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The advent of the human genome sequence and the resulting ∼20,000 genes provide a crucial framework for a transition from
traditional biology to an integrative “OMICs” arena (Lander et al., 2001; Venter et al., 2001; Kitano, 2002).This brings in a revolution
for cancer research, which now enters a big data era. In the past decade, with the facilitation by next-generation sequencing, there
have been a huge number of large-scale sequencing efforts, such asThe Cancer Genome Atlas (TCGA), the HapMap, and the 1000
genomes project. As a result, a deluge of genomic information becomes available from patients stricken by a variety of cancer types.
The list of cancer-associated genes is ever expanding. New discoveries are made on how frequent and highly penetrant mutations,
such as those in the telomerase reverse transcriptase (TERT) and TP53, function in cancer initiation, progression, and metastasis.
Most genes with relatively frequent but weakly penetrant cancer mutations still remain to be characterized. In addition, genes that
harbor rare but highly penetrant cancer-associatedmutations continue to emerge. Here, we review recent advances related to cancer
genomics, proteomics, and systems biology and suggest new perspectives in targeted therapy and precision medicine.

1. Genetic Alterations in the Cancer Genome:
Liver Cancer as an Example

Significant effort has been made to reveal the mutational
landscape of cancers. Herein, we use liver cancer as an exam-
ple to demonstrate recent advances. Primary liver cancer
is the sixth most frequent cancer worldwide and a leading
cause of death in Asia [1, 2], with hepatocellular carcinoma
(HCC) as the most common form, followed by intrahep-
atic cholangiocarcinoma (IHCC) [2]. Most liver cancers
are developed from liver cirrhosis with hepatitis B virus
(HBV) and hepatitis C virus (HCV) infections, with alcohol
consumption, metabolic diseases, and chemical exposure as
major predisposing factors [3–5].

The capacity of next-generation sequencing (NGS) has
dramatically increased over the years due to technological

advances. Cost per raw megabase of DNA sequence has
gone down from over $5000 in 2001 to $0.015 in mid-
2015, at a rate faster than Moore’s Law [6], allowing more
samples to be sequenced in parallel and more powerful
statistical analyses to be performed.Whole-genome sequenc-
ing (WGS) and exome sequencing have identified various
genetic alterations in liver cancer. The first whole-genome
sequencing of a HCC genome with HCV revealed more than
11,000 somatic substitutions in the tumor genome and 22
validated chromosomal rearrangements [7]. A later study
sequenced 27 HCCs, 25 of which were with HBV or HCV,
including 2 sets of multicentric tumors [8]. Multiple chro-
matin regulator genes, including ARID1A, ARID1B, ARID2,
MLL, and MLL3, were detected in ∼50% of the tumors. In
addition, HBV integration in the TERT locus was frequently
observed in a high clonal proportion. Another WGS study
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of 88 HCC tumors, among which 81 were associated with
HBV, found CTNNB1 to be the most frequently mutated
oncogene (15.9%) and TP53 to be the most frequently
mutated tumor suppressor (35.2%) [9]. Integrated analy-
sis of somatic mutations and focal copy-number changes
of 125 HCC tumors and whole exome sequencing on 24
of these samples identified 135 homozygous deletions and
994 somatic mutations [10]. New recurrent alterations in
ARID1A, RPS6KA3, NFE2L2, and IRF2 were found in this
study. To date, ∼1000 HCCs have been sequenced, which
provides a mutational landscape of HCC. Most common
mutations, including TERT promoter mutations (56%), TP53
(27%), CTNNB1 (26%), ARID2 (7%), ARID1A (6%), and
Axin1 (5%), as well as key signaling pathways, such as
the canonical WNT signaling pathway and the JAK/STAT
pathway, were shown to be altered in liver cancers [9, 11,
12].

Moreover, deep-sequencing technologies have greatly
facilitated pathogenic analysis of liver cancers stratified by
etiology. A recent exome sequencing study on 243 liver
tumors identified 161 putative driver genes associated with
11 recurrently altered pathways [13]. Association of muta-
tions and risk factors defined 3 groups of genes centered
on CTNNB1 (alcohol), TP53 (hepatitis B virus, HBV), and
AXIN1. TERT promoter mutations and TP53 alterations were
associated with early and advanced stages in the tumors,
respectively [13]. TERT reactivation is also associated with
HBV infection. Although genome integration is not required
for HBV replication, fragments of HBV DNA are found in
chronic HBV infections and 85–90% of HBV-related HCC
[14, 15]. Most of the integration events result in unidirec-
tional upregulation of genes at the integration sites [16].
Consistent with previous analysis of HBV integration sites
using PCR [17, 18], high-depth genome sequencing of HBV-
positive HCC samples identified frequent HBV integration
including the TERT locus [8, 19].

