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ABSTRACT

The functions of endothelial cells (ECs) in regulating oxygen delivery, nutrient exchange, coagulation,
and transit of inflammatory cells throughout thebodyarewell–established. ECshavealsobeen shown
to regulate themaintenance and regeneration of organ-specific stem cells in mammals. In the hema-
topoietic system, hematopoietic stem cells (HSCs) are dependent on signals from the bone marrow
(BM) vascular niche for their maintenance and regeneration after myelosuppressive injury. Recent
studies have demonstrated the essential functions of BM ECs and perivascular stromal cells in regu-
lating these processes. In the present study, we summarize the current understanding of the role of
BM ECs and perivascular cells in regulating HSCmaintenance and regeneration and highlight the con-
tribution of newly discovered EC-derived paracrine factors that regulate HSC fate. STEM CELLS

TRANSLATIONAL MEDICINE 2016;5:1–8

SIGNIFICANCE

Recent studies have shown that blood stem cells require signals from the bone marrow microenvi-
ronment or niche for their survival and regeneration. In the present study, the current understanding
of the interactions between blood stem cells and niche cells is summarized and the potential for
niche-derived secreted factors as therapeutic agents for regenerative medicine is highlighted.

INTRODUCTION

Vascular endothelial cells (ECs) constitute the
intimal lining of arteries, capillaries, and veins
within the human vasculature and serve critical
roles in the delivery of oxygen and nutrients, in
the regulation of coagulation, and as the gate-
keepers to inflammatory cells for entry into
tissues [1–3]. During development, ECs are neces-
sary for the formation of the hematopoietic
system and the emergence of definitive hemato-
poietic stemcells (HSCs) [4–7]. In the past decade,
discoveries from several laboratories have dem-
onstrated a critical function for ECs in the adult
HSC niche, such that ECs regulate HSC mainte-
nance and regeneration after stress or injury
[8–14], in concertwith othermicroenvironmental
cues. Exquisite microanatomical studies have
confirmed that the most primitive HSCs reside
in bone marrow (BM) vascular and perivascular
niches [15, 16]. BM ECs regulate HSC fate, in part,
via the elaboration of paracrine factors [17–19].
Commensurate with these observations, recent
studies have suggested that ECs also regulate
the self-renewal and regeneration of stem cells

in nonhematopoietic organs, including the liver,
brain, lung, and skin [1, 20–29]. In the present
study, we describe the hematopoietic-specific ac-
tivities of BM ECs and highlight the potential for
EC-derived paracrine mechanisms to be trans-
lated into regenerative therapies for patients.

ENDOTHELIAL CELLS AND
HEMATOPOIETIC DEVELOPMENT

Within the embryo, development of the hemato-
poietic system occurs in multiple locations at var-
ious stages, including the extraembryonic yolk
sac, fetal liver, spleen, and, finally, adult BM. Ev-
idence exists for two discrete anatomic origins
of hematopoietic activity, one extraembryonic
andone intraembryonic [30].During theprimitive
streak stage, groups of mesodermal cells in the
yolk sac form the extraembryonic blood islands
(mouse gestational age E7.5). The peripheral cells
differentiate into ECprecursors (angioblasts), and
the inner cells become primitive blood cells [31].
The two lineages are so closely related in timeand
space that this led to a hypothesis regarding a
common precursor, the “hemangioblast.” Blast
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colony tracing studies later provided direct evidence for the exis-
tence of the hemangioblast [5].

Before 1975, it was widely accepted that definitive HSCs orig-
inated from the yolk sac blood islands. To evaluate this dogma,
Françoise Dieterlen-Lièvre took advantage of the ability to distin-
guish chick and quail cell nuclei and grafted 2-day-old quail em-
bryos on to chick yolk sacs of comparable developmental
stages, before or shortly after the establishment of vasculariza-
tion [32]. The chick cells never gave rise to adult hematopoie-
sis; thus, although it contributes to embryonic hematopoiesis,
the source of definitive long-term HSCs was concluded to be
intraembryonic.

