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Abstract

Prior to gastrulation in the mouse, all endodermal cells arise from the primitive endoderm of the blastocyst stage embryo.
Primitive endoderm and its derivatives are generally referred to as extra-embryonic endoderm (ExEn) because the majority
of these cells contribute to extra-embryonic lineages encompassing the visceral endoderm (VE) and the parietal endoderm
(PE). During gastrulation, the definitive endoderm (DE) forms by ingression of cells from the epiblast. The DE comprises
most of the cells of the gut and its accessory organs. Despite their different origins and fates, there is a surprising amount of
overlap in marker expression between the ExEn and DE, making it difficult to distinguish between these cell types by marker
analysis. This is significant for two main reasons. First, because endodermal organs, such as the liver and pancreas, play
important physiological roles in adult animals, much experimental effort has been directed in recent years toward the
establishment of protocols for the efficient derivation of endodermal cell types in vitro. Conversely, factors secreted by the
VE play pivotal roles that cannot be attributed to the DE in early axis formation, heart formation and the patterning of the
anterior nervous system. Thus, efforts in both of these areas have been hampered by a lack of markers that clearly
distinguish between ExEn and DE. To further understand the ExEn we have undertaken a comparative analysis of three
ExEn-like cell lines (END2, PYS2 and XEN). PYS2 cells are derived from embryonal carcinomas (EC) of 129 strain mice and
have been characterized as parietal endoderm-like [1], END2 cells are derived from P19 ECs and described as visceral
endoderm-like, while XEN cells are derived from blastocyst stage embryos and are described as primitive endoderm-like.
Our analysis suggests that none of these cell lines represent a bona fide single in vivo lineage. Both PYS2 and XEN cells
represent mixed populations expressing markers for several ExEn lineages. Conversely END2 cells, which were previously
characterized as VE-like, fail to express many markers that are widely expressed in the VE, but instead express markers for
only a subset of the VE, the anterior visceral endoderm. In addition END2 cells also express markers for the PE. We extended
these observations with microarray analysis which was used to probe and refine previously published data sets of genes
proposed to distinguish between DE and VE. Finally, genome-wide pathway analysis revealed that SMAD-independent
TGFbeta signaling through a TAK1/p38/JNK or TAK1/NLK pathway may represent one mode of intracellular signaling shared
by all three of these lines, and suggests that factors downstream of these pathways may mediate some functions of the
ExEn. These studies represent the first step in the development of XEN cells as a powerful molecular genetic tool to study
the endodermal signals that mediate the important developmental functions of the extra-embryonic endoderm. Our data
refine our current knowledge of markers that distinguish various subtypes of endoderm. In addition, pathway analysis
suggests that the ExEn may mediate some of its functions through a non-classical MAP Kinase signaling pathway
downstream of TAK1.
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Introduction

Studies in amphibians, avians and mice demonstrate that

endodermal cells play both inductive roles and make important

cellular contributions to organ formation. Endodermally derived

organs such as the liver and pancreas serve important secretory

functions that are required for homeostasis in the adult organism

and because of this, much effort has been exerted in recent years

toward the development of protocols for the directed differenti-

ation of specific endodermal subtypes. Toward these efforts, the

identification of secreted endodermal factors that mediate their

inductive functions would also be highly desirable. However, these

efforts have been hampered by a lack of markers that efficiently

distinguish one type of endoderm from another. One possible

reason for this is that endoderm constitutes only a small percentage

of cells in the developing embryo, and consequently, slow progress

has been made in the identification of regional specific markers

within the endoderm. Furthermore, it has been noted that there is

tremendous overlap in marker expression between the visceral

extra-embryonic endoderm and the gut endoderm of the embryo.
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Recent efforts to characterize markers that distinguish these

lineages have relied on endoderm derived from ES cell sources

followed by FACS purification with the aid of antibodies that

recognize different types of endoderm [2,3]. While these

approaches have identified multiple lineage restricted endodermal

markers not all of the ‘‘hits’’ have been validated by further

experimentation.

In the mouse it has long been assumed that there are two

distinct phases of endoderm formation such that extra-embryonic

endoderm forms prior to gastrulation and is derived from the

primitive endoderm (Fig. 1G, red), while the definitive endoderm

rises from the epiblast during gastrulation. Prior to gastrulation,

the original primitive endoderm expands with the growing embryo

and becomes subdivided into PE (Fig. 1G, yellow) and VE (Fig. 1G,

green) based on their position relative to the egg cylinder. The VE

itself is further divided into sub-regions, including the anterior

visceral endoderm (AVE) (Fig. 1G, blue). In this study, we

characterize and compare three cell lines that are either derived

from the primitive endoderm or have been reported to resemble

these primitive endoderm-derived lineages. Three ExEn cells lines

were examined in detail by immunocytochemistry, qRT-PCR and

microarray analysis, using well-characterized markers for ExEn

and definitive endoderm, and a more elaborate panel of putative

ExEn markers, previously identified as distinguishing between

different subtypes of endoderm. These studies confirm that each of

these ExEn cell lines exhibits high molecular correlation to visceral

and parietal endoderm and little or no similarity to definitive

(epiblast-derived) endoderm. This comparative gene analysis also

refines a growing list of markers that have been proposed to

distinguish between VE and DE. By providing a clearer picture of

endodermal subtypes, these studies should assist the development

of experimental protocols that require a distinction between

embryonic and extra-embryonic lineages.