As the most frequently mutated target, telomerase plays a
central role in liver cancers. Telomerase extends the terminal
segment of eukaryotic chromosomes known as the telomeres
[1, 2, 20]. Normal cells could only undergo a finite number
of divisions in culture before entering a senescence state,
a phenomenon discovered by Hayflick and Moorhead in
the 1960’s [21]. In contrast, cancer cells counter the “end-
replication problem” by acquiring the capacity to maintain
the telomeres. 80–90% of human cancers sustain their telom-
eres by reactivating telomerase [22]. The catalytic core of
the telomerase consists of the catalytic protein component
encoded by TERT and the RNA component TERC [2,
23]. Additional components, such as dyskerin (DKC) and
telomerase Cajal body protein 1 (TCAB1), are required for
the holoenzyme to function in vivo [3, 4, 24–31]. Telomerase
expression is primarily controlled by the transcription of
TERT [32–34]. Most somatic cells do not express TERT and
lack telomerase activities [35–37]. The connection between
telomere regulation and liver cancers was first studied in
Japanese patients in the 1990’s. Shortening of telomeres
was reported in cirrhosis patients over 45 years with viral
hepatitis, and telomerase reactivation was also observed in
HCC patients [21, 38–41].

An important insight into the mechanism of TERT
reactivation was discovered in 2013, when two independent
studies identified recurrent somatic mutations in the core
promoter of TERT genes in different melanoma samples
[42, 43]. The most prevalent somatic mutations were two
mutually exclusive “C>T” transitions at -124 and -146 from
the translational start ATG of the TERT gene, respectively.
Thesemutations were subsequently identified in a wide range
of other human cancers including HCC, glioma, thyroid, and
bladder cancers [44, 45]. Additional less frequent mutations
were also detected in the TERT promoter, including the
tandem mutations “CC>TT” at −124∼125 and −138∼139 bp
from ATG, as well as a A>C transversion at −57 bp from
the ATG [43]. These mutations created de novo binding
motif for Ets/TCF transcription factors. A study of 23 human
urothelial cancer cell lines demonstrated that these promoter
mutations are correlated with higher levels of TERT mRNA,
protein, telomerase activity, and telomere length [46]. A
member of the Ets family, GABP, was found to be recruited
to the mutation site to activate TERT [47]. Together, recent
findings firmly established that the genetic alterations at the
TERT promoter play a central role for the cancer-specific
telomerase activation. In HCC, the -124C>T accounted for
93% of the total mutations detected, and the frequency of
-146C>Twas 6%. Promotermutationswere identified in 5 out
of 20 macronodules of cirrhotic but not in the 69 cirrhotic
tissues, suggesting that the TERT promoter mutation is an
early genomic alteration that transitions liver cirrhosis to
carcinogenesis [48]. Interestingly, TERT promoter mutations
were not detected in the benign hepatocellular adenoma;
in contrast, 7/16 (48%) malignant tumors transformed from
HCA and 58/106 (55%) of HCCs in normal liver exhibited
the mutations, all of which are significantly associated with
mutations activating canonical WNT signaling pathway.
Thus, telomerasewas activated at a later stage ofHCCwithout
cirrhosis.

2. Multi-Omics to Unravel
Cancer Mystery: Evolution of Functional
Genomics and Proteomics

The advent of human genome sequences has changed our
ways to address fundamental questions in human cancer.
With information available for thousands of genes, the
conventional method of studying one gene (or one protein)
at a time could now be complemented by more systematic
platforms that study multiple or even all genes at large scale.
A potential barrier to this prospect, however, is that most
genes have not yet been empirically characterized. For most
gene products (or proteins) in the proteome there is a lack
of functional information that can be obtained or derived
from any biological model. Toward this end, in the recent
past, high-throughput functional genomic and proteomic
strategies have been invented to facilitate the annotation of
large numbers of genes. Such “systems biology” approaches
aim to generate quantitative and dynamic models and to
interrogate key biological processes with holistic insights
(Figure 1). Herein we summarize a few such high-throughput
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Figure 1: Multi-OMIC systems approach to elucidate cancer signaling networks and precision medicine.

genome-wide functional platforms that have been developed
[49–53].

2.1. Gene Expression. Expression profiling techniques such
as microarray and RNA-seq provide an estimate of mRNAs
(transcription levels) present under a given condition in
a cell- or tissue-specific fashion. Making transcript level
measurements under many different conditions defines a
“transcriptome” for a given organism [54]. Microarray is
based on the hybridization of a cDNA library to a DNA
chip to determine relative abundance of usually fluorophore-
labeled targets [55]. RNA-seq takes advantage of next-
generation sequencing to quantify the amount of RNAs
after reverse transcription [56]. With gene expression data,
clustering analyses can be performed to group genes that are
similarly expressed. These expression profile clusters often
contain functionally related genes that are coregulated and
could suggest new functional hypotheses for uncharacterized
genes in the same clusters. For correlation measurement,
Pearson correlation coefficients are often used with proper
titration adjustments [57].

Gene expression is thought to be primarily regulated by
transcription factor binding at a given time [56]. Recent
studies also revealed important roles of lncRNAs [58] and
miRNAs [59] in gene regulation. With the facilitation of
modern technologies and next-generation sequencing, RNA-
seq gene expression can now be easily performed at the single
cell level [60].However, gene expression at the transcriptional
levels may not correlate well with the translational levels [61],
so protein-centric studies need to take additional proteomic
assays for validation.

