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Abstract
Despite advances in automatic speech recognition (ASR), human input is still essential for producing research-grade
segmentations of speech data. Conventional approaches to manual segmentation are very labor-intensive. We introduce
POnSS, a browser-based system that is specialized for the task of segmenting the onsets and offsets of words, which
combines aspects of ASR with limited human input. In developing POnSS, we identified several sub-tasks of segmentation,
and implemented each of these as separate interfaces for the annotators to interact with to streamline their task as much
as possible. We evaluated segmentations made with POnSS against a baseline of segmentations of the same data made
conventionally in Praat. We observed that POnSS achieved comparable reliability to segmentation using Praat, but required
23% less annotator time investment. Because of its greater efficiency without sacrificing reliability, POnSS represents a
distinct methodological advance for the segmentation of speech data.

Keywords Speech data · Segmentation

Introduction

In many speech-based disciplines, the availability of ade-
quately segmented and transcribed speech corpora is essential
for designing and benchmarking computational models of
speech processing and for sharpening theories of speech pro-
duction and perception. Many of the speech databases avail-
able to date(e.g., via, The Language Archive, 2019; Euro-
pean Language Resources Association, 2019; Linguistic
Data Consortium, 2019) have been (at least partly) enriched
with a verbatim word-level and/or a phonetic transcription.

Speech transcription concerns the generation of a
verbatim textual record of speech. The related process of
segmentation concerns additionally determining when the
transcribed words and segments occur in a speech recording.
This article primarily addresses segmentation. Constructing
transcriptions and segmentations typically involves three
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challenges. The first challenge is to take into account the
purpose of the segmentation for determining the desired
granularity level for the segmentation units. Due to fine
phonetic details (Hawkins, 2003) and reduction phenomena
(Ernestus & Warner, 2011), word-based transcriptions are
much easier and faster to construct than high-quality finer-
grained faithful phonetic segmentations. Rough, errorful
transcription may be sufficient for text query-based
services, and may be quickly constructed. Segmentation
of varying degrees of accuracy may be required for rich
diarization of meetings, or for the adaptation of acoustic
models in automatic speech recognition (ASR). Language
research represents a highly niche segmentation usage case
with its own specific requirements and constraints.

The second challenge is the construction of the segmen-
tation itself. This is not a trivial task. One may perform
segmentation by hand or apply an automatic speech seg-
mentation system, or a combination of these. Over the last
decades, several tools have been developed to ease this
task (see, e.g., van Bael et al., 2007; Lecouteux et al.,
2012). In general, there is a clear trade-off between the
invested time on the one hand and the quality of the resulting
segmentation on the other (Rietveld et al., 2004).

The third challenge is the validation of the segmenta-
tion. Manual or automatic segmentations may be validated
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in terms of their resemblance to each other, or to another
“expert-based” hand-crafted reference segmentation. Alter-
natively, they may be assessed by using e.g., the inter-rater
or inter-system agreement as objective function. However,
since symbolic segmentation cannot fully represent the sub-
tle phonetic details in speech, the status of a “reference”
segmentation as a single reference for the quality of other
segmentations might be questionable a priori. In addition,
the validation procedure will largely depend on the purpose.
For example, verbatim “summary” transcriptions of meet-
ings may be of sufficient quality to serve a service based on
text queries, but still far from sufficient for the development
or adaptation of acoustic models in ASR systems.

In this paper, we focus on the construction of segmenta-
tions at the word level, given a large collection of speech
recordings. Several linguistic research tools are available for
semi-manually segmenting, annotating, or labeling speech
corpora. Tools may combine multiple functionalities such as
speech recognition, speaker identification, and diarization
to provide real-time and/or offline transcription of audio
recorded in various conditions. Based on ASR approaches
(e.g., Young et al., 2006; Povey et al. 2011), segmenta-
tion and transcription can be done automatically or semi-
automatically. We will use the term “forced alignment” to
refer to automatic segmentation of speech data using ASR
where a transcription already exists, and the term “recog-
nition” to refer to generation of a segmentation without a
pre-existing transcription.

A number of pre-built, pre-trained forced alignment sys-
tems are available. The dominant systems are web(MAUS)
(Schiel, 2015), FAVE/P2FA (Yuan & Liberman, 2008),
and ProsodyLab-Aligner (Gorman et al., 2011), which are
underlyingly based on the HTK ASR tooklit (Young et al.
2006) and MFA (McAuliffe et al., 2017), which is under-
lyingly based on the Kaldi ASR toolkit (Povey et al.,
2011). HTK is based on a Gaussian mixture model—hidden
Markov model acoustic models, while Kaldi is based on
deep-learning networks instead of Gaussian mixtures.

Further systems aim to improve the usability of forced
alignment, for instance by integration with Praat (the
EasyAlign system, Goldman, 2011); focus on specific usage
cases; or on less well-resourced languages. Braunschweiler
et al. (2010) present a “lightly supervised forced aligner”
where the forced alignment is done by using the transcrip-
tions that are output from an automatic recognition step
to be able to segment very long recordings, such as read
speech gathered from audiobook recordings. (Stan et al.,
2016) propose a system consisting of a Gaussian mixture
model-based voice activity detector and a grapheme-based
speech aligner, which they propose as particularly suit-
able for working with lesser-resourced languages. SPPAS is
an alignment system that focuses on accurate detection of

non-speech components of the signal, such as laughter and
backchannel noises (Bigi & Meunier, 2018).