The first definitive HSC known to be able to fully reconstitute
the hematopoietic system on transplantation was identified in
the aorto-gonad-mesonephros region (AGM) inmice and humans
[5, 33–35]. Yet other studies have suggested that yolk sac cells can
mature into definitive HSCs provided they are transplanted into a
newborn and not an adult mouse [36]. In addition, a significant
reservoir of HSCs can be found residing in the placenta during de-
velopment [37, 38]. HSCs from theAGMarepresumed to colonize
the fetal liver, where they give rise to definitive hematopoietic
precursors. Several seminal studies using lineage tracing in both
mice and zebrafish have shown that definitive HSCs arise from
hemogenic endothelium within the ventral aspect of the dorsal
aorta at E10.5 [39–41]. Runx1 is required for this process to occur
[42], and mice lacking Flk1, a tyrosine kinase expressed on endo-
thelial progenitor cells, fail to develop both vascular endothelium
and blood islands during embryogenesis [43].

Later in development, HSCs reside in the fetal liver. Many
questions regarding the fetal liver vascular niche remain, espe-
cially regarding the process of migration of HSCs from the fetal
liver to the BM following birth. A recent study showed that
nestin-positive NG2+ pericytes associate with portal vessels,
forming a fetal perivascular niche that promotes HSC expansion
[7]. A rapid loss of HSCs in the postnatal liver is associated with
dramatic postnatal changes in portal vessel circulation after clo-
sure of the umbilical inlet at birth. A corresponding loss of niche
cells, including nestin-positive NG2+ pericytes, also occurs, be-
cause the portal vessels undergo a transition from neuropilin-
1+ephrin-B2+ arteries to an EphB4+ vein phenotype. This suggests
that the changes in postnatal circulation and hemodynamics alter
the liver vasculature and are associated with the loss of HSC-
supporting cells. The HSCs then migrate to the BM wherein
long-term hematopoiesis persists postnatally.

CONCEPTUAL HISTORY OF THE HSC NICHE

In 1968, Wolf and Trentin directly implanted BM stroma into the
spleens of irradiated recipients and showed that the proportions
of outgrowing erythroid andmyeloid colonies could be biased by
their local environment, providing some evidence for microenvi-
ronmental influence of immature hematopoietic cell fate [44].
The existence of a niche for stem cells within the BMwas formally
proposed by Schofield in 1978 [45]. At that time, Becker et al.
showed that HSCs likely existed based on their research using
the colony-forming unit-spleen (CFU-S) assay [46]. Schofield
noted that the putative CFU-S stem cells were less robust than
cells of the BM at reconstituting hematopoiesis in irradiated an-
imals and proposed the existence of a specialized location within
the BM that maintained HSCs [45]. However, definitive evidence
of an HSC population and an HSC niche was lacking, and many

questions regarding the factors that governedHSCdifferentiation
and maintenance remained unanswered for decades. Some
groups proposed stochastic mechanisms and others favored an
“inductive” hypothesis in which the niche governed HSC fate.
Over the subsequent decades, numerous studies clarified the crit-
ical role of BM microenvironment cells in regulating HSC fate.

ANATOMY OF THE ADULT HSC NICHE

In addition to HSCs and their progeny, the BM is composed of a
diversearrayof cellswith specialized functions. These includevas-
cular ECs, perivascular cells, osteoblasts, sympathetic nerves, ad-
ipocytes, macrophages, and many subsets of stromal cells [1, 47,
48]. BM niche cells provide both positive and negative regulatory
signals for HSCs. Adipocytes have been shown to negatively reg-
ulate HSC self-renewal in vivo [49]. Adipogenic differentiation of
stromal cells also leads to increased adipocyte numbers in the
BM, which, in turn, hampers hematopoietic recovery after injury
[50]. Bone-degrading osteoclasts are dispensable for HSCmainte-
nance in op/op, Fos-deficient, and Rankl-deficient mice, which
lack osteoclasts [51, 52].