2.2. Proteomics. Numerous proteomics approaches have
been developed and applied to study large-scale protein func-
tions. Protein localization mapping projects assign function-
ally related proteins to the same subcellular compartments
at similar times, given their possible involvement in similar
biological processes [62]. Reverse phase protein array (RPPA)
is a proteomics technology that allows for quantitative protein
expression measurement at large scale based on high-quality
antibodies [63].

On the other hand, large-scale macromolecular interac-
tion screening tools, such as yeast two-hybrid (Y2H) systems
or mass spectrometry (TAP/MS), have been widely used
to map protein-protein interaction networks in different
species, including human. Physically interacting protein part-
ners are believed to share signaling pathways, GO terms,
or memberships in protein families [64, 65]. Functionally
related gene products often act asmacromolecular complexes
and form topological modules in the interaction networks,
by which hypothesis of function for many unknown proteins
could be formulated.

2.3. Data Repositories for Cancer. TheHumanGeneMutation
Database (HGMD) is a comprehensive repository of germ-
line mutations in genes that are causal for, or are associated
with, human disease, including cancer [66]. The ClinVar
database [67] from NCBI also contains cancer mutation
annotations. Mode of inheritance information for each
cancer type can be obtained from two databases: Online
Mendelian Inheritance in Man (OMIM) [68] and Universal
Protein Resource (UniProt) [69].

The Cancer Genome Atlas (TCGA) is a large reposi-
tory for genetic mutations in more than 30 cancer types,
including ∼500 patient samples [70]. TCGA is also an
enormous resource for profiling of gene expression, copy-
number variation, DNA methylation, and so forth [71, 72].
The International Cancer Genome Consortium (ICGC) is a
collaborative organization that aims to coordinate large-scale
genomic, transcriptomic, and epigenomic data for over 50
cancer types around the world [73]. The Cancer Cell Line
Encyclopedia (CCLE) is another collaborative project with a
goal of providing comprehensive genomic data and compu-
tational analysis for ∼1,000 human cancer cell lines [74]. To
facilitate the easy use of multidimensional cancer genomic
data, cBioPortal was established to provide a web resource
for exploring, visualizing, and analyzing molecular profiling
data in cancer tissues and cell lines [75]. Furthermore, large-
scale phenotypic analysis can also help characterize genes and
suggest potential functional descriptions for many unknown
genes. By identifying possible phenotypes attributable to
disruptions or alterations in specific genes using technologies
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such as knock-outs or RNAi, genes with similar phenotypes
can be found that might function together in common
functional pathways in a given cellular context [57, 76].

3. An Evolving Systems Biology Toolkit for
Better Cancer Precision Medicine

A key leap forward in the development of a cutting-edge
cancer research toolkit is to design strategies to flexibly
express any genes in the human genome (Figure 1), in order to
study them in various cells, under different conditions and in
many biological processes of interest. In other words, there is
a dire need to develop diverse large-scale functional genomic
and proteomic platforms. High-throughput studies [64, 65,
77–82] often require large numbers of protein-encoding
genes to be expressed precisely, that is, in-frame without any
5󸀠UTRs, 3󸀠UTRs, or introns, into various expression systems.

3.1. High-Throughput Gateway Technology for Functional
Studies. Gateway is a modern molecular technology
amenable for high-throughput and automated biomedical
experiments. Gateway technology is designed for easy
transfer of DNA fragments based on site-specific
recombination principle [77, 83, 84]. In this big data era,
Gateway has emerged as a cutting-edge tool to facilitate large-
scale genomic and functional studies, such as mutagenesis,
sequence tagging, protein purification, promoter, and RNA
analysis. It has been increasingly appreciated and widely
adopted in a variety of cancer research areas.

Gateway technology enables convenient DNA transfer,
taking advantage of the recombination machinery between
the genomes of bacteria and phage. This process is reversible
and involves two enzyme mixes (“BP” and “LR” clonase) and
a set of recombination sequences (“att” sites).The recombina-
tion events are described briefly below. (i) Catalyzed by the BP
clonase mix, the attP site of the phage DNA recombines with
the attB site from the bacterial DNA, deriving two new sites,
attL and attR. (ii) Catalyzed by the LR clonase mix, the attL
and attR sites recombine in the excision reaction, reverting
back to the attP and attB sites.

When implementing the Gateway technology in molec-
ular biology, a typical “Gateway Cassette” is designed as a
module to insert into a vector.The four recombinational sites
(attB, attP, attL, and attR) are duplicated and modified. In
the BP reaction, we start with a “Donor” vector, containing
a Gateway Cassette with P1 and P2 sites and usually a
chloramphenicol resistance selection marker. The P1 and P2
sites on the Donor plasmid recombine with B1 and B2 sites,
respectively, which flank a DNA sequence of interest. In this
way, the DNA of interest can be cloned unidirectionally into
the Donor vector. The resulting product is known as an
“Entry” clone, containing two attL sites, L1 and L2.