A potentially important facet of the reliability and robust-
ness of forced alignment systems is how successfully acous-
tic models or features are adapted to the idiosyncrasies
of individual speakers. This can be achieved by mak-
ing use of i-vectors, maximum likelihood linear transform
(MLLT), and linear discriminant analysis (LDA), possible
in e.g., MFA (McAuliffe et al., 2017). Another important
concern is the handling of out-of-vocabulary words. Words
that appear in the system’s dictionary can be used in the
transcription, but out-of-vocabulary words must first be pro-
cessed by, e.g., grapheme-to-phoneme systems before they
can be added to the aligner’s dictionary. In order to mitigate
this out-of-vocabulary issue, the pronunciation dictionaries
in PLA and FAVE were combined into one Arpabet-based
dictionary, which was used across all three aligners for
training (MFA, PLA) and alignment (MFA, PLA, FAVE).

Despite the variation in modeling techniques underlying
these automatic forced alignment systems, and the various
special-use systems, the quality of automatically generated
segmentations still unavoidably depends on the acoustic
quality of the recordings (presence of background noise,
interference from speakers, cross-talk, echo etc.) and the
degree of match between input speech signal and the speech
material used for training the ASR (dialects, accents, age,
speaking style, mood, etc.).

The recent advent of deep-learning techniques, together
with improved computational power and availability of data,
has lead to significant improvements in the performance
of ASR systems. Despite these substantial improvements
in their quality and practicality, fully automatic approaches
to the segmentation of speech data for research purposes
is still faced with challenging issues (Hannun et al.,
2014), especially for under-represented languages (e.g.,
Bhati et al., 2019) and in case of more complex types
of speech (pathological speech, multi-speaker recordings,
recordings in adverse listening conditions, disfluent, highly
reduced spontaneous speech). The aim of segmentation
is often different in different research domains: the goals
of the researcher in segmenting a speech dataset (precise
information about the timing of features of speech) is
somewhat (but increasingly) at odds with the big-data
oriented requirements of modern commercial ASR research
(Jurafsky & Martin, 2008; for zero-resourced languages
there are alternatives, see e.g., Prasad et al., 2019).
Furthermore, as long as completely automatic approaches
are unable to deliver the reliability that researchers
seek, human intervention will remain essential. A serious
drawback of human intervention is its repetitive and
time consuming character, putting it at risk of poor task
execution, and therefore unreliable data.
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The manual annotation of speech data is performed with
specialized software. Several tools (e.g., the DART tool,
Weisser, 2016) provide multiple interactive annotation func-
tions, and allow special tools for those features that require
post-processing. Praat (Boersma & Weenink, 2019) allows
the user to manually segment and transcribe speech cor-
pora using different tiers. EMU (Winkelmann et al., 2017)
offers similar segmentation and transcribing possibilities as
Praat, but in a web interface and in combination with a
sophisticated database to store and manage speech data,
segmentations and annotations. Despite the availability of
these tools, the creation and checking of a segmented and
transcribed speech corpus is still a considerable effort.

This study

In this article, we discuss POnSS (Pipeline for Online
Speech Segmentation), a system we have created and used
for segmentation work for a number of recent studies
involving large-scale segmentation (Rodd et al., 2019a,
2020, under review). With POnSS, we sought to improve
the efficiency of the word segmentation task for human
annotators. The aim of POnSS differs from, for instance,
EMU (Winkelmann et al., 2017) in that we focus on
optimizing a single task that takes a large amount of
annotator time, rather than developing a fully featured
speech data management system.

POnSS achieves its efficiency through combining forced
alignment with manual checks and correction, an easy-
to-use browser interface and, most innovatively, through

subdividing the manual component of the overall task into
subtasks and distributing them at the level of individual
word recordings over annotators. To our knowledge, this
task subdivision approach has not been tried before. In
constructing POnSS, aside from segmenting our own
datasets, our aim was to provide a practical implementation
of a distributed, subdivided segmentation system, as well
as to evaluate the reliability and efficiency of such an
approach. We perform this evaluation in comparison to
a conventional segmentation of the same data, performed
using TextGrids in the phonetics software Praat (Boersma &
Weenink, 2019), after forced-alignment bootstrapping.

The data that we use in the evaluation of POnSS come
from Experiment 2 of the PiNCeR corpus (Rodd et al.,
2019a). In that experiment, 13 speakers had to name pre-
familiarized Dutch (C)CV.CVC words (e.g., snavel [snavel]
“beak”) from line drawings displayed in groups of eight
arranged on a “clock face”. A cursor moved clockwise from
picture to picture to indicate at which of three trained rates
(fast, medium, and slow) participants were required to name
the pictures. Each trial of the experiment was recorded
separately. The task was relatively difficult, meaning that
speakers omitted or mispronounced words in many trials.
On average, trials contained 6.39 correctly pronounced
words that were ultimately analyzed, the modal number
of included words was seven. Applying POnSS to the
PiNCeR data provides a test case where the words to be
produced were known in advance, but not reliably present,
a particularly difficult case for forced alignment. This is in
contrast to data where it is not reliably known what will be

Fig. 1 A diagrammatic representation of the annotation process. See the text for full details
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said. POnSS can be useful for this latter type as well, but
with a few adjustments, as explained below.