Finally, consistent with our previous embryological studies,

pathway analysis from microarray data reveals that molecules

downstream of TGFbeta-family members are highly represented

Figure 1. Morphological characterization of END2, PYS2 and XEN cells. DIC (1 A–C) and Scanning EM (1 D–F) images of END2 (1 A, D),
PYS2 (1 B, E) and XEN (1C, F) cells reveal morphological details of the cell lines used in these studies. G. Cartoon depicting early endodermal
lineages in the mouse embryo prior to gastrulation. The primitive endoderm (red) forms in the pre-implantation blastocyst stage embryo and
subsequently expands and differentiates into parietal endoderm (yellow), visceral endoderm (green) and anterior visceral endoderm (blue). Visceral
endoderm is also sub-divided into embryonic and extra-embryonic regions based both on location relative to the embryonic/extra-embryonic
junction of the epiblast (grey), fate and marker expression.
doi:10.1371/journal.pone.0012016.g001
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in these cell lines and suggests that both SMAD-dependent and

SMAD-independent TGFbeta signaling could mediate the

inductive function of these cell lines.

Results

Extra-embryonic endoderm stem cells (XEN cells) and
PYS2 cells but not END2, express markers characteristic
of the primitive endoderm

END2 and PYS2 cells have been described previously, based on

cell morphology and marker expression [1,4,5], to be similar to

visceral endoderm (VE) and parietal endoderm (PE), respectively.

Because these cells were originally derived from EC cell lines, they

may not represent true endodermal lineages but rather, endo-

derm-like populations. Recently described protocols allow for the

isolation of ExEn stem cells (XEN cells) directly from blastocyst

stage mouse embryos [6], and as such, are more likely to represent

endogenous endodermal cell types. For this study, we derived a

XEN cell line from wild type mouse blastocysts of the ICR strain.

Although each of the three cell lines are relatively flat and exhibit a

cobblestone appearance when confluent, bright field microscopy

reveals that each of the three cell lines is morphologically distinct

from the other two (Fig. 1A–C). Scanning electron microscopy of

cells plated at low density reveals that all three cell types are

rounded in appearance and densely covered with microvilli, with

END2 and PYS2 cells forming large lamellipodia (Fig. 1D–F).

These data demonstrate that, like END2 and PYS2 cells, XEN

cells exhibit an endodermal morphology.

Each of these cell lines was assessed by immunocytochemistry,

for a panel of markers characteristic of the primitive endoderm

including SOX7, GATA4 and GATA6 [7,8,9,10]. Both XEN and

PYS2 cells are recognized by antibodies against GATA4, GATA6,

and SOX7 (Fig. 2 B, C, E, F, H, I). However, only a subset of

XEN cells express SOX7 (Fig. 2I). By contrast, END2 cells express

only low levels of GATA6 (Fig. 2D) and do not express GATA4 or

SOX7 (Fig. 2 A, G). In these studies, PYS2 cells showed the most

uniform expression of these primitive endoderm markers. By

contrast, END2 and XEN cells may represent mixed or fluctuating

populations of primitive endoderm and other lineages since their

expression of these markers was more heterogeneous. In

particular, the failure of END2 cells to express GATA4 and

SOX7, suggests that there are few if any primitive endoderm cells

within this line. While they do exhibit heterogeneous expression of

GATA6 it should be noted that this gene also marks other

endodermal subtypes including the VE. The heterogeneity of

END2 cells is also demonstrated by the expression of BMP2,

which is proposed to be a major signaling molecule from the

endoderm [11,12,13,14,15,16,17]. BMP2 is uniformly expressed

in PYS2 and XEN cells (Fig. 2L, M) but only expressed in a small

subset of END2 cells (Fig. 2J). Overall these data suggest that

END2 cells represent a heterogeneous endodermal population

with little resemblance to the primitive endoderm.

Detailed marker analysis demonstrates that END2 cells
are molecularly divergent from XEN and PYS2 cells

To further characterize these cell lines, we used qRT-PCR

(Fig. 3A), to examine a panel of markers representing several ExEn

lineages (Fig. 1G and Fig. 3, insert) including PrE, PE, VE and

anterior visceral endoderm (AVE). Sox7 [7], Pdgfra [18], Gata4

[10], and Gata6 [19] are expressed in the primitive endoderm of

the mouse blastocyst and are thought to be among the earliest

ExEn markers. XEN and PYS2 cells express all of these markers,

Figure 2. Immunocytochemical analysis of ExEn cell lines. Immunocytochemical analysis of confluent END2 (A, D, G, J), PYS2 (B, E, H, L) and
XEN (C, F, I, M) cells showing the expression of GATA4 (A, B, C), GATA6 (D, E, F), SOX7 (G, H, I) and BMP2 (J, L, M) protein in END2, PYS2 and XEN
cells. Merged images with DAPI staining (blue nuclei in all images) reveal ubiquitous expression of GATA4 and GATA6 in both PYS2 and XEN cells (B,
C, E, F). SOX7 is ubiquitously expressed in PYS2 cells (H), while XEN cells express SOX7 only in a subset of cells (I). In END2 cells, GATA6 expression is
limited to a small subset of cells (D) while GATA4 and SOX7 are not expressed (A, G). BMP2 is ubiquitously expressed by PYS2 and XEN cells (L, M),
while END2 express BMP2 only in a subset of cells (J).
doi:10.1371/journal.pone.0012016.g002
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but END2 cells express only Gata6. Note that all of these markers

are also expressed in derivatives of the primitive endoderm

including the PE and VE and as a consequence, there are no

known markers that are uniquely expressed in the primitive

endoderm. All three cell lines express markers for the PE including

t-type Plasminogen activator (tPA) [20], Cytokeratin 19 (Krt19) [21],

Laminin B1 (Lamb1) [22] and Sparc [23], although END2 cells

express these at relatively lower levels as compared to the other cell

lines.