Most mammalian hematopoiesis occurs in the axial skeleton
(so-called red marrow) in the flat bones, such as the pelvis, ster-
num, skull, ribs, vertebrae, and the metaphyseal and epiphyseal
ends of long bones. Other BM, composed of higher fat content
(“yellow marrow”), can be found in the hollow interior of the di-
aphyseal portion (shaft) of the long bones. Arteries enter through
the bone cortex, terminate in the endosteum (the connective tis-
sue lining the inner surface of compact bone), and branch in the
metaphysis or diaphysis of long bones [53, 54]. Most of the
branching arteries lie in themetaphysis, and the central diaphysis
contains few, largely unbranched arteries [53]. Some distal arte-
rioles terminate at capillaries in the endosteum, although most
termination points are found in the metaphysis [53]. Near the
bone, the arterioles open up and anastomose with a plexus of ve-
nous sinuses [53]. These venous sinuses drain via collecting ve-
nules that lead back centrally to the central longitudinal vein
[53]. The arterioles associate more closely with the endosteal re-
gion and are ensheathed exclusively by rare NG2+ (also known as
CSPG4+), nestinbright pericytes, which are distinct from sinusoid-
associated leptin receptor (LepR)+ or Nestindim perivascular cells
[16]. Veins are located in the central diaphysis, where they con-
nect to metaphyseal capillaries. The venous sinuses are thin-
walled, consisting of a layer of flat ECs with little to no basement
membrane and covered with pericytes and perivascular stromal
cells, including C-X-C motif chemokine ligand 12 (CXCL12) abun-
dant reticular cells (CAR cells) [55] and Lepr+ cells [16, 56, 57]. The
BM does not have lymphatic drainage [58], and all vessels are in-
terspersed within a meshwork of trabecular bone. This anatomy
establishes a circular pattern to the blood flow, from the center of
the marrow cavity toward the periphery and back again.

Defining the anatomic location of HSCs in the adult BM as it
relates to distinct niche cells has proved to be challenging owing
to the difficulty in retaining histological integrity when sectioning
bone, the number of markers necessary to identify HSCs, the lim-
itations of microscopy, and the close proximity of bone and vas-
cular elements throughout the BM. The discovery of a pattern of
SLAM family receptor expression (CD150+CD2442CD482) on
HSCs catalyzed the ability of researchers to localize HSCs in the
niche.Most SLAM+HSCswere found in that study tobeassociated
with sinusoidal endothelium [59]. Previously, up to 10 markers
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had been necessary to identify HSCs, and even then, the purity of
the population as long-term HSCs rarely exceeded 20% [60].

It has also been shown that the local oxygen concentration
and HSC metabolic state in the BM contributes to regional differ-
ences inHSC spatial localization [16, 61–66]. Quiescent HSCs have
been shown to have lower levels of intracellular reactive oxygen
species (ROS), and high ROS levels damage HSC self-renewal ca-
pacity andpromoteHSCexhaustion [61–65].QuiescentHSCswith
lower levels of ROS have been shown to reside adjacent to arte-
riolar blood vessels rather than sinusoids [16, 66], and conditional
depletion of the ensheathing arteriolar pericytes induces HSC cy-
cling, with ensuing reduced functional long-term repopulating
ability [16]. However, if themetabolic state is ignored, this differ-
ential vascular localization no longer applies, and HSCs are found
throughout arteriolar and sinusoidal niches [66]. Compared with
arterioles, the more permeable BM sinusoids promote HSC acti-
vation. Furthermore,HSCexposure tobloodplasmawas shown to
increase HSC ROS levels, augmenting their migration and differ-
entiation and compromising their long-term repopulation abil-
ities and survival [66]. In contrast, Acar et al. demonstrated
that HSCs were localized primarily in the central BM away from
bonesurfaces, in thediaphysis relative tothemetaphysis, andclose
to sinusoidal vessels [15]. In their study, HSCs were determined to
be relatively distant from both arterioles and transition zone ves-
sels and the location was independent of quiescence [15].