POnSS

POnSS is a multi-step acoustic analysis and forced
alignment pipeline to segment speech materials, intended
to be used by a panel of phonetically trained annotators,
with each annotator seeing a partially overlapping part of
the dataset. This pipeline is illustrated diagrammatically in
Fig. 1. POnSS divides the work of speech segmentation
into three broad phases; orthographic transcript preparation,
triage, and retrimming, each stage combining both manual
and automatic processes. The manual processes are
standalone, and each unit of work is small, meaning that
annotators can themselves choose which of the tasks they
do, and for how long, as long as there are materials available
to be worked on.

Phase 1: orthographic transcript preparation

The first phase of POnSS is the preparation of an
orthographic transcription. POnSS includes both a manual
procedure for when the exact word sequence is not known,
and a fully automatic procedure for when an expected trial
transcription is known beforehand.

Manual transcription

For datasets and experiments where speakers may be
particularly errorful in their speech, or where no specific
expected transcription exists, POnSS includes a module that
facilitates the full manual word-level transcription of the
speech data. This approach was used to transcribe the data
for (Rodd et al., under review), where the vocabulary of
possible words was known, but we expected the speakers to
make many errors given the longer trials. We expected these

frequent errors to make a transcription based on the picture
sequence insufficiently reliable for forced alignment. First,
silence/pause detection divides the trial recordings into
audio chunks with a duration of minimally 5 s and
maximally 30 s. These chunks are inserted into the database.

Annotators use a browser interface (Fig. 2, left panel)
to transcribe each chunk individually, orthographically.
Annotators are asked to use real (canonical) word forms,
also in the cases where speakers use reduced pronunciation
variants. When the experiment involves a constrained
vocabulary of words that can appear, the interface is able to
suggest word completions as annotators type, which reduces
the number of required keystrokes.

Harmonicity-aided automatic procedure

For datasets where the expected ordering of words is known,
POnSS offers a fully automatic transcription generation
procedure. This begins with the analysis of the harmonicity
(autocorrelation method, default settings) of the trial
recordings, using Praat (Boersma & Weenink, 2019). In
the analysis of the PiNCeR dataset, each harmonicity peak
is assumed to correspond to one vowel in the recording,
allowing the number of disyllabic words actually produced
to be estimated. This may serve as a check for the degree
of match between audio and prompted text. In the PiNCeR
dataset, in which speakers were asked to pronounce eight
disyllabic words in a sequence at varying speaking rates,
we observed that when speakers produced fewer than the
full eight words, words occurring later in the sequence were
much more frequently omitted than earlier ones. Based on
this observation, the peak counts were used to produce
candidate orthographic transcriptions for use in the forced
alignment procedure. In the case of the PiNCeR data,
if 15 or 16 harmonicity peaks were detected (indicating
equally many syllables), all eight words were included in the
transcription. If 13 or 14 peaks were detected, the first seven
words were included, and so on. This is done with the aim of

Fig. 2 Screenshots of the browser interfaces for the orthographic transcription (left), triage (middle), and retrimming tasks (right) in POnSS
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achieving better forced alignment results than simply forced
aligning against the orthographic transcription including all
eight words would do.

Forced alignment

Once an orthographic transcription is available of a trial or
chunk, forced alignment is performed using the application
programming interface (API) to webMAUS (Schiel, 2015),
which offers good-quality forced alignment for Dutch and
other languages using HTK (Young et al. 2006). The
resulting word onsets and offsets are used to cut out the
audio chunks related to individual words from the longer
trial audio recording. We term the resulting labeled chunks
of audio “word candidates”, since we cannot yet be sure of
the accuracy of the segmentation.

Phase 2: triage

In the triage phase, annotators use a browser interface
in which each word candidate is presented individually,
displaying the transcription, waveform, and spectrogram.
The spectrogram and waveform include a “shoulder” of
adjacent material either side of the word candidate, made
translucent in the waveform (see Fig. 2, middle panel). The
audio plays immediately on loading, and can be replayed as
often as required by pressing the tab key or clicking on the
waveform. Words are selected randomly from the stack of
word candidates that still need to be triaged. The annotator’s
task is to choose from one of four options:

(1) Mark the word candidate as correctly annotated; our
annotators were instructed to decide whether the “com-
plete word is isolated, with no extraneous material
included”. (thumbs up in middle panel of Fig. 2)

(2) Mark the word candidate as requiring further attention
in the retrimming phase. (thumbs down)

(3) Discard the word candidate because it contains non-
speech, for instance environmental noise or a cough.
(double thumbs down)

(4) Mark the word candidate as requiring manual inter-
vention, for instance because a speech error (such as
a mispronunciation or naming a different word) was
made. In our case, these words were also excluded, but
POnSS can collect them for later intervention by the
researcher. (flag)

Each of these options is associated with a button in
the browser interface and associated with a specific key.
As soon as a decision is made, the interface automatically
proceeds to the next word candidate.

Depending on decisions made by the researchers, word
candidates that are marked as good are either returned to
the “stack” to be checked again until the word candidate

has been approved by a defined quorum of annotators, or
removed from the stack and enter the dataset. In our case,
we set a target that 20% of the word candidates should be
triaged more than once. Which word candidates that passed
the triage were revisited was decided randomly.