We next determined the transcriptional status of markers that

are widely expressed throughout the VE including FoxA2 [24],

Transthyretin (Ttr) [25] u-type Plasminogen activator (uPA) [26] and

Hepatocyte nuclear factor 4, (Hnf4a) [24]. Ttr and uPA are expressed by

all three of these cell lines (although at lower levels in END2).

Hnf4a is expressed by PYS2 and XEN cells, but not by END2.

FoxA2 is only expressed by PYS2 cells. None of these cell lines

express Vilin (data not shown).

We next assessed markers whose expression is restricted (either

spatially or temporally) within the VE. The extra-embryonic VE

that lies proximally over the extra-embryonic ectoderm of the

mouse embryo (Fig. 1G) expresses Sox7, Sox17 and also upregulates

alpha fetoprotein (Afp) after gastrulation has been initiated. Prior to

gastrulation, Afp and Sox17 also mark the distally positioned VE

that overlies the epiblast (the embryonic VE) (Fig. 1G and 3, insert)

[27]. Of these, Sox7 and Sox17 are present in both PYS2 and XEN

but not END2 cells. Afp is only expressed in PYS2 cells. Thus,

PYS2 and XEN cells express markers for both the extra-

embryonic VE and the embryonic VE, whereas END2 cells only

expressed panVE markers such as Ttr.

Finally, we assessed a panel of markers that are spatially

restricted in the VE. Dkk-1 [28], Cerl [29,30,31], and Hex [32] are

all known to be expressed in the AVE of the mouse embryo. As has

previously been shown for XEN cells [6], all three ExEn cell lines

express Hex. PYS2 and XEN cells also express Dkk1. None of the

Figure 3. Heart inducing cell lines express markers characteristic of several primitive endoderm lineages. A. Summary of Real-Time
PCR on END2, PYS2 and XEN cells. Insert, cartoon showing embryonic lineages assessed, primitive endoderm (reds), parietal endoderm (oranges/
yellows), visceral endoderm (greens) and AVE (blues). The panel of markers assessed include markers for primitive endoderm (Sox7, Pdgfra, Gata4,
Gata6), parietal endoderm (tPA, Krt19, Lamb1 and SPARC), visceral endoderm, (FoxA2, Ttr, uPA and HNF4a), anterior visceral endoderm (Dkk1, Cerl, Hex),
the regionally restricted VE marker Bmp2 and the definitive/pan endoderm marker Sox17. B. Linear regression analysis comparing real-time PCR data
to averaged fluorscence detection in the Illumina Microarray. 80% of markers that we compared showed strong correlation between the qRT-PCR
data and microarray detection. The data discussed in this publication have been deposited in NCBI’s Gene Expression Omnibus [78] and are
accessible through GEO Series accession number GSE19564 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE1956).
doi:10.1371/journal.pone.0012016.g003
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cell lines express Cerl (data not shown). Consistent with our

immunocytochemical analysis, BMP2, which is also spatially

restricted within the VE, is expressed by all three of the ExEn

cell lines.

Both the patchy expression of these markers when assessed by

immunoctyochemistry and the relatively lower expression of

mRNAs for these genes when assessed by qRT-PCR, are

consistent with the idea that END2 cells are a heterogeneous

population in which a small subset of cells express markers for the

VE (or more likely, a subtype of VE), whereas PYS2 and XEN

cells are more homogeneous and express a broad array of markers

for the primitive endoderm and its derivatives.

To further analyze these cell lines, we performed a comparative

microarray analysis. To confirm the consistency between the array

data and data collected from qRT-PCR and immunocytochem-

istry analyses, we examined the same panel of markers initially

assessed by qRT-PCR. Averaged fluorescent detection for each

marker was plotted versus qRT-PCR data normalized to Gapdh

and R2 values were determined from the line of best-fit.

Importantly, a high degree of correlation is found between the

two data sets, and over 80% of the genes tested had R2 values close

to one (Fig. 3B). We found only three notable exceptions. First, tPA

showed the same basic trend between qRT-PCR and microarray,

but with low numerical correlation. This could reflect non-specific

amplification by qRT-PCR or a problem with the array probe. In

addition, a single probe for Gata4 is highly recognized in the array

by END2 cells. Gata4, however, is absent in END2 cells by both

qRT-PCR (Fig. 3A) and immunocytochemistry (Fig. 1A). Finally,

Bmp2 is not detected in the array but is highly expressed by PYS2

and XEN cell lines, as assessed by qRT-PCR and immunocyto-

chemistry (Fig. 2 J–M and Fig. 3A). This suggests that these

particular probes may either recognize non-specific transcripts or

splice variants of the target genes and highlights the need for

independent verification of candidates identified by probing

microarrays. Overall, there is significant agreement between

microarray data and our other assays.

Having confirmed a high degree of correlation between qRT-

PCR data and the array, a large-scale analysis of markers for

endodermal cell types was undertaken using microarray data (Fig. 4).