Given thatHSCs aremobile and in constant low-level flux [67],
the possibility exists that microscopic images capture a short-
lived interaction of HSCs with neighboring vascular and perivascu-
lar niche cells. Using sequential high-resolution, three-dimensional
imaging of the calvariumofmice over time [68, 69], primitive HSCs
have been shown to traffic to BM vessels, where the chemokine
CXCL12 and the glycoprotein E-selectin were rich. HSCs were
shown to lodge in these areas for weeks, wherein they underwent
self-renewal and expansion [68, 70].

BM OSTEOLINEAGE CELLS

The concept of an endosteal niche for HSCs evolved from initial
studies that indicated that BM stromal cells could maintain HSCs
ex vivo [71], that hematopoietic stem/progenitors localized near
endosteal margins [72], and that osteoblasts produce cytokines
that support hematopoietic cells [73]. Calvi et al. showed that am-
plification of BM osteoblasts and trabecular bone content led to
expansion of the HSC pool in vivo, and Zhang et al. suggested that
amplification of N-cadherin+CD452 osteoblastic cells correlated
with increased HSC numbers [74, 75]. Other studies also sug-
gested that transplanted HSCs resided preferentially in the BM
endosteal area in recipient mice [70, 76, 77].

Endochondral ossification, the process of bone formation
through a cartilage intermediate, has also been shown to be re-
quired for HSC niche formation in mice [78]. A clonal, lineage-
restricted common skeletal progenitor cell (bone, cartilage,
stromal progenitor) has also been described that contributes
CD105+, Thy1+, and 6C3+ stromal cells capable of supporting he-
matopoietic stem and progenitor cells [79]. Themaintenance of
quiescent HSCs with preserved long-term repopulating capacity
has also been suggested to be dependent on the presence of BM
osteolineage cells [80, 81].

Recent studies have challenged whether BM osteoblasts are
necessary for HSC maintenance. Several studies have found that
mostHSCs are not in contactwith or in close approximation toBM

osteoblasts [59, 65, 68, 82]. Second, depleting osteoblasts viaBgn
deficiency [83]or treatmentwith ganciclovir [84, 85]hadnoeffect
on HSC frequency. Third, increasing BM osteoblast numbers via
strontium treatment had no acute effect on HSC frequency
[86]. It is important to note that the observations of HSC localiza-
tion and frequency could have been affected in these studies by
differences in thecriteriaused todefine theHSCphenotype.How-
ever, Ding et al. demonstrated that cell-specific deletion of stem
cell factor (SCF) in BM osteoblasts had no effect on HSC mainte-
nance as measured by competitive repopulation assays in mice
[56, 57]. Greenbaum et al. also showed that deletion of CXCL12
inBMosteoblasts hadnoeffect onHSCmaintenance asmeasured
via competitive repopulation assays [87]. Taken together, these
data suggest that BM osteoblasts might provide signals that are
sufficient to promoteHSCexpansion; however, it remains unclear
whether BM osteolineage cell-derived signals are necessary for
HSC maintenance or regeneration.

BM ECS IN NORMAL HEMATOPOIESIS AND HSC REGENERATION

As early as 1961, it was observed that the recovery of hematopoi-
esis in rats after 10 Gy of total body irradiation (TBI) required the
recovery of an intact vasculature [88]. In addition, extramedullary
hematopoiesis is known to occur in patients in locations devoid
of osteolineage cells (e.g., liver and spleen) [89], and ECs were
known to create stemcell niches inother tissues, suchas thebrain
[24]. Furthermore, given the essential role of ECs in hematopoi-
etic development, investigators have explored the role of ECs
in regulating adult hematopoiesis. As noted, HSCs reside in the
adult BM in association with vascular and perivascular niche cells
[15, 16, 59, 66]. In 1972, it was observed that hematopoietic re-
generationwas linked to vascular regeneration in areas of curetted
BM in adult mice [90]. More recently, conditional deletion of the
gene that encodes the gp130 cytokine receptor in ECs led to a re-
duction in HSC numbers and overall BM hypocellularity [91].