Gateway Entry clones can be readily transferred via an
“LR” reaction into various expression vectors, known as
Destination vectors, for downstream functional studies. In
the LR reaction, the R1 and R2 sites on Destination plasmids
recombine with the L1 and L2 sites, respectively, on the Entry
clones. Many popular prokaryotic and eukaryotic expression

Destination vectors are available, such as yeast two-hybrid
AD and DB vectors, fluorescence-based PCA vectors, and
LUMIER Myc- and flag-tagged vectors for coimmunopre-
cipitation. In addition, other existing functional expression
vectors can be readily converted to Gateway-compatible
Destination Vectors, by inserting a Gateway Cassette. With
the fast growing of genomic information and larger-scale
research nowadays, the Gateway cloning system apparently
emerges as a powerful, high-throughput platform compatible
with the current research needs. A collection of genes, as
Gateway Entry clones, can be transferred at large scale to one
or more Destination Vectors in a simple reaction, manually
or robotically.

3.2. The Human ORFeome: A Versatile Tool for Cancer
Research. Large libraries of Gateway Entry clones, encom-
passing all possible open reading frames (ORFs) [84] in the
genomes of many species including humans, are necessary
for high-throughput functional studies. Ideally, the human
“ORFeome” corresponds to all full-length protein encoding
genes, including possible variants and isoforms in different
tissues, developmental stages, and across the human popula-
tion. However, identifying such a comprehensive ORFeome
collection is apparently challenging, due to limitations in
existing experimental strategies [85].

Initial efforts in the construction of a human ORFeome
library took advantage of public collections of human cDNAs,
such as the Mammalian Gene Collection (MGC) [86]. Using
MGC as template for PCR amplification, ∼8000 ORFs were
Gateway cloned without containing a stop codon; thus, N-
terminal and C-terminal protein fusions can both be feasible
downstream in Destination vectors. Because there may be
multiple splice isoforms and polymorphic variant ORFs for
the same gene, the 8000 ORFs represented ∼7000 distinct
genes. Clones shorter than 100nucleotides and cloneswithout
complete coding sequences (CDS) available in NCBI were
eliminated. Successfully cloned ORFs were consolidated as
the first version of the human ORFeome collection (hOR-
Feome v1.1) [87]. In 2007, the human ORFeome v3.1, adding
∼4,000 new ORFs, brings the total to 12,212 distinct ORFs,
representing 10,214 distinct genes [88]. In 2011, the human
ORFeome v8.1 was released, containing 16,172 ORFsmapping
to 13,833 distinct genes [89].This extensiveORF library repre-
sents an important resource of single-colony, fully sequence-
verified human ORFeome Entry clone collection. This set of
ORFs ranges in size from 75 to more than 10,000 base pairs.
In addition, an Expression Library version of this hORFeome
v8.1 was constructed in a lentiviral expression vector that
produces consistent titers and gene expression levels and
allows delivery to most cell types [89].

4. The Human Interactome:
A Scaffold for Functional Proteomics and
Evolution in Cancer

Identification of human cancer genes in which mutations are
associated with specific clinical manifestations has facilitated
our understanding of disease mechanisms. However, like
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their normal counterparts, protein products of cancer genes
do not function in isolation but are part of highly inter-
connected cellular signal transduction networks (Figure 1)
[90, 91].

4.1. Literature-Derived Interactome (LDI). Interactome net-
works could be derived from literature through two different
approaches: text mining and manual curation. Text mining
is performed computationally by searching for key words
in literature databases, such as PUBMED. Manual curation
of literature knowledge involves enormous amount of labor
and time. However, certain datasets of human molecular
interactions have been curated from the literature and stored
in public databases, such as BioGRID [92], CORUM [93],
BIND [94], DIP [95], STRING [96], HPRD [97], MINT [98],
GeneMania [99], and MIPS [100].

4.2. Empirically Derived Interactome (EDI). Modernmolecu-
lar biology has brought inmany advanced tools for functional
studies, but most of them experience limitations when it
comes to scale-up to a genome-wide investigation. However,
a number of experimental strategies have been employed in
large-scale human interactome mapping, such as yeast two-
hybrid [79, 101, 102], cofractionation [103], and affinity purifi-
cation followed by mass spectrometry (AP-MS) [104]. Early
efforts using high-throughput systematic yeast two-hybrid
platforms have generated preliminary humanprotein-protein
interactome network maps [79, 101]. In 2005, two studies
simultaneously reported the first version of human inter-
actome map. 2,754 high-confidence protein-protein interac-
tions among 1,549 proteins were reported in the CCSB-HI1
dataset [79], while 3,186 interactions involving 1,705 proteins
were reported in the Stelzl network [101]. A second generation
of interactomemapwas recently published, containing 13,944
interactions among 4,303 distinct proteins [102]. This map
covers a vast previously uncharted territory and is 30% larger
than the literature of all small-scale studies combined in
the past few decades. It is demonstrated to be helpful in
predicting novel cancer genes and other disease-associated
mechanisms.