Studies using immunohistochemistry and in situ hybridization

studies have identified a relatively small number of genes that are

differentially expressed in the endoderm. Indeed, many of these

markers are expressed in more than one endodermal subtype. For

example, the primitive endoderm markers used in this study (Gata4,

Gata6, Sox7 and Pdgfra) are also expressed in other endodermal

subtypes. Thus few truly diagnostic markers that distinguish

endodermal subtypes have been identified. Two recent studies

aimed at identifying markers that distinguish between VE and DE

were based largely on comparative analysis of endodermal cell

populations sorted by expression of endodermal markers. First,

Sherwood et al. used differential expression of the epitopes for

EpCAM, Dba and Ssea-4 [2]. Later, Yasunga et al. used differential

expression of Goosecoid and Sox17 [3]. Here we sought to analyze

these data sets by comparative analysis of the three ExEn cell lines.

First, we analyzed our array data based on well-characterized

markers for endodermal subsets (Fig. 4). As expected all three of

these cell lines express most of the VE specific markers. Notably, all

three express high levels of Fxyd3, Emp2, Sdc4 and Gata6, suggesting

that these markers, in particular, are highly diagnostic for the VE

fate. By contrast, a second subset of VE markers including Ttr, Dab2,

Pthr1 and Cited are highly expressed by PYS2 and XEN cells but not

by END2 cells, suggesting that they mark a specific subset of cells

within the VE. In addition, all three cell lines express the AVE

markers Hex and Dkk1 but not Cerl.

None of the cell lines express markers reported to be diagnostic

for DE including Cxcr4, Gpc1 and Tm4sf2 [3]. This would seem to

confirm that these cell lines do not possess characteristics of the

DE and conversely support the notion that these markers are

diagnostic for DE but not ExEn cell types.

We further analyzed these cells for PE markers and found, as

expected based on our previous analysis, that PYS2 and XEN but

not END2 cells show high expression of PE markers. Finally, in

confirmation of our previous findings, XEN cells and PYS2 cells

but not END2 cells express high levels of markers for the primitive

endoderm. In addition, each cell had a specific subset of uniquely

expressed markers that are either higher or lower as compared to

the other two cell lines. Since these cell lines have in other assays

been shown to have inductive effects, such as activating heart

formation [4,5,33,34,35], these differences might be exploited to

identify specific inductive signals within the individual cell lines.

The microarray data were then examined for expression of a

large panel of markers identified in Sherwood et al. that are

described as distinguishing between DE and VE (Fig. 5). Many,

but not all, of the pan-endodermal markers are expressed by these

cell lines [9/18 (50%), END2, PYS2 and 7/18 (39%), XEN cells].

These data indicate that a subset of these markers are not truly

pan endodermal but add further support to the characterization of

Sox17, Spink3 Rab 15, Dsg2, Ripk4, AnxA4 and Emb as true pan

endodermal markers. In addition, markers that were described as

VE-enriched are highly expressed in the ExEn cell lines (65%,

END2, 60% PYS2 and 62.5% XEN). By contrast, ExEn cells

express only a small percentage of markers that distinguish DE

from VE (9.6% END2, PYS2, 19% XEN cells). It should be noted,

however that these markers are not exclusive to the DE and VE,

and thus their expression in ExEn cell lines may indicate the

presence of other lineages such as parietal endoderm.

Altogether these findings suggest that all of the cell lines

examined in these studies are similar to extra-embryonic

endodermal lineages and probably represent mixed populations

of PrE derivatives. In addition, microarray analysis reveals distinct

differences between these cell lines. To further understand these

differences, cluster analysis (Fig. 6A) was performed. This

supported the existence of significant molecular differences

between the three ExEn cell lines. The greatest overall differences

were found when END2 cells were compared to the other two cell

lines (PYS2 and XEN). This finding is consistent with our previous

analysis. We also compared the number of genes that are

differentially expressed in pair-wise comparisons of the three cell

lines, confirming our findings from the cluster analysis (Fig. 6B).

Therefore, while demonstrating that the three cell lines exhibit

characteristics of the VE, these studies also highlight the fact that

they do, nonetheless, have significant molecular differences

between them. Since a subpopulation of the VE, the AVE has

been shown to have heart-inducing ability, it is possible that these

molecular differences might also reflect differences in the ability of

these cell lines to activate and/or enhance cardiac differentiation

in ES cells. Indeed both END2 and PYS2 cells have already been

shown to possess heart inducing ability [4,5,33,34,35].

Microarray analysis
To examine the microarray data in more detail, we performed

pathway and tissue expression analysis on a total of 6094

annotated gene IDs that were detected as present in at least one

of the three cell lines (based on a p-value of detection ,0.01) using

the Database for Annotation, Visualization and Integrated

Discovery (DAVID) [36,37]. Tissue expression analysis revealed

that the top non-cancer tissue hit for this list of gene IDs was for

Analysis of Endodermal Signals
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liver (with a p-value of 5.3E-115), which is expected given the high

degree of overlap between markers for the liver and the VE.

To determine the signaling pathways that characterize these cell

lines, the DAVID bioinformatics tool was used to compare the

6094 gene IDs present in the arrays to the BIOCARTA pathways

database. This analysis revealed that the top pathways (not directly

related to cell cycle) in the ExEn lines were the MAP Kinase (p-

value, 2.7E-3) and TGFbeta (p-value, 3.1E-3) signaling pathways.