Ding et al. established the essential role of BM ECs in regulat-
ing the maintenance of the HSC pool via cell-specific deletion of
SCF [56]. Ding and Morrison [57] and Greenbaum et al. [87] later
demonstrated that deletion of CXCL12 in BM ECs also impaired
HSCmaintenance inmice. In the same studies, Ding andMorrison
demonstrated that deletion of CXCL12 from LepR+ perivascular
stromal cells depleted HSCs [57]. In contrast, Greenbaum et al.
showed that deletion of CXCL12 from Prx1+ mesenchymal pro-
genitor cells markedly decreased HSC content [87]. Taken to-
gether, these studies confirmed a necessary role for BM ECs
and BM perivascular stromal cells in maintaining the HSC pool
in steady state.

HumanECs canpromoteandmaintainHSCs inculture [8, 9, 92],
and BM ECs promote long-term reconstituting HSC expansion in
culture [2, 93]. The BM sinusoidal vasculature is radiosensitive
but regenerates and reorganizeswithin 3–4weeks after sublethal
radiation exposure [10, 94]. Following radiation injury, coculture
of irradiated HSCs with ECs can rescue HSCs with multilineage
reconstituting capacity that are capable of radioprotecting le-
thally irradiated recipientmice after transplantation [8, 9].More-
over, Chute et al. and Salter et al. demonstrated that systemic
infusion of autologous or allogeneic murine ECs into lethally irra-
diatedmice accelerated both BM vascular and hematopoietic re-
generation and markedly improved survival, in the absence of
transplanted hematopoietic cells [10, 94]. Salter et al. demon-
strated that transplanted ECs donot engraft in theBMvasculature,
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suggesting that the regenerativeeffectsweremediatedvia indirect
activities or elaboration of EC-derived soluble factors [94]. This is
consistentwith clinical studies thathave shown that reconstitution
of the BM vasculature arises primarily from host BM ECs rather
than donor-derived ECs [95].

Several lines of evidence suggest that BM ECs have a neces-
sary role in HSC regeneration [2, 13, 94]. Genetic deletion of
VEGFR2 or antibody-mediated blockade of VE-cadherin-mediated
vasculogenesis was shown to disrupt BM vascular regeneration in
irradiated mice and result in prolonged hematopoietic toxicity
and delayed HSC regeneration [2, 13, 94]. Gain of function models
have also shown that ECs promote HSC maintenance and regener-
ation. Tie2Cre;Bak12/2;Baxfl/2mice, which bear deletion of the in-
trinsic mediators of apoptosis, BAK and BAX, in Tie2+ ECs, were
shown to have radioprotection of the BM vasculature and the he-
matopoietic system comparedwithmice that retained BAX expres-
sion in Tie2+ ECs [12]. Similarly, genetic activation of the Akt-mTOR
pathway in primary human ECs augments the capacity to promote
HSC self-renewal in culture, and mitogen-activated protein kinase
(MAPK) activation favorsHSCdifferentiation in coculture [96].Most
recently, the role of SCF-expressing ECs in promoting extramedul-
lary hematopoiesis in the spleen was also demonstrated in murine
models [97]. Tcf21+ stromal cells were also shown to have a neces-
sary role inmaintaining splenicHSCsviaCXCL12 secretion in the set-
ting of extramedullary hematopoiesis in the same study [97].