Proteome-scale studies of human interactome networks
have also been performed using other high-throughput
approaches. Based on biochemical fractionation and quan-
titative mass spectrometry, Havugimana et al. identified a
map of 622 protein complexes in human cells. This inter-
actome map profiles 13,993 physical interactions between
3,006 proteins, revealing many interesting biological asso-
ciations [103]. Lately, another interactome network map
systematically charted by affinity purification followed by
mass spectrometry (AP-MS) provided another functional
view of protein complexes, covering 23,744 interactions
among 7,668 proteins with many unexpected hypotheses for
previously poorly characterized proteins [104]. Furthermore,
another group performed a quantitative network survey to
capture human interactome networks with higher resolution
in interaction strength and protein abundance [105]. They
used quantitative bacterial artificial chromosome with GFP
fusion interactomics (QUBIC) and identified 28,504 unique

interactions involving 5,462 proteins. It was demonstrated
that weak interactions dominate the network and have
topological properties.

To assess the specificity of interactome networks, a
random subset of interactions is selected typically for an
independent and orthogonal validation to confirm the overall
quality of the human interaction networks. It is noteworthy
that not all the interactions reported in literature are of high
quality or necessarily interpreted as “gold standard.” The
ones identified by multiple publications or methods tend
to be genuine interactions. As expected in any biological
assay, the resulting networks exhibit a large fraction of false
negatives. To assess the sensitivity of interactome networks,
high-confidence subsets of literature-derived interactions can
be employed as a comparison for sensitivity measurements.

5. Systems Biology Reveals Functional and
Evolutionary Insights into Human Diseases
Like Cancer

5.1. Computational Modeling. Computational modeling has
been useful in predicting the functional impact of genes and
mutations that are difficult to test experimentally. Polymor-
phism Phenotyping v2 (PolyPhen-2) [106] was developed
to predict the functional significance of a genetic variant
based on conservation, protein structure, and other features
using näıve Bayes classifier trained by supervised machine-
learning. Mapping of genetic variants to Pfam domains
(Pfam-A family only) can be performed using the program
Hmmer version 3 [107]. The IUPred program [108] can
be used to assess the likelihood of residues affected by a
genetic variant located in an intrinsically disordered region
of the protein. The regular expressions of known eukary-
otic linear motifs (ELMs) can be obtained from the ELM
database (http://elm.eu.org/). DSSP program [109] can be
used to compute solvent accessible area for each residue
mutated by a genetic variant. FoldX force-field algorithm
[110, 111] can be used to calculate the change in free
energy of unfolding (ΔΔ𝐺) for all mutations that could be
mapped to a published crystal structure from Protein Data
Bank (PDB) [112]. For interaction interface analysis, the
mutated residues can be mapped onto the available struc-
tures by using Mechismo (http://mechismo.russelllab.org/),
ProtInDB (PROTein-protein INterface residues Data Base),
and PDBePISA (Proteins, Interfaces, Surfaces, and Assem-
blies) [113] servers. The database of three-dimensional
interacting domains (3did) documents and predicts high-
resolution structures for domain-domain interactions [114].

Recently, a structure-based prediction of a proteome-
wide human protein-protein interaction network was
released [115]. Through experimental validation of a subset
of interactions, this computationally predicted interactome
(CPI) network was considered to be of high quality. HINT
(High-quality INTeractomes) is a database that extracts
high-quality protein-protein interactions [116]. Clusters of
cancer mutations in the human proteome can be identified
by mutation3D algorithm [117]. Looking into the future, the
union of all LDI, EDI, and CPI interactions reveals more
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and more comprehensive human interactome networks,
and the interaction pairs argue for their potential biological
and functional relevance. However, future efforts are still
required to interpret condition-specific interactions and to
characterize the effects of genomic variation on interaction
networks [118], which will in turn generate insights into
genotype-phenotype relationships in human.

5.2. Computational Modeling and Network Analysis. Given
the highly connected nature of molecular signaling network
organization in the cell [119, 120], a conceptual framework
was developed to illustrate a global picture (known as “dis-
easome”) of all the known genes involved in human disease.
To construct such a “diseasome” network, a compendium
of 1,777 human disease genes and 1,286 associated diseases
[121] was obtained from the Online Mendelian Inheritance
in Man (OMIM) database. In the diseasome network, the
human “disease genome” (a long list of known disease
genes) was linked to the “disease phenome” (a list of known
genetic disorders), deriving a comprehensive set of almost
all known gene-disease network associations. This network-
based “genome-phenome” profile [122] is a bipartite graph, in
which a gene and a disease are linked together if mutations in
that gene have been implicated in that disease.

A Human Disease Network (HDN) was derived from the
original bipartite “diseasome” landscape [123]. In the HDN
network, nodes represent diseases, and edges represent the
association between diseases when they share at least one
gene in which mutations are associated with both diseases.
Overall, 867 of 1,284 diseases have at least one link to other
diseases, and 516 diseases form a single connected cluster,
the giant component, suggesting that most human diseases
share, to some extent, genetic origins. The HDN network is
clearly clustered by major disease classes, reflecting visible
differences between classes of disorders but commonality in
genetic origin within each disease class. Among the most
connected diseases is cancer, which is in part due to themany
common regulators (such as p53, PTEN, KRAS, ERBB2, and
NF1) associated with distinct subtypes of cancer.