Gene expression in these pathways was described by comparing

our gene list to the TGFbeta and MAP Kinase pathways described

in the Kyoto Encyclopedia for Genes and Genomes (Fig. 7 and

Fig. 8). A detailed analysis of the TGFbeta pathway suggests that

all three of these cell lines are capable of responding to all known

subgroups of TGFbeta family members (Fig. 7). By comparison, an

analysis of known MAP Kinase signaling pathways suggests that

only XEN cells have a fully intact classical MAP Kinase signaling

pathway since it was the only cell line in which Grb2 is present by

microarray (Fig. 8A). By contrast microarray data suggests that

Figure 4. Heat map analysis of well-characterized markers for different endodermal cell types. Illumina microarray data for genes that
are expressed in various endoderm subtypes (depicted as heat maps) includes regionally restricted markers representing the VE, DE, PE and PrE. Each
of the three cell lines expresses markers for VE, PE and PrE. None of the cell lines express markers that are diagnostic for DE. Fluorescence data was
indicated as 0.00 if the p-value of detection was greater than 0.01.
doi:10.1371/journal.pone.0012016.g004
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Figure 5. Heat map representation of detailed marker analysis. Microarray data of markers distinguishing VE from DE according to Sherwood
et al. [2]. Only a subset of the previously examined pan endodermal markers are expressed in the array. This refines the list of true pan endodermal
markers to include Sox17, Spink3, Rab15, Dsg2, Ripk4, AnxA4 and Emb. ‘‘VE enriched’’ genes indicate factors that were found to be expressed in VE plus
other lineages but not DE. Our analysis suggests that a subset of these factors may not be present in all VE subtypes and thus may represent
regionalized VE markers. ‘‘DE enriched’’ represents genes found, in Sherwood et al. [2], to be expressed in DE and other subtypes but not in VE.
These data strongly suggest that the ExEn cell lines are not similar to DE. Fluorescence data was marked as 0.00 if the p-value of detection was
greater than 0.01.
doi:10.1371/journal.pone.0012016.g005
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END2 and PYS2 cells likely signal through the TAK1/p38/JNK

and the TAK1/NLK pathways. Although we found a better than

80% correlation between microarray and qRT-PCR data, we

decided to confirm the presence or absence of Grb2 expression in

these cell lines by qRT-PCR (Fig. 8B). By PCR, we found that

each of the three cell lines expresses mRNA for Grb2 at similar

levels. Taken together these analyses suggest that each of the three

endodermal cell lines can signal through both classical and non-

classical MAP Kinase signaling pathways.

In addition, we have previously shown [40] that signaling of

TGFbeta family members in the endoderm is required for heart

development. Together these pathway analyses (Fig. 7, 8) reveal

that the effects of TGFbeta signaling could be mediated by either

traditional SMAD-dependent signaling or by a SMAD indepen-

dent pathway involving either TAK1/p38/JNK or TAK1/NLK.

Finally, since END2 and PYS2 cells have been shown to secrete

factors that induce differentiation in ES cells it is likely that XEN

cells will have a similar inductive ability. Before this can be

established, however, it is important to show that XEN cells are

stable when maintained in culture. To address this question, we

collected XEN cells at 70% confluence to ensure that cell density is

equivalent for all analyses over seven passages. We then assessed

the expression of a number of ExEn markers at each passage. In

parallel, XEN cells were passaged in a serum-free medium to

determine if gene expression in these cells is sensitive to culture

conditions (Fig. 9). We found that despite spikes in some markers

at certain passages, that cells grown in standard serum-containing

medium are quite stable over seven passages and that there were

no obvious trends in marker expression during the duration of this

experiment. This suggests that XEN cells are stable in standard

medium for at least short-term culture. When XEN cells are

grown in serum-free medium we again noticed spikes in expression

of some markers at some passages but again found no obvious

trends in marker expression. We did however note that overall

expression of Gata6 and Ttr was different between the two culture

conditions whereas other markers were expressed at statistically

the same levels at most passages.

Discussion

The endoderm makes up only a small percentage of cells of the

early embryo. Cells within the endoderm layers of the early

embryo exist in simple cuboidal or squamous epithelia, making

them difficult to isolate mechanically from embryos. Because of

these challenges to the embryological study of endodermal cells in

the mouse embryo, many recent studies have relied on the use of

endodermal-like cell lines that can mimic the functions of the early

endoderm. For example END2 cells have been shown to enhance

myocardial differentiation of both human and mouse ES cells

[4,33,34] and to mimic the effect of the VE in activating cardiac

formation from the undifferentiated mesoderm from the mouse

embryo [35]. While it is clear from these studies that END2 cells

mimic the effects of the AVE, the fact that they were originally

derived from ECs raises some doubt as to whether they perfectly

recapitulate the endogenous signals secreted by the AVE.

An added complication is the significant overlap between genes

that mark the ExEn and those that mark the DE. This makes the

analysis of in vitro differentiation of endodermal cell types difficult

and thus poses a major hurdle for attempts to derive endodermal

cell types for ES or other sources that might be used for

therapeutic purposes.

Our studies address both of these concerns. First, we have

undertaken an in depth analysis of the newly characterized XEN

stem cells [6] which like the EC-derived END2 and PYS2 cells,

express markers for the AVE. XEN cells can thus can be used to

study the inductive effects that have been attributed to the AVE,

including heart formation, primitive streak initiation and forebrain

induction. In addition, since XEN cells are derived from mouse

blastocysts, it will be possible to derive XEN cells from mice with

deletions of genes thought to be involved in AVE function thereby

Figure 6. Cluster analysis of microarray data. A. Cluster Dendrogram representing the amount of variance in markers commonly expressed
through microarray analysis by each of the ExEn cell lines (in triplicates). B. Venn Diagrams representing the number of genes in the array that are
either upregulated (red) or downregulated (blue) in pair-wise comparisons between the different cell lines. Probes are called as ‘‘present’’ if the p-
value for detection was less than 0.01.
doi:10.1371/journal.pone.0012016.g006
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providing an assay to directly test their function in the primitive

endoderm. Finally, by comparing the three related but dissimilar

cell lines, we are able to refine the list of markers that distinguish

between different subtypes of endoderm including those that

distinguish DE from VE.