BM EC-DERIVED PARACRINE FACTORS

Although recent studies have confirmed the essential role of BM
ECs inmaintaining the HSC pool in steady state and regeneration,
the precise mechanisms through which BM ECs regulate HSC
maintenance and regeneration remain incompletely understood.
Although cell-cell interactions are clearly important, our labora-
tory has focused on discovering and characterizing the paracrine
factors that are produced by BM ECs that regulate HSC fate [92,
98]. Some of these factors have been elucidated and well charac-
terized, such as SCF and CXCL12 [56, 57, 87]. Via an unbiased gene
expression analysis of human ECs that supported human HSC
expansion [8], Himburg et al. identified pleiotrophin (PTN), a
heparin-binding growth factor, to be more than 25-fold overex-
pressed by ECs that promote HSC expansion [18, 99, 100]. Ex vivo
treatment of murine or human HSCs with PTN caused a marked
increase in long-term repopulating HSCs in culture [18], and sys-
temic administration of PTN to irradiated mice caused a pro-
nounced amplification of BM stem and progenitor cells in vivo
[18]. The effects were mediated via inhibition of the protein re-
ceptor tyrosine phosphatase-z (PTPz) expressed on HSCs [100].
Subsequently, Himburg et al. demonstrated that both BM ECs
and CXCL12-abundant reticular cells express PTN in theHSC niche
and that PTN regulates HSC homing to and retention in the BM
vascular niche [99]. Mechanistically, PTN acts in a paracrine man-
ner in the vascular niche, and binding of PTN with PTPz on HSCs
has been shown to induce phosphorylation of anaplastic lym-
phoma kinase, yielding downstream activation of Ras/MEK/ERK
signaling in the HSC pool [100].

Doan et al. reported that BM ECs in radioprotected Tie2Cre;
Bak12/2;Baxfl/2mice secreted significantly increased concentra-
tions of epidermal growth factor (EGF) and amphiregulin, another
EGF receptor (EGFR) agonist, in the BM at steady state and early
aftermyelosuppressive TBI [12]. These results suggested that EGF
might beproducedby Tie2+ BMECs and that EGFR signalingmight

be functionally relevant toHSC regeneration. Subsequently, Doan
et al. showed that systemic administration of EGF promoted HSC
regeneration and improved survival in mice after lethal irradia-
tion [101]. Mechanistically, EGF promoted HSC regeneration via
repression of PUMA-mediated apoptosis in HSCs, leading to in-
creased hematopoietic recovery and improved survival [101].

Poulos et al. reported that BM ECs also secrete Jagged-1, a
Notch ligand, and conditional deletion of Jagged-1 in BM ECs
led to hematopoietic exhaustion and HSC depletion over time
[17]. Hematopoietic regeneration after 650 cGy of TBI was also
impaired in mice with EC-specific Jagged-1 deficiency [17]. Al-
though previous studies have suggested that Notch signaling
might be dispensable for normal hematopoiesis [102], the recent
studies by Butler et al. and Poulos et al. have indicated that
Jagged-1 signaling,mediated by BMECs, is necessary for hemato-
poietic regeneration [2, 17]. A schematic representation of the
vascular and perivascular-derived paracrine factors that regulate
HSC fate is shown in Figure 1.

PERIVASCULAR STROMAL CELLS

As noted, several recent studies have highlighted the importance
of perivascular cells in regulating HSC fate. Anatomically, BM ves-
sels are ensheathed by pericytes or adventitial reticular cells, in-
cludingCXCL12-abundant reticular cells (CARcells) [55], andother
populations characterized by expression of nestin, myxovirus
resistance-1 (Mx1), Lepr, the transcription factor paired related
homeobox-1 (Prx1), and the transcription factor osterix [56, 87,
103, 104]. Current understanding indicates substantial overlap in
the expression of several of thesemarkers in BMperivascular cells.
Pericytes represent structurally unique perivascular cells that ex-
pressNG2and surroundBMarterioles,whereas LepR+perivascular
stromal cells surround BM sinusoidal vessels [16, 105].