Another type of biologically relevant networks concerns
disease gene network (DGN) [123]. In the DGN, nodes
represent disease genes, and edges represent their association
with the same disease. In this network, 1,377 of 1,777 disease
genes are connected to at least one other disease gene, and
903 genes form a giant component. The DGN provides a
complementary, gene-centered view of the diseasome than
the HDN.

Given that interactome networks cover a myriad of
genes implicated in human diseases, including cancers, they
provide useful insights into possible disease signaling mech-
anisms. Although existing empirically derived interaction
(EDI) networks are far from being complete, the overlap
with literature has been shown to be significant [102],
demonstrating the high quality of the EDI networks. On the
other hand, these networks offer novel biological hypotheses
and guide further studies of disease signal transduction
in relevant functional contexts. Functional consequences of
molecular interactions can be followed up to understand

the logic of complex biological networks.Therefore, emerging
human interactome networks will eventually facilitate our
understanding of human health and disease.

6. Novel Therapeutic Strategies and
Precision Medicine

A major problem in cancer treatment is to achieve specific
killing of cancer cells while preserving normal cells. Cancer
genomes vary from individual to individual.

6.1. New Promises of Gene Therapy from CRISPR. The idea
of gene therapy was proposed in the 1970’s [124]. The
90’s witnessed the first successful gene therapy treating
patients with severe combined immune deficiency (SCID)
by modifying cells with retroviruses carrying a functional
copy of the mutated gene [125–128]. However, complications
mostly due to integration of viral vector to oncogenes led to
suspension of many clinical trials [129]. Nevertheless, quite
a few gene therapy strategies made steady strides entering
the new century, including Gendicine (first gene therapy
product approved for clinical use in humans) [130], oncolytic
virus talimogene laherparepvec, and the immunostimulant
sipuleucel-T.

The breakthroughs in CRISPR (clustered regularly inter-
spaced short palindromic repeats) mediated genome editing
technology provide us with unparalleled opportunity to bring
precision medicine to the genome level [131–134]. Compared
to targeting malfunctioned molecules at the protein level,
it allows for restoration of proper spatiotemporal regulation
of the functional molecules without concerns for dosage
responses and side effects [131–134]. By correcting disease-
causing mutations in embryonic stem cells, disease preven-
tion ismade possible even before the onset of symptoms [135–
138]. As proof of principle studies, CRISPR-mediated muta-
tion corrections have been successfully performed usingmul-
tiple mouse disease models including hereditary tyrosinemia
and muscular dystrophy [135, 136], resulting in reversion and
prevention of diseases, respectively. Given its great poten-
tial, CRISPR/Cas9 can revolutionize personalized cancer
treatment: to model functional consequences of recurrent
mutations identified through high-throughput sequencing
efforts, to discover cancer drug targets by screening protein
domains [137], and to inhibit cancer by inactivating driver
mutations [138].

CRISPR/Cas9 system edits the genome by first creating
DNA double-strand breaks (DSBs) [139, 140]. When DSBs
occur, the cells activate one of the three mechanisms to
repair double-strand breaks: nonhomologous end joining
(NHEJ),microhomology-mediated end joining (MMEJ), and
homology-directed repair (HDR) [139, 140]. End-joining
mechanisms are error-prone and often lead to loss of gene
function as a result of random insertions or deletions. In con-
trast, a DNA sequence, which shares homology with the DSB
locus, can be used as a donor template for the HDR pathway
to precisely modify the DNA sequence [139, 140]. Sequence-
specific endonucleases, such as the zinc-finger nuclease
(ZFN) and the transcription-activator-like effector nuclease
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(TALEN), can introduce double-strand breaks at specific
sites of the genome, which dramatically favors the process
of HDR instead of NHEJ [139, 140]. ZFN and TALEN have
greatly facilitated genome engineering in a variety of model
systems [22, 141, 142]. However, the difficulties of designing
and building endonucleases tailored to specific genes of
interests and the relatively low cutting efficiency have limited
their applications. In recent years, Type II CRISPR system
emerged as a useful tool for genome editing, with major
advantages in cutting efficiency and versatility [131–134]. The
most commonly used CRISPR system was modified from the
CRISPR-associated endonuclease 9 (Cas9) in Streptococcus
pyogenes (SpCas9) [139, 140]. The recombinant Cas9 system
consists of three components: the Cas9 protein, the CRISPR
RNA (crRNA), and the transactivating crRNA (tracrRNA).
The crRNA and tracrRNA are often cloned into a single
chimeric guide RNA, known as single guide RNA (sgRNA),
resulting in an easy-to-use two-component system [139, 140].
The specificity of the endonuclease was determined by the
complementation of the sgRNA and its 20-nucleotide target
sequence in the genome [143]. The genomic target sequence
must be immediately upstream of a 5󸀠-NGG protospacer
adjacent motif (PAM) [143]. 5󸀠-NAG can also be tolerated
as an alternative PAM [144], albeit with reduced cleavage
efficiency [145]. Potential limitations of the CRISPR mainly
concern the off-target effects. The seed sequence close to the
PAM domain carries more weight in target specificity, while
the mismatches further away from the PAM domain and
towards the 5󸀠-end of the targeted genome sequence could
be tolerated to certain degree [145–147]. Efforts have been
made to evaluate and improve the fidelity of the Cas9 system.
For example, the Cas9(D10A) mutant, which functions as an
ssDNAase, can be usedwith a pair of sgRNAs complementary
to opposite strands of the target DNA, in order to reduce
off-targets [148–150]. This is because the DSB generated at
the desired site require both nicking events, while sites with
a single nicking event are primarily repaired by the more
precise excision-repair mechanisms rather than error-prone
end-joiningmechanisms. Similarly, catalytically inactive cas9
(dCas9) can be fused to the cleavage domain of the FokI
restriction endonuclease [151, 152].The simultaneous binding
of two fusion proteins (fCas9) to target sites that are 13∼18 bp
apart is required for the DSBs to occur [151, 152], as the FokI
only cleaves DNA when dimerized.