Phase 3: retrimming

In the retrimming phase, the onset and offset boundaries
of the fraction of word candidates that were marked by
annotators as requiring retrimming are adjusted. Again, a
browser interface was used (Fig. 2, right panel). The label,
spectrogram and waveform of each word candidate are
again presented on screen. This time, the annotator drags the
onset and offset boundaries with the mouse to correct the
segmentation. They have three options:

(1) Report that they successfully corrected the segmentation
(screwdriver with check mark in right panel of Fig. 2)

(2) Request that the word candidate should return, with
more margin (snapped screwdriver)

(3) Mark the word candidate as requiring manual interven-
tion, for instance because a speech error was made. In
our case, these words were also excluded, but POnSS
can collect them for later intervention by the researcher
(flag)

Depending on researcher-controlled settings, word can-
didates that annotators report as successfully corrected can
be returned to the triage “stack” to be double checked, or
they can be removed from the stack and enter the dataset.

Computational implementation

Most components of POnSS are implemented in Python as
a web application using the Django framework (Holovaty
& Kaplan-Moss, 2009). The interfaces themselves are
implemented using HTML, CSS, and JavaScript. In-
progress segmentation data, along with all meta-data about
the annotators’ interaction with the system are stored in a
PostgreSQL database.

Although POnSS at present has its own PostgreSQL back-
end, elements of the pipeline and the orthographic transcrip-
tion, triaging and retrimming task interfaces could be rel-
atively easily coupled to another speech data management
system, such as EMU-SDMS (Winkelmann et al., 2017).

All code implementing POnSS is available at https://git.
io/Jexj3, along with the Supplementary Materials.

Baselinemanual segmentationmethod

We designed a baseline task that is typical for the type
of segmentation projects that are conducted for production
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data in psycholinguistics (for instance, Zormpa et al. 2019;
Sjerps et al. 2019), combining forced-alignment and Praat
TextGrid annotation.

We selected a sample of 468 trial recordings from
Experiment 2 of the PiNCeR corpus (Rodd et al., 2019a)
that were balanced for speaking rate and speaker. These trial
recordings were forced-aligned using webMAUS (Schiel,
2015), based on the expected word productions, and Praat
TextGrids were prepared with the forced-alignment result.
A panel of seven trained annotators, all of whom were
native speakers of Dutch, were asked to correct the MAUS
transcriptions of all of the trials in the sample in Praat. They
were employed as research assistants and worked on this
project as part of their paid work. In contrast to typical
practice, where only one annotator looks at each recording,
in this case, all seven annotators looked at all 468 trials. A
script in Praat selected an audio file and the corresponding
preprocessed TextGrid and opened both. Annotators were
asked to check the boundaries for word onset and offset
and move them if necessary, and check the labeling of the
words. Annotators clicked on a “continue” button to save
the adjusted TextGrid and load data for the next trial.

Assessing the reliability of transcription data

Like all human-derived data generation processes, speech
segmentation/annotation procedures are liable to various
kinds of unreliability. Although one intuitively understands
what it means for data to be reliable, formalizing this into
a working definition is less straightforward. A frequent
definition is that reliability is “the consistency with
which a measure assesses a given trait” (e.g., Bartko &
Carpenter, 1976), framing reliability as synonymous with
reproducibility. In the domain of speech segmentation, this
definition implies we should be assessing how consistent
annotators are in the boundary time stamps that they assign.
This could be operationalized within annotators working
on the same dataset multiple times (as a kind of test-retest
reliability) or between annotators (as a kind of inter-rater
reliability).

Relatively little attention has been given to the concept
of reliability in the temporal dimension of speech data
annotation, with discussion of (un)reliability primarily
focused on the label dimension (e.g., Gut & Bayerl, 2004;
Widlöcher & Mathet, 2012; Mathet & Widlöcher 2011,
2015; Yoon et al. 2004).

Outside the speech domain, a number of inter-rater
reliability coefficients are prevalent (Popping, 1988). Many
such coefficients are constructed with the assumption of
categorically distinct data, assume precisely two raters,
or assume that all raters will look at each case. A few
coefficients are proposed as being suitable for continuous

data, notably intraclass correlation (ICC; Bartko, 1966)
and Krippendorff’s alpha (Krippendorff, 1970; Hayes
& Krippendorff, 2007). Krippendorff’s alpha is broadly
applicable to data of different forms, suitable for an arbitrary
number of annotators, and tolerant of missing data. An alpha
value of 1 indicates perfect reliability, an alpha value of 0
indicates the absence of reliability. Negative alpha values
indicate above-chance systematic disagreement. In practice,
standardized reliability coefficients have not gained traction
in speech research, and it is typical to calculate the
percentage of segmentations that fall within some tolerance
relative to another annotator’s segmentation, or relative to a
gold standard segmentation, which may be hard to motivate
(Ernestus et al., 2015; Raymond et al., 2002; Kipp et al.,
1997).

Because of its broad applicability and comparability, we
initially selected Krippendorff’s alpha as the metric to be
used to evaluate POnSS. We intended to use bootstrap re-
sampling to create variance in the coefficient, to allow
statistical comparison across samples annotated by the
baseline method and by POnSS. However, we found
disturbingly little variation in the alpha coefficients that
we calculated. To explore this systematically, we set about
exploring the properties of Krippendorff’s alpha, ICC and
“percentage within tolerance” measures in the context of the
baseline annotation data. We did this by adding or removing
noise to the individual segmented onset and offset times
in the dataset of word segmentations performed with the
baseline method, and calculating the coefficients for each
“tweaked” dataset. None of the tested coefficients were able
to distinguish between datasets that we had artificially made
more or less reliable, with Krippendorff’s alpha and ICC
essentially exhibiting no variation. These simulations are
reported in the Supplementary Materials.