The functional role of mesenchymal stromal cells (MSCs) in
the HSC niche was suggested by the observation that HSCs reside
near nestin-expressing MSCs and that deletion of nestin-positive
cells depleted BM HSC content [103]. Additionally, BM stromal
cells with many hallmarks of MSCs express fibroblast activation
protein (FAP) [106, 107], and ablation of FAP+ cells led to BM
hypocellularity and anemia [108, 109]. Deletion of the RhoGT-
Pases, Rac1 and Rac2, in nestin-positive BM cells was associated
with decreased nestin-positive cells, increased trabecular bone,
increased sinusoidal space, decreased arteriolar volume, and de-
creasedHSCs in theBM[110]. IncreasedHSCcyclingwasobserved
after conditional deletion of NG2-expressing pericytes, which en-
velope BM arterioles, suggesting that HSC quiescence is main-
tained near BM arterioles and is mediated, at least in part, by
arteriolar pericytes [16]. Ding et al. found that deletion of SCF
or CXCL12 from nestin-positive MSCs had no effect on HSC main-
tenance [56, 57] but that deletion of CXCL12 from LepR+ perivas-
cular stromal cells caused a significant depletion of HSCs.
Greenbaumetal. alsodemonstrated thatdeletionofCXCL12 from
nestin-negative, Prx1-positivemesenchymal cells yieldedHSCde-
pletion [87]. Taken together, these studies reveal an essential role
for BM perivascular stromal cells in regulating HSC maintenance
in vivo. In light of the recent study by Itkin et al., which demon-
strated that less permeable arterial blood vessels maintain HSCs
in a low ROS state and higher permeability sinusoidal vessels pro-
mote hematopoietic stem/progenitor cell activation [66], it will
be important to determined which perivascular stromal cells
are associated with these two functionally distinct HSC niches.
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Theproductionof extracellularmatrix proteinsbyBMstromal
cells and the interaction of these molecules with HSCs have also
recently come into focus. Deletion of the glycosyltransferase
gene, Ext1, inMx1+ BM stromal cells was shown to cause a reduc-
tion in heparan sulfate production [111]. Decreased heparan
sulfate levels promoted hematopoietic stem/progenitor cell mo-
bilization and promoted donor hematopoietic cell engraftment in
the absence of conditioning [111]. In contrast, deletion of protein
tyrosine phosphatase s (PTPs), a receptor for heparan sulfate
and chondroitin sulfate, was shown to substantially increase
the BM repopulating capacity [112]. These results suggest the im-
portance of the interaction of the proteoglycans with HSCs in the
stromal cell niche and highlight the need for further study into
these important mechanisms of HSC regulation.

ADDITIONAL PARACRINE MECHANISMS IN THE VASCULAR AND
PERIVASCULAR NICHE

In the present review, we focused on the role of BM vascular and
perivascular cells in regulating HSC fate. All the important HSC
regulatory mechanisms could not be covered comprehensively
in the present review, including the Wnt signaling pathway, the
Notch pathway and the Tie2/angiopoietin pathway. The function
of Wnt ligands in the hematopoietic niche has been previously
reviewed in detail [113]. Several lines of evidence have suggested
that Wnt pathway activation in HSCs and progenitors is under a
careful balance among the effects of canonical Wnt ligands, non-
canonical Wnt ligands, and Wnt antagonists and that the dosage
of Wnt signals can mediate distinct effects on HSC self-renewal
and differentiation [113, 114]. Angiopoietin-1 production by
BM osteoblasts was shown by Arai et al. to regulate HSC quies-
cence via action on Tie2+ HSCs [115]. More recently, deletion
of angiopoietin-1 from HSCs or LepR+ perivascular stromal cells
was shown to accelerate hematopoietic and vascular recovery
in mice while increasing vascular permeability [116]. These data

suggest that HSCs and perivascular cells elaborate soluble factors
that regulate the vascular response to injury and hematopoietic
regeneration.