The efficiency of CRISPR-mediated genome editing is
context dependent, with low efficiencies being observed at
high “GC” regions or those in close proximity to heterochro-
matin [139, 140]. In such cases, multistep targeting might be
required. For example, TERT promoter mutations reside in a
genomic region with ∼80%GC content. A two-step approach
was employed to introduce TERT promoter mutations into
hESCs. First, two Cas9/sgRNAs were used to delete a 1.5 kb
region at TERT promoter encompassing the mutation spot.
Second, a sgRNA against the newly synthesized NHEJ-
derived junction was coelectroporated with Donor plasmids
containing the deleted region with cancer-associated TERT
promoter mutations [153]. In another study, a two-step “pop-
in/pop-out” strategy was used to create N-terminal tagged
TERT fusion protein. First, homologous recombination was

achieved byCRISPR/Cas9 targeting the translational start site
of TERT, with a donor template containing both the tag and
an eGFP expressing cassette flanked by LoxP sites. Success-
fully targeted cells were selected by flow cytometry. Second,
eGFP cassette was removed by Cre-mediated recombination
[154].

A potential limit of CRISPR-gene therapy concerns the
delivery methods. Recombinant AAV (rAAV) is widely con-
sidered to be an ideal viral vehicle for gene therapy, because
DNA cargo can persist as episomes in both dividing and
quiescent cells state with minimal genome integration. Even
though exogenous DNA carried by rAAV has been shown
to be effective in correcting mutations like the Fah mutation
in the liver [155], CRISPR technology could result in higher
efficiency of gene correction, as proof-of-concept studies
demonstrated by hydrodynamic injection of Cas9/sgRNA
and a single-stranded DNA to correct the Fah mutation in
hepatocytes via homology-directed repair [135]. However,
the size of the widely used SpCas9 (∼4.2 kb) is approaching
the cargo limit of rAAV (∼4.5 kb), leaving little room for
modification. Recently, a smaller Cas9 from Staphylococcus
aureus (SaCas9) was described [156]. The authors packaged
SaCas9/sgRNA into a single rAAV vector and successfully
targeted the Pcsk9 gene in the mouse liver.

A broad community of stakeholders have collaborated
closely to forge ahead with precision therapy, especially
CRISPR-mediated genome editing. Academic researchers
continue to provide more accurate insights into human
genetics and molecular basis of diseases, as well as develop
more powerful bioinformatics tools for analyzing data at
the genome scale. Diagnostic companies develop better tests
based onnewest data to achieve greater precision in interpret-
ing the likelihood of patient response to the therapy. Phar-
maceutical companies strive to increase CRISPR targeting
efficiency and minimize off-targeting effects, develop reliable
quality control process, and build platforms for reducing the
cost of CRISPR-mediated gene targeting. Hospitals and other
healthcare providers should actively adopt new technologies
for individualized prevention, detection, and treatment of
diseases. Meanwhile, efforts should be made to provide easy
health data access and share mechanisms and protect patient
privacy and data security, as well as create platforms to engage
different stakeholders in precision medicine as collaborating
partners.

6.2. Cell Transplantation. The advances of genome-
engineering techniques, as well as deeper understanding
of the expression profiles of stem/progenitor cells, provide
better prospects of cell therapy. As mentioned earlier, initial
clinical successes by transplanting genetically modified cells
to treat SCID provided valuable proof-of-concept. Here, we
used hepatocyte transplantation as an example to discuss
some of the promises and challenges of cell transplantation.