Inductive and morphogenetic functions of the extra-
embryonic endoderm

Endoderm both embryonic and extra-embryonic has been

shown in various model systems to play an inductive role in the

differentiation of mesodermal and ectodermal tissues that adjoin it.

The VE in particular has been proposed to play important roles in

heart formation, primitive streak formation and the development

of the forebrain.

Studies in amphibian embryos dating back to the 1960s

demonstrate that signals from the pregastrula endoderm support

myocardial differentiation [38,39,40,41,42,43,44,45]. This finding

is supported by studies that the AVE of the mouse [46] and the

hypoblast of avian embryos [47,48,49], also support cardiac

differentiation. In addition, endoderm isolated from avian

embryos has been shown to enhance cardiac differentiation when

co-cultured with mouse ES cells [50]. Importantly, these studies

indicate that cardiac specification requires a VE signal only

transiently, from early to mid-gastrulation [47,51,52] and that

signals from the DE are required only later, for proliferation of

cardiomyocytes and the initiation of beating [53]. Thus it will be of

particular importance to separate the molecular signals of the DE

from the VE in order to uncover the specific signals that mediate

endoderm’s ability to activate and later support myocardial

differentiation.

The VE has also been implicated as providing signals required

for streak elongation. This hypothesis has come largely from the

observation of an anterior migration of the AVE just prior to the

onset of gastrulation [54] and studies in avian embryos showing

that rotation of the hypoblast (which is equivalent to the AVE [55])

results in a repositioning of the primitive streak [55,56,57]. A more

in depth molecular analysis of this process has revealed greater

complexity than was previously anticipated. First, removal of the

hypoblast does not eliminate streak formation but rather results in

the formation of multiple streaks. This suggests that the hypoblast

does not activate streak elongation but rather acts to limit streak

formation to a single location [58]. Simultaneously, FGF signaling

Figure 7. TGFbeta signaling pathways are active in heart inducing cell lines. Diagram of TGFbeta signaling pathways from the Kyoto
Encyclopedia of Genes and Genomes [75,76,77] showing pathway components that are considered to be present based on a p-value of detection
,0.01. Factors indicated in blue are present in all of the ExEn cell lines. Factors present in green are present in a subset of the cell lines (the particular
cell lines are indicated by letters adjacent to the box indicating the factor).
doi:10.1371/journal.pone.0012016.g007
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from the hypoblast activates localized expression of genes

associated with the establishment of planar cell polarity and

defines the site of active streak elongation [59].

Finally, two specific observations lead to the hypothesis that

AVE might serve as an inducing population for the vertebrate

forebrain. First, ablation of the AVE of the mouse leads to a loss of

Hesx expression in the anterior neural folds of the mouse (although

other markers assessed were normal) [60]. Second, chimeric

analysis of mouse embryos possessing homozygous deletion of Otx2

[61,62] and Lim1 [63] or that are double mutant for Lim1 and

HNF3b [64], suggest that AVE expression of these genes is

necessary for normal axis and forebrain development. Together

these data suggest that signaling from the AVE is necessary for

normal forebrain development. However, the AVE does not

directly activate forebrain differentiation. Grafting of the rabbit

AVE [65] or chick hypoblast to naı̈ve epiblast that is capable of

forming neural tissue results in the transient ectopic expression of

neural markers but these markers are not maintained and host

tissues do not form neural plate structures [55]. Similarly, explant

co-cultures of AVE and mouse epiblast do not induce the

expression of anterior neural markers but instead suppress

posterior neural differentiation [66]. So what is the mechanism

by which VE helps to pattern the forebrain if it does not act as a

forebrain inducer? 1) Transient activation of early neural markers

suggests that the VE may prime the ectoderm for neural

development, 2) The AVE appears to repress posterior develop-

ment and 3) it appears that the VE directs morphogenetic

movements in the ectoderm and mesoderm that are required for

normal axis formation [reviewed in: [55,66]. This hypothesis is

consistent with the hypoblast rotation experiments described in the

previous section.

Together, these studies highlight the importance of the VE

generally and the AVE specifically in the early patterning of the

embryo and subsequent organ formation.

Does the extra-embryonic endoderm make cellular
contributions to endodermal organ formation?

Until recently, the dogma of endoderm formation in the mouse

has asserted that the visceral endoderm that surrounds the

embryonic epiblast prior to gastrulation is actively displaced by

the forming definitive endoderm and contributes only to extra-

Figure 8. Heart inducing endoderm signals through the JNK/MAP Kinase and the TAK1/NLK pathways. A. Diagram of MAP Kinase
signaling pathways after the Kyoto Encyclopedia of Genes and Genomes [75,76,77] showing pathway components that are considered present based
on a p-value of detection ,0.01. Factors indicated in blue are present in all of the ExEn cell lines. Factors highlighted in green are present in a subset
of the cell lines (the particular cell lines are indicated by letters adjacent to the box indicating the factor). Factors indicated in red are present in XEN
cells only. B. qRT-PCR data showing expression of Grb2 in END2 (green), PYS2 (yellow) and XEN cell (red) respectively.
doi:10.1371/journal.pone.0012016.g008
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embryonic structures [67]. This conclusion was based largely on