Although it was not the focus of the present review, recent
studies have suggested that corruption of BM niche cells might
contribute to or promote the transformation of hematopoietic
progenitor cells to malignancy [117–119]. Deletion of the micro-
RNA processing endonuclease, Dicer1, in BM osteoprogenitor
cells promoted myelodysplasia in mice [118]. In contrast, muta-
tion in b-catenin in BM osteoblasts promoted acute myeloid leu-
kemia (AML) development in mice [119]. It remains unclear
whethermutations in BMECs also contribute to the pathogenesis
of myeloid or lymphoid neoplasms, and this is the subject of on-
going study. It has also been shown that AML cells release exo-
somes containing protein and RNAs that cause downregulation
of SCF and CXCL12 in BM MSCs, thereby promoting normal HSC
mobilization from the niche and clonal dominance by the AML
clone [120, 121]. These data suggest that leukemic cells actively
participate in subverting the normal HSC niche for the purpose of
facilitating AML growth at the expense of normal hematopoiesis.

EXTRAMEDULLARY HEMATOPOIESIS IN VASCULAR NICHES

In the setting of myelofibrosis, chronic myelogenous leukemia,
and other myelophthisic processes and stress conditions, extra-
medullary hematopoiesis can occur in humans in various organs,
including the liver, spleen, lymph nodes, retroperitoneum, lungs,
genitourinary system, skin, muscle, and rarely, the central
nervous system [122, 123]. These clinical observations have
suggested that these organs must contain an adequate microen-
vironment to sustain hematopoiesis or that migrating HSCs are
capable of modulating the microenvironment in extramedullary
sites to support hematopoiesis temporarily. Recently, Inra et al.
demonstrated that splenic ECs and Tcf21+ stromal cells in the
spleen supported EMH via elaboration of SCF or CXCL12 [97].

Figure1. Paracrine factors in thebonemarrow (BM)vascular niche. A schematic diagramof aBMvessel in longitudinal viewand representation
of several paracrine factors that are secreted by BM endothelial cells and perivascular cells. Abbreviations: CXCL12, C-X-C chemokine ligand 12;
CXCR4, C-X-C chemokine receptor type 4; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; HSC, hematopoietic stem cell;
Jag1, Jagged-1; Jag2, Jagged-2; PTN, pleiotrophin; PTP-z, protein receptor tyrosine phosphatase-z; SCF, stem cell factor.
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Mendt and Cardier also showed that liver sinusoidal ECs “recruit”
hematopoietic stem/progenitor cells via secretion of CXCL12
[124], and Wittig et al. showed that liver sinusoidal endothelial
cells (LSECs) also support B lymphopoiesis [125]. These results
are consistent with the established role of LSECs in promoting
liver regeneration [126] and also are consistent with the recent
demonstration that hematopoiesis in the fetal liver occurs in as-
sociation with fetal portal vessels encompassed by nestin-
positive NG2+ pericytes and that such fetal liver hematopoiesis
ceases with closure of the umbilical vein and the loss of nestin-
positive NG2+ pericytes as the portal vessels transition from
the arterial to the venous phenotype [7].

OPPORTUNITIES FOR TRANSLATION

Elucidation of themechanisms throughwhich BMECs, perivascu-
lar cells, and osteolineage cells regulate HSC self-renewal, regen-
eration, andmalignant transformation will increase the potential
for development of targeted therapeutic agents for the human
hematopoietic system. Novel vascular niche-derived paracrine
factors that regulate HSC fate are particularly exciting in this
regard because the systemic administration of such factors could
be readily developed for clinical testing. Several BM EC-derived
soluble proteins described in the present study, such as PTN
and EGF, and derivatives of these proteins, are in advanced

preclinical testing for investigational new drug evaluation. The
ongoing discovery of novel mechanisms through which vascular,
perivascular, and osteolineage cells regulate hematopoiesis, cou-
pled with the explication of the cross-talk signals among BM ECs,
perivascular cells, osteolineage cells, and other niche elements,
will certainly yieldmany exciting tools for regenerative medicine.
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