Distribution fitting approach

Given our conclusion that none of the established reliability
metrics offered a sufficiently sensitive way to assess the
reliability of our speech segmentation data, we developed
an alternative approach based on distribution-fitting. This
approach aims to quantify variability by finding the
parameters of a model of the data-generating process that
explains the variability in the word boundaries resulting
from the segmentation process, rather than deriving a result
directly from the outcomes. We consider the distribution
of the differences between individual segmented onset
and offset times and the median of all onset or offset
times recorded for that same word across annotators. This
distribution, illustrated in Fig. 3a, has both a high, narrow
peak, and broad tails, and is centered around 0 ms, where
there is no difference between an individual segmentation
and the median of segmentations of the same material,
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Fig. 3 Panel a: the observed distributions of the difference between
segmented times and the median segmentation for each word, for
POnSS and manual annotation modalities (colors). Panel b: an exam-
ple of the optimized mixture-model fit (orange) to the observed

distribution of one of the samples (black line). Panel c: Solid violins
show the posteriors of Model 1 (see text) for the effect of modality on
the sigma, with median (points), 95% HDIs (highest density intervals,
thin black lines) and 66% HDIs (thick black lines)

which led us to fit it as a mixture of overlapping Gaussian
distributions.

The model that we fit consists of a mixture of three
Gaussian distributions. A Gaussian distribution is defined
by two parameters, a central tendency (or mean, μ) and
a standard deviation (σ ). The μ and σ of each Gaussian
distribution are therefore the parameters that we vary to
find the best fitting mixture of Gaussians. The narrowest
Gaussian captures the very best segmentations, where all
annotators were in full agreement. This is constrained to
σ values between 0.0001 and 2 ms. The second Gaussian
captures segmentations that deviated somewhat from the
median, constrained to σ values between 1.5 and 8 ms.
The third Gaussian captures very poor segmentations, where
boundaries were placed a long way from the median,
constrained to σ values between 2.5 and 40 ms. The
search regions overlap to keep the fitting as data-driven
as possible. All three Gaussians have their μ parameter
clamped at 0. The relative contribution of each Gaussian to
the overall mixture is also parametrized, θi is the proportion
of the mixture that is contributed by Gaussian i. Within a
mixture, the θs must sum to 1.0. In line with typical mixture-
modeling practice, we refer to each of these Gaussians as
a “component” of the overall distribution, there are thus three
components, whichwe term “narrow”, “medium” and “wide”.

Once the mixture model has been fitted to the data, the
resulting σ s, weighted by the θs, quantify the reliability
of the sampled segmentations. These could either be
summarized as a weighted sum, or used for inference in a
weighted regression, as we do in the next section.

Analysis 1: Reliability of modalities

Materials

To construct a dataset to evaluate the performance of POnSS,
we combined the data from the baseline manual segmenta-

tions described in “Baseline manual segmentation method”
and a subset of the word segmentations produced using
POnSS for Experiment 2 of the PiNCeR corpus (Rodd et al.,
2019a), namely word candidates that had been retrimmed
minimally twice (as part of random double work to facili-
tate this investigation). As far as possible, the same words
were used as in the baseline manual task. The panel of eight
paid research assistant annotators who contributed to the
POnSS data sample were similar in training and background
to those who annotated for the baseline task, and included
some of the same research assistants.

For each individual word token, the median word onset
time across all annotators and both modalities (POnSS or
baseline) was calculated. The same was done for the offset
times. For each segmentation, the difference between the
segmented onset and offset times and the medians was
calculated. A balanced sample was taken for statistical
modeling, including 300 onset segmentations and 300 offset
segmentations for each modality for each of the speaking
rates in the experimental data (fast, medium, slow). This
sample is shown in Fig. 3a. In the distribution for POnSS
(blue), there were small peaks at - 20 ms and + 20 ms. These
likely emerged because it was possible to adjust the position
of the boundaries during retrimming with the keyboard;
pressing shift+left or shift+right moved the boundary 20 ms.

Quantifying differences in reliability

To be able to identify the effects of modality and speaking
rate on the fitted sigmas, we prepared a dataset that would
allow us to predict the sigmas fitted in the Gaussian mixture
model by modality and speaking rate. We constructed
subsets of the test dataset that varied in the proportion
to which each speaking rate or modality was represented.
The proportions were predefined, at approximately 10% to
approximately 80%, in steps of 10% for the rate conditions.
For the modality conditions, we set the proportions of
manual annotation to between 20% and 80%, again in steps
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of 10%. The different levels were exhaustively combined,
meaning that 252 samples were constructed, for instance
a sample might contain segmentations that were 30%
POnSS segmentations and 70% baseline, 40% from the slow
condition, 40% medium and 20% fast; a second sample
might be 60% POnSS, 40% baseline, 50% slow, 10%
medium, and 40% fast.