the observation of gene expression patterns showing markers such

as alpha-fetoprotein being lost in the endodermal cells overlying the

epiblast during gastrulation and low-resolution fate mapping

studies. With the advent of multiple lineage labels and time-lapse

live imaging, we have clearly demonstrated that all or most the

visceral endoderm that overlies the pregastrula epiblast is

integrated into the definitive endoderm rather than being

displaced by it. Concomitantly, these cells lose expression of

visceral endoderm markers and gain expression of markers for the

definitive endoderm. This lineage study also demonstrates that

VE-derived cells contribute to gut formation [27]. This shows that

there are distinct regions of embryonic (EmVE) and extra-

embryonic (ExVE) visceral endoderm with unique fates in the

embryo and suggests that these EmVE cells may contribute to

endodermal organ formation. While none of the ExEn cell lines

that we assessed expressed markers for the definitive endoderm, it

remains to be determined if these cells can be coaxed by the

addition of growth factors to differentiate along definitive

endoderm lineages and adopt fates associated with the gut or its

associated organs. If this turns out to be the case, then in addition

to being a useful tool for the study of the inductive properties of the

Figure 9. Marker expression in XEN cells is stable over several passages when cells are grown under standard serum-containing
medium. qRT-PCR data comparing marker expression in XEN cells grown under standard serum-containing conditions to XEN cells grown in serum-
free medium. Despite some spikes in marker expression at some passages, over the entire course of this experiment there were no obvious trends
(either upward or downward changes in expression) in any of the markers assessed. In addition, while some markers were differentially expressed
between the two culture conditions, there was also no obvious change in marker expression in the serum-free medium when assessed over the
entire course of the experiment. This suggests that XEN cells are stable when grown in culture over several passages.
doi:10.1371/journal.pone.0012016.g009
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ExEn, XEN cells might also serve a stem population from which to

derive differentiated endodermal cell types.

TAK1/p38/JNK/NLK pathways in these cells types
Above, we presented genetic and embryological data that the

VE acts, in part, to direct cell movements in the embryo.

Consistent with this, we found that each of the three ExEn cell

lines possesses intact pathways for non-classical MAP Kinase

signaling acting through JNK [68] and NLK [69]. Since both of

these factors are associated with planar cell polarity, it supports the

notion that these pathways may play a pivotal role in the

endoderm’s ability to direct morphogenetic movements. Indeed,

JNK Kinase has been shown to be necessary for heart induction

downstream of the non-canonical Wnt, Wnt11 [70]. In addition,

TAK1, which is immediately upstream of NLK is essential for

cardiac differentiation in P19 [71], and TAK1 [72] and TAB1[73]

mutants show defects in cardiac morphogenesis. It remains to be

determined whether these defects result from a specific endoder-

mal requirement for these signals or arise from a more general

requirement in embryonic tissues. Nonetheless these findings lend

support to a model in which a non-classical MAP Kinase pathway

mediated by TAK1/p38/JNK or TAK1/NLK mediate some

functions of the endoderm.

Conclusions
Endoderm, both embryonic and extra-embryonic plays impor-

tant morphogenetic functions in the mouse and other vertebrate

embryos. We are only just beginning to refine our understanding

of the different types of endoderm and the molecular mechanisms

by which they mediate their functions in development. Here, we

undertake a thorough analysis of ExEn cell lines to help refine the

list of markers that define various endodermal cell types.

Specifically we provide further characterization of XEN cells [6]

which may serve as a useful tool in the study of ExEn

differentiation and function.

Materials and Methods

Cell Culture
XEN cells were derived from ICR strain blastocyst stage

embryos according to standard procedures [6]. END2 cells were

derived from P19 embryonal carcinoma cell lines [74] and PYS2

cells were derived from 129 strain mice tumor cells [1]. XEN and

PYS2 cells were both maintained in high glucose Dulbecco’s

Modified Eagles Medium (DMEM) devoid of L-glutamine and

sodium pyruvate (Mediatech). DMEM was enriched with 10% ES

qualified Fetal Bovine Serum (GIBCO, lot: A15A00X), 1X

nonessential amino acids (Mediatech), 1X L-glutamine, 1X

sodium pyruvate (Mediatech) and b-mercaptoethanol (Sigma)

was added to the medium to make a final concentration of

0.1 mM. Penicillin and streptomycin were then added in final

concentrations of 100 units/ml and 100 mg/ml, respectively

(Mediatech). This medium is referred to in the text as standard

medium. END2 cells were grown in DMEM/F12 1:1 media

(Mediatech) supplemented with 10% FBS, L-glutamine, non-

essential amino acids and penicillin/streptomycin (Mediatech). To

test for the stability of these cells over several passages and to test

their stability in different media, XEN cells were thawed and

cultured as previously described. Cells were split onto two plates:

one for standard (+ serum) and the other for serum-free culture.

Serum-free medium is comprised of Knockout DMEM (Invitro-

gen), 10% Knockout SR (Invitogen), 1X nonessential amino acids

(Mediatech), 1X L-glutamine, b-mercaptoethanol (Sigma) and

penicillin/streptomycin (Mediatech). Cells were then collected at

approximately 70% confluence after every passage for a total of 7

passages. RNA was isolated and cDNA was synthesized. qRT-

PCR was performed with various endodermal markers and data

analyzed for changes in marker expression over the 7 passages in

serum containing and serum-free conditions.

