should be noted that these calculations ignore the dependence
between SNPs in our data, which would increase the number of
SNPs required.

The methods we propose are intended for research studies
with a reasonable quality of DNA sources, genotyped under gen-
eral laboratory conditions. The methods would not be suitable
for forensic applications involving DNA sources of very limited
quantity and quality. When applied to data from candidate-gene
association studies, our methods offer several advantages, includ-
ing ease of implementation and speed. Gender-labeling errors
can be predicted with existing custom-designed genotyping sets,
provided that X-chromosome SNPs are in the candidate genes.
In our study, we were able to accurately predict several sample
switches with data from only nine X-chromosome SNPs in two
candidate genes. This accuracy was achieved in spite of depen-
dence in the six X-chromosome SNPs of one of the candidate
genes (with 0.46≤|r |≤0.80 for most SNPs). For the prediction
step, no additional laboratory experiments are required. Crucially,
our approach can correct for the variable performance of different
sample types, in this case whether DNA was extracted from blood
or from lymphocytes. It allows sample processing issues to quickly
come to the surface and, if necessary, be addressed by changes in
protocol, and allows erroneous samples from gender switches to

be identified and excluded from experiments. Additionally, our
approach can be used across genotyping batches, throughout the
process of sample collection and DNA extraction, permitting such
issues to be identified in time for changes to be implemented or
subjects to be re-sampled. Unlike other methods, this approach
does not depend on the use of a single set of primers for PCR,
and is thus unaffected by rare mutations in primer binding sites.
Should a variant exist on the custom genotyping probe binding
site, the genotyping call rate for that probe would drop if the vari-
ant is common enough, and the SNP would thus be excluded from
the analysis in the quality control steps. Furthermore, our method
relies on metrics collected across all probes on the X-chromosome
and is thus unlikely to be affected by a single rare mutation. In
theory, the approach to identifying potential gender errors could
be extended to detect X-chromosome trisomies (XXY and XXX),
although it would not work on sex-reversal syndromes (XY females
or XX males). In this investigation, however, we have not pursued
the issue of X-chromosome trisomies.

One limitation of our approach to predicting gender-labeling
errors relates to copy number variants (CNVs) and large-scale
duplications and deletions, which are proving to be more common
than previously believed (Iafrate et al., 2004). Next-generation
sequencing efforts recently demonstrated duplicated or deleted
genomic regions in some human populations relative to others
(Li et al., 2010). When there are only a few candidate genes on the
X-chromosome, our method and any other that relies on heterozy-
gosity or intensity can be vulnerable to bias from duplications and
deletion events on the X-chromosome. Thus, our method would
not be appropriate for DNA from cell lines, which are known to be
particularly susceptible to such alterations. That being said, qual-
ity control protocols that remove SNPs with genotype clustering
suggestive of CNVs can help mitigate the effects of such events.
However, the possibility that X-chromosome SNPs could lie in
deletions or duplications should be kept in mind when applying
this or related approaches to predict gender mislabeling, particu-
larly when few X-chromosome SNPs are used. To assess poten-
tial bias arising from inter-population variation in duplicated
or deleted regions of the X-chromosome, we tested whether the
gender-mislabeling predictions were associated with self-reported
ethnicity of samples; our results were negative (p = 0.72 based on
an exact test of independence).

In conclusion, we present an approach that predicts gender-
mislabeling arising in plating or sample processing, whether at
the collection stage, DNA extraction stage, or storage. We also
show how the predictions can be used to estimate the laboratory
rates of gender mislabeling in a cost–effective way. Our meth-
ods require only a small number of X-chromosome SNPs (we
used only nine), which could be part of a candidate gene on the
X-chromosome. However, as the number of included SNPs on
the X-chromosome decreases, the prediction approach potentially
becomes more vulnerable to bias from duplication and deletion
events on the X-chromosome.

ACKNOWLEDGMENTS
Thanks to Carolyn Brown for helpful discussions about molecular
sexing of samples, and to Brad McNeney for helpful discussions
about two-phase sampling designs. The non-Hodgkin lymphoma

www.frontiersin.org June 2011 | Volume 2 | Article 31 | 9

www.frontiersin.org
http://www.frontiersin.org/statistical_genetics_and_methodology/archive


Qu et al. Prediction of gender-labeling errors

study (John J. Spinelli, Angela Brooks-Wilson) was supported by
grants from the Canadian Cancer Society and the Canadian Insti-
tutes for Health Research (CIHR). Conghui Qu and Jeong Eun
Min were supported by the Mathematics of Information Tech-
nology and Complex Systems (MITACS), Canadian Networks
of Centres of Excellence and by the Natural Sciences and Engi-
neering Council of Canada; Johanna M. Schuetz was funded by
scholarships from the Alberta Heritage Foundation for Medical
Research and CIHR. Jinko Graham, Denise Daley and Angela
Brooks-Wilson hold Scholar or Senior Scholar Awards from the
Michael Smith Foundation for Health Research. Denise Daley is a
Canada Research Chair.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at
http://www.frontiersin.org/statistical_genetics_and_methodology
/10.3389/fgene.2011.00031/abstract

Data Sheet 1 | A brief description of the quality control steps
applied to our data.

Data Sheet 2 | This R script is provided to apply the approach
in the manuscript for predicting gender-labeling errors and
estimating gender error rates.

Data Sheet 3 | This simulated data file can be used with
the R script in Data Sheet 2. Readers can apply the script
to the data in this file to see how we identified potential
gender-labeling errors. The file contains information on the
ID, labeled gender, average adjusted X-chromosome intensity,
and proportion of heterozygous X-chromosome SNPs for 1210
simulated samples.

Data Sheet 4 | This simulated data file can be used with the R
script in Data Sheet 2. Readers can apply the script to the data in
this file to see how we estimated gender-labeling error rates for
the study. The file contains information on the ID and true gender
assignments for 54 simulated samples.
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