Next, we performed optimization to find, for each
sample, plausible values for the parameters of the mixture
model described in “Distribution fitting approach”. The σ

of each Gaussian was a free parameter, as were the mixing
proportions of the Gaussians (θ ). The central tendency (μ)
was always 0. The quality of the fit was quantified as
the mean Kullback–Leibler divergence (KL) between the
observed and the fitted distribution, and between the fitted
distribution and the observed distribution. Optimization
was performed using the hydroPSO implementation of
the particle swarm algorithm in R (Zambrano-Bigiarini &
Rojas, 2018), which performs efficient optimization by
simulating a swarm of “particles” that attempt different
parameter values. Sixty particles were simulated for
maximally 2000 iterations. The parameter values (θ and σ s)
of all 60 particles in the final iteration of the optimization
were recorded, along with the achieved KL for that set of
parameter values. In general, good fits are achieved of the
fitted distribution to the observed distribution. A sample fit
is shown in Fig. 3b.

Inferential model

We then fitted a Bayesian regression model to quantify the
influence of using POnSS in place of the baseline task. This
model, and all further statistical models reported, were fitted
with the R package brms (Bürkner, 2018), allowing us to fit
Bayesian mixed-effects models in which the width of the fit-
ted distributions is parameterized. Rather than dealing with
binary decisions between significant and not significant,
Bayesian regression focuses on quantifying uncertainty
about the magnitude of an effect (e.g., Vasishth et al., 2018),
so no p values are reported. Instead, we report the size of
the effects we identify, in their relevant units, and where
appropriate, standardized for comparability (Cohen’s d). All
intervals reported are 95% highest density intervals (HDIs).

The model predicted the optimal sigmas found by the
particle swarm optimization for each subset, on the basis
of the proportion of each modality and each speaking
rate, which varied between the subsets, as described in
“Quantifying differences in reliability”. The interaction
between modality and speaking rate was also included. We
will refer to this model as Model 1. The model was sampled
with the NUTS sampler with six chains of 4000 warm-
up and 4000 test iterations. The model converged for all

parameters, as assessed by the Gelman–Rubin diagnostic ̂R

being within 0.001 of 1.0.
Predictors were included for the proportion of POnSS

segmentations, the proportion of segmentations of words
from the fast condition and the proportion of segmentations
of words from the slow condition. It was not necessary
to include the proportion of manual annotations or the
proportion of segmentations of words from the medium
condition, since these are entirely correlated with the
proportion of POnSS segmentations and the sum of the
proportion of fast and slow, respectively. This is intuitively
comparable to treatment coding of a categorical variable.
For each of these linear predictors, a weakly informative
prior was specified (μ = 0, σ = 5). A deviation-
coded categorical predictor was included for component
(narrow, medium, or wide), as were interactions between
the categorical and linear predictors. The model fitted a
Student’s t distribution, the σ and ν parameters, which
were predicted by the component. Regression weights were
applied, consisting of the fitted θ values associated with
the relevant component, multiplied by 1− the KL score
achieved by the fitting. This means that the sigmas of
the three mixture components contributed to the main
effects in proportion to their weighting, and that the best
fits contributed more than worse performing fits. Full
details about the model are available in the Supplementary
Materials.

No reliable difference emerged between POnSS and
manual segmentations on medium-rate speech: - 0.31 ms
[- 0.71, 0.084], though the central tendency suggests that,
had only POnSS segmentations been present in a sample,
we would expect to see marginally narrower distributions
than in a sample annotated only by the manual method.
This effect is depicted in Fig. 3c. This effect was involved
in interactions, such that, with POnSS, reliability was
marginally worse in the narrow component: 0.43 ms [0.14,
0.73], in the medium and wide components, the interaction
effect was not distinct (medium: - 0.0052 ms [- 0.34,
0.34]; wide: - 0.43 ms [-1.1, 0.2]). A figure depicting these
interactions is available in the Supplementary Materials
(Figure S9). Had a sample only contained fast speech,
we would expect wider distributions: 2.5 ms [2.1, 2.9].
No reliable difference emerged between medium and slow
speaking rates: 0.051 ms [- 0.36, 0.46]. There were no
reliable interactions between modality and rate (POnSS and
fast rate: 0.12 ms [- 0.38, 0.63]; POnSS and slow rate: - 0.33
ms [- 0.79, 0.14]), suggesting that POnSS is equally reliable
across speech that may be assumed to differ in style.

Together, these results indicate that segmentations
performed with POnSS are at worst equally reliable as
segmentations performed conventionally using Praat, and
potentially slightly better.
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Analysis 2: Efficiency of modalities

To assess the efficiency of POnSS, we calculated how many
annotator-hours would be required to yield 5000 correctly
segmented words, using either POnSS or the baseline
modality. The Praat script that was used in the baseline
modality recorded the time when each trial recording was
opened and saved. From these timestamps, we calculated
the time spent on each trial, and divided that by the number
of words that the annotator segmented in that trial. This
yields the duration that was spent annotating each correctly
segmented word.