Real Time PCR
Cells were collected at 70% confluency, RNA was isolated using

Tri Reagent (Sigma) and cDNA was transcribed using 1 mg RNA

using Quantitect Reverse Transcription Kit (Qiagen). qRT-PCR

reactions were carried out using a 1/20 dilution of template cDNA

in SybrGreen Master Mix (Roche, cat #: 04707516001), on a

Roche LightCycler H 480 Real-Time PCR Instrument, and

analyzed with the LightCycler 480 software package (version

1.5.0.39). Primers used in this study are as follows:

Alpha-fetoprotein (Afp): forward AGCTGACAACAAGG G-

GAGTG, reverse TTAATAATGGTTGTTGCCTGGA; Cerber-

us-like (Cerl): forward GCAGACCTATGTGTGGA, reverse

ATGAGACATGATCGCTTT; Bmp2: forward TGTGGGCC-

CTCATAAAGAAGC, reverse AGGGTGCAGGCAGGAAACATA; Dkk-

1: forward TACAATGATGGCTCTCTGCAGCCT, reverse TGGTCA-

GAGGGCATGCATATTCCA; Foxa2: forward CGGCCAGC-

GAGTTAAAGTAT, reverse TCATGTTGCTCACGGAAGAG;

Gapdh: forward AATGGATACGGCTACAGC, reverse GTGCAGC-

GAACTTTATTG; Gata4: forward CATCAAATCGCAGCCT,

reverse AAGCAAGCTAGAGTCCT; Gata6: forward ACCAT-

CACCCGACCTACTCG, reverse CGACAGGTCCTCCAAC-

AGGT; Grb2: forward TTGTGTGTCCCAGTGTGCAA reverse

AGCTCAGCTCATCGTCAGCA; Hex: forward GGAGGCTGA-

TCTTGACT, reverse GTAGGGACTGCGTCAT; Hnf4a: forward

CGAACAGATCCAGTTCATCAAG, reverse ATGTGTTCTTGCAT-

CAGGTGAG; Cytokeratin 19 (Krt19): forward ATCCAGATAAG-

CAAGACCGAAGT, reverse ATCTGTGACAGCTGGACTC-

CATA; Laminin B1(Lamb1): forward CAGAATGCAGACGA-

TGTTAAGAA, reverse GGCATCTGCTGACTCTTCAGT; reverse

AGCGTGTACCCTATTGG; Platelet-derived growth factor alpha (Pdgfra):

forward CCTCAGCGAGATAGTGGAGAAC, reverse AC-

CGATGTACGCATTATCAGAGT; Sox17: forward GGAATC-

CAACCAGCCCACTG, reverse GGACACCACGGAGGAAATGG; Sox7:

forward CAAGGATGAGAGGAAACGTCTG, reverse TCATCCACA-

TAGGGTCTCTTCTG; Sparc: forward AGGGCCTGGATCTTC-

TTTCTC, reverse CAAATTCTCCCATTTCCACCT; transthy-

retin (Ttr) forward TTCACAGCCAACGACTCTGG, reverse

AATGCTTCAGGGCATCTTCC; t-type plasminogen activator

(tPA): forward CTGACTGGACAGAGTGTGAGCTT, reverse

ACAGAT GCT GTGAGGTGCAG; urokinase-type Plasminogen

activator (uPa): forward CAGCTCATCTTGCACGAATACTA,

reverse AGATGGTCTGTATGGACCTGGAT; Villin1(Vil1): for-

ward TCAAGTGGAGTAACACCAAATCC, reverse CTAGT-

GAAGTCTTCGGTGGACAG.

Immunohistochemistry
Cells were washed with PBS and fixed in 4% PFA 30 minutes,

then blocked with 3% FBS-0.3% Triton in PBS. Primary antibodies

were then added, and incubated overnight at 4uC. Cells were

washed with PBS and blocked for 30 minutes at room temperature.

Secondary antibodies were added and cells were incubated

overnight at 4uC. Finally, cells were washed with PBS and cover

slipped with Vectashield mounting medium containing DAPI.

Scanning Electron Microscopy
Cells were passaged on to gelatin-coated plastic coverslips. A

day later, they were rinsed once with PBS and fixed at room

temperature in 2.5% Glutaraldehyde/2% PFA in 0.075M
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Cacodylate buffer pH 7.5 for one hour. They were then

dehydrated in a graded ethanol series. Cells were then critical-

point dried in a Denton JCP-1 Critical Point Drying Apparatus

and subsequently coated with gold/palladium in a Denton

Vacuum Desk 1V sputter coating system. Imaging was carried

out with Zeiss Field Emission Supra 25 Scanning Electron

microscope.

Microarray Analysis
Total RNA was isolated with Qiagen RNeasy Mini Kit and used

to probe Illumina expression array (MouseWG-6_V2_0_R0_

11278593) in triplicate for each of three heart-inducing cell lines

using Illumina BeadStudio version 3.4.0. The raw Illumina data (9

arrays) was analyzed using Bioconductor packages. The data was

first normalized using LumiExpresso ( ) function. The differentially

expressed genes in each pair-wise comparison were obtained using

Limma ( ) R-package. For gene ontology studies, Illumina probes

were mapped to gene symbol names using—getAnnote.Illumina—
("MouseWG-6_V2_0_R0_11278593_A.bz2") downloaded from

Bioconductor website: http://www.bioconductor.org/download.

Pathway and expression analysis was carried out using DAVID

Bioinformatics Resources 2008 sponsored by the National Institute

of Allergy and Infectious Diseases (NIAID), NIH, at http://david.

abcc.ncifcrf.gov/[36,37] and the Kyoto Encyclopedia of Genes

and Genomes http://www.genome.jp/kegg/ [75,76,77]. This

data is MIAME compliant and has been deposited in NCBI’s

Gene Expression Omnibus [78]. All data is accessible through

GEO Series accession number GSE19564 (http://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc = GSE1956).
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