Because words are not worked with sequentially in
POnSS, establishing how much time was spent working on
each individual word is less straightforward. The POnSS
system records timestamps for the time that each word-
candidate was presented to the annotator for triage, and
the time when they finished interacting with it. The same
was done for the retrimming task. Because POnSS allows
each word in the dataset to be triaged and/or retrimmed
by multiple different annotators, and some words that were
ultimately rejected were also retrimmed, simply summing
these times for the words in the finished dataset would
underestimate how much time was spent working with a
word candidate to result in a well segmented word in the
finished dataset. In the baseline modality, this correction
for missing words is already implicitly made, since the
time spent working on a trial is divided by the number of
resulting good words. Instead, we identified all interactions
with each original word recording across both tasks, and
summed all the time spent working with that word across
annotators and tasks. We also checked whether the word was
accepted into the finished dataset or not.

To be able to statistically model the time spent per
successful word in each task, we adopted an approach
akin to bootstrap resampling. For the baseline modality, we
randomly selected 1000 samples containing 5000 words,
and summed the time spent for each word together, to
yield a distribution of time investments to segment a sample
of 5000 words. For POnSS, for each sample, we started

with a sample of 5000 words (that were either included or
rejected from the finished database), and iteratively added
more words until the sample contained 5000 non-rejected
words. Around 5% of word candidates were rejected during
triage or after retrimming, meaning they did not make it
into the finished dataset. Again, we added the time spent
for all (included and rejected) words in the sample together,
yielding a distribution of time investments to segment 5000
included words.

The distribution of the time it took to yield 5000
correctly segmented words by each modality is shown in
the translucent distributions in Fig. 4. Note that in this
dataset, no manual transcription was required, since we used
the harmonicity-aided automatic transcription generation
procedure; in the baseline case, MAUS was used, meaning
that the analogous part of the task was not used there either.

We fitted these distributions with a Bayesian regression
model (Model 2). Like Model 1, Model 2 was sampled
with the NUTS sampler with six chains of 4000 warm-
up and 4000 test iterations. The model converged for all
parameters, as assessed by the Gelman–Rubin diagnostic ̂R

being within 0.001 of 1.0. The model predicted the hours
invested to yield 5000 correctly segmented words, with a
deviation-coded categorical predictor for the modality (1
indicated the baseline method, -1 the POnSS method). A
weakly informative prior was set for this predictor, a normal
distribution centered at 0 with a σ of 5.44 h, meaning
our expected effect size was 0, with a standard deviation
of 1 Cohen’s d. For the model intercept, the prior was a
Student’s-t distribution centered at 45.98, the average of all
the data with a σ of 54.42 h and a ν (degrees of freedom)
of 16.33, which are derived by scaling the recommended
properties of this prior in brms to this dataset.

The posterior distributions of the model coefficients of
interest are shown in Fig. 4, as solid violins. The difference
between the two approaches in the time taken to yield
5000 correctly segmented words was very clear (difference
between means: 11 h [11, 11], Cohen’s d = 2), such that
segmentation using POnSS required 23% less investment of
annotator time than the baseline method.

POnSS

baseline

40 45 50 55
hours invested to yield 5000 correctly segmented words

m
od

al
ity

Fig. 4 Distributions of bootstrap-resampled estimates of how many
annotator hours it would take to yield 5000 well-segmented words
by the two modalities (translucent violins). Overlaid are solid violins

showing the posteriors of Model 2 for the effect of modality, with
median (points), 95% and 66%HDIs are too narrow to see in the figure

752 Behav Res  (2021) 53:744–756



Discussion

In this article we introduced POnSS, an online pipeline for
the segmentation of speech data. POnSS is optimized for
this single task, sacrificing functional flexibility in favor of
time/effort efficiency.

We argued that, while fully automatic speech transcrip-
tion and segmentation is gaining traction, for many purposes
human intervention remains essential to ensure data qual-
ity in conditions adverse to speech segmentation. A key
diagnostic for the quality of a speech segmentation is its
reliability, conventionally defined in terms of reproducibil-
ity. We explored how two widely employed approaches
to measuring reproducibility were sensitive to the kind of
variance expected in speech segmentation data. From this
analysis, we concluded that neither Krippendorff’s alpha nor
simple percentage agreement within a tolerance were ideal
ways to assess reliability in speech segmentation data, since
they were not sensitive to artificial noise. In their stead,
we proposed a reliability-quantification approach based on
modeling the underlying error process as a mixture of Gaus-
sian distributions, where the sigmas of the distributions
quantify the reliability of the segmentation process.

We then turned to quantifying the consequences of
segmenting to the word level with POnSS rather than with
a conventional procedure using TextGrids in Praat preceded
by naive forced-alignment. We analyzed the relative
reliability and efficiency of POnSS. These analyses revealed
that segmentation with POnSS was approximately equally
reliable compared to conventional manual segmentation,
and considerably faster. In the reliability analysis, we
found that the sigmas fitted to the data segmented by
POnSS were comparable to the sigmas fitted to the data
segmented conventionally. The efficiency analysis showed
that 23% less investment of annotator time was required to
yield the same number of acceptable word transcriptions.
In the efficiency analysis, the way that we compared
the modalities slightly biases against POnSS, since we
calculate the time investment based on our practice whereby
some word-candidates got triaged and retrimmed multiple
times by different annotators, while we assume that under
the baseline modality, each word-candidate will only be
worked on once. These findings license the further use
of POnSS for segmentation of speech corpora. For the
evaluation conducted here, we used data from the PiNCeR
corpus (Rodd et al., 2019a). The PiNCeR corpus was a
good test case, since it contains experimentally elicited,
errorful speech, which is particularly challenging for forced
alignment.

Aside from reliability and efficiency, a subordinate
aim in developing POnSS was to improve the experience
of the annotators, who consider segmentation to be the
least preferred of the tasks that they perform as research

assistants. Anecdotally, the annotators report POnSS to
be preferable to work with, compared to conventional
segmentation using TextGrids in Praat. This preference may
be explained by a number of differences between POnSS
and using TextGrids in Praat. Firstly, the knowledge that
POnSS was designed with the goal of greater efficiency may
in itself lead annotators to prefer POnSS. That the system
is more ergonomic, requiring fewer keystrokes and mouse
clicks, and less mouse movement because the interface is
logically placed may also have contributed to this. Secondly,
annotators may experience conventional segmentation as
constraining, as they have to ensure that the work that
they do is consistent with rigid protocols. Third, the choice
of which subtask to perform may give annotators enough
agency in POnSS to feel more in control of their own
work. Furthermore, the annotators and project manager are
freed from a number of meta-tasks inherent to conventional
segmentation projects. These include the necessity to keep
track of how far through a project they are and recording
this to prevent double work; planning how many trials can
be done in the time remaining until the next task begins; and
ensuring that work is saved and archived. Finally, annotators
may prefer POnSS due to its relatively colorful, appealing
visual appearance. Future analysis might examine whether
they work longer effective stints with POnSS than with the
baseline task. In POnSS it is possible to employ aspects of
“gamification”, for instance tracking and displaying each
individual annotator’s longest streak of triage decisions or
retrimmings performed within some time limit to boost
motivation, though whether this would come at the cost of
reliability would need to be established.

In POnSS, different component tasks of the overall
segmentation project are separated out into small, easily
explained and understood sub-tasks. This implies that the
less taxing triaging task could potentially be adequately
performed by entirely untrained annotators, through online
crowd-sourcing systems such as Amazon’s Mechanical
Turk (Buhrmester et al., 2018), or allowing paid members
of an institute’s participant pool to segment data at home
at their convenience. This would drastically reduce the
wait for the researcher for completed segmentations, and
free up trained research assistants for more productive
and motivating tasks. Further careful pretesting is required
to establish whether crowd-sourced, non-expert triage
decisions are of equal quality to expert triage decisions,
and to introduce data-quality controls like catch trials with
known good answers.

Our aim with POnSS was to provide a practical
implementation of a distributed, subdivided segmentation
system, to be able to evaluate the efficiency and reliability
of such an approach. As such, there are various researcher
degrees of freedom, such as the length of chunks in the
transcription task and the proportion of word candidates
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that are triaged and retrimmed multiple times that could
influence the reliability and accuracy of the resulting
segmentations. Optimal settings for these researcher degrees
of freedom need to be explored more fully with various
annotator populations and speech data types, which may
allow further improvement on the efficiency benefit relative
to Praat TextGrids reported here.

The test dataset that we used to evaluate POnSS
was segmented to the word level, and we used other
techniques to perform sub-word level analyses (Rodd
et al., 2019b). The subtasks of POnSS are readily
applicable to segmentation to other levels of granularity,
too, and presumably would result in similar efficiency gains
relative to conventional segmentation to the same level of
granularity.

Intuitively, there is a hierarchy of difficulty of manual
segmentation to different levels of granularity, related to
the extent to which the units in question are identifiable
from acoustic, waveform and spectrogram features. For this
reason, segmentation to the utterance level is trivial, seg-
mentation to the word level is fairly easy, segmentation
to the syllable level somewhat more challenging, and seg-
mentation to the phone level is highly challenging. This
variable task complexity influences the maximally achiev-
able reliability of manual segmentation. It seems unlikely
that the properties of phone and syllable-level segmentation
that make these tasks challenging in conventional segmen-
tation would be affected much by using POnSS instead, so
we assume that POnSS would offer similar advantages over
conventional segmentation below the word level too, though
further testing is required to be sure.

POnSS also includes a manual transcription component
that makes the segmentation of spontaneous speech viable.
Read speech resembling, for instance, TIMIT (Garofolo
et al., 1993), which forms the basis of the training data for
many ASR systems, may be forced aligned well enough to
require only minimal checking of a sample to assess the
suitability of the segmentation. POnSS could be trivially
adapted to manage this forced alignment and perform this
checking, bringing the productivity benefits of the POnSS
subtasks and database system to this type of project as
well, and potentially also the possibility of crowd-sourcing
this work, as discussed previously. A further potentially
highly productive extension to POnSS would be to apply
its principles of task subdivision and its browser-based
database system to annotations of multimodal datasets (e.g.,
audiovisual recordings). This would potentially speed up
the annotation and coding of gesture and sign language
materials.

The test dataset that we used was rather small in
comparison to the kinds of segmentation projects performed
for large scale research corpora and ASR training set
development. For instance, the Spoken Dutch Corpus

(Oostdijk, 2000), contains 116 times as many phonetically
transcribed words, and the pre-trained English model for
the Montreal Forced Aligner (McAuliffe et al., 2017) is
trained on the LibriSpeech corpus (Panayotov et al., 2015),
which is roughly 640 times larger. The very large size of
this type of project highlights the relevance of the efficiency
improvement realized by segmenting using POnSS.

In conclusion, POnSS offers reliable segmentation of
speech materials to the word level, in an appealing form that
makes efficient use of human input by combining human
decisions with forced alignment.
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