To date, only a few treatments can increase the life
expectancy of liver cancer patients including resection,
orthotopic or living donor liver transplantation, radio-
frequency ablation/percutaneous ethanol injection, tran-
scatheter arterial chemoembolization, and sorafenib [157].
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Although liver transplantation remains the primary thera-
peutic strategy for end stage liver diseases and acute liver
failures, donor shortage remains a primary hurdle. In an
aging population, the supply of liver allografts is unlikely
to meet the ever-increasing demand. Therapeutic cell trans-
plantations have been brought into preclinical and clinical
applications. There are potential advantages of hepatocyte
transplantation over liver transplantation, because hepato-
cyte transplantation is generally considered to be less inva-
sive, and the native livers are not surgically removed to allow
other strategies like gene therapy to be performed.

The potential of hepatocytes as the source for cellular
therapy has been demonstrated by years of animal exper-
iments. Rodent hepatocytes have remarkable proliferative
capacity in vivo [158, 159]. Hepatocyte transplantation was
effective in correcting metabolic diseases in several rodent
models, including the Gunn rat of Crigler-Najjar syndrome
type I [160], the Fah−/− (fumarylacetoacetate hydrolase)
mouse of tyrosinemia type I [161], the mutant human 𝛼1-
antitrypsin transgenic mouse [162], and the Long-Evans
cinnamon rat of Wilson’s disease [163], as well as chemically
or surgically induced acute liver failures [164, 165].

Amajor obstacle to overcome for translating animal stud-
ies to human patients is how to obtain enough hepatocytes in
a safe transplantation route. The most common route of hep-
atocyte transplantation is through the portal system. Donor
hepatocytes that can be safely infused through the portal vein
are usually less than 5% of the liver mass (∼2e8 cells/kg), in
order to avoid portal hypertension, translocation of the cells
to systemic circulation, and embolization in the lung [166]. As
many as 70∼80% of transplanted hepatocytes are entrapped
in the portal space or sinusoids and are subsequently cleared
by Kupffer cells and granulocytes [167, 168]. The integra-
tion of hepatocytes in the recipient liver is inefficient and
requires disruption of hepatic sinusoidal endothelia [169].
Moreover, the initial engraftment of transplanted hepatocytes
is unlikely to completely reverse the enzyme deficiency.
The continuous repopulation of the recipient liver requires
substantial selection advantage of the transplanted hepato-
cytes, which are artificially created in animal models by
extensive parenchymal loss or the proliferative deficiency of
endogenous hepatocytes. As a result, repeated hepatocyte
transplantation may be required to increase the number of
engrafted cells.Thepopulation of liver stem cells is potentially
a good source of cell transplantation, due to its expandability
in vitro and bipotent differentiation into hepatocytes and
cholangiocytes [170–173]. However, recent studies suggest
that mature hepatocytes are responsible for most of the
liver repopulation during homeostasis and injuries in vivo
[174–178]. Within the differentiated hepatocytes, there were
subpopulations demonstrating higher repopulating capaci-
ties than generic hepatocytes [179, 180]. To identify the best
population for cell therapy, comprehensive investigation of
the heterogeneity of repopulating cells in the liver is required.

6.3. Systems Biology and Therapeutic Strategies. Until
recently, a paradigm of drug discovery has been that for
each disease there will be one (or a few) molecular target(s)

that can be affected either positively or negatively by a
single chemical compound. This philosophy has clearly been
successful for many diseases and has led to the development
of “blockbuster” drugs such as the various ACE-inhibitors
or Gleevec. However, this one-gene-one-drug approach has
given rise to only ∼500 drug targets [181] which, after all,
represent a tiny portion of the predicted proteome, estimated
at ∼500,000 proteins taking into account all isoforms and
posttranslational modifications [182]. Moreover the “one-
gene-one-phenotype” approach is overly simplistic, because
one gene can have multiple functions whereas one function
can be handled by multiple genes. For example, various
“regulatory” proteins such as Ras, Myc, and NF-𝜅B each have
disparate functions that are dependent upon cellular context
[182]. Clearly, reliance on the “one-gene or one-protein
leading to one drug” paradigm will continue to produce
useful drugs, but this strategy is increasingly more difficult
to implement [183].

Systems biology approaches have been recently applied
to enable a holistic view of signaling networks in cancer
cells and effectively identify molecular changes in cancer
patients (Figure 1) [184]. For instance, global transcriptomic
data analyses in B-cell lymphoma fromThe Cancer Genome
Atlas (TCGA) revealed that older patients tend to exhibit
decreased metabolism and telomere function, while female
patients are likely associated with decreased interferon and
PD-1 signaling [185]. In addition, a critical leap forward
in proteomics is the gene-centric Human Protein Atlas
for expression profiles [186], which resolves tissue-specific
proteome variation of the human body [187] and provides
significant insights into cancer pathology [188–190].

An alternative strategy is to understand the structural fea-
tures and properties of molecular and physiological networks
[182, 191]. Although this approach may not have immediate
returns in terms of successful deployment of useful drugs
[182], it will, in the long run, lead to better understanding
of how to model networks and how to use those models
for in silico studies [191]. Examples are how genetic poly-
morphisms affect responses to individual drugs [192] and
how network interactions can be manipulated and altered
by the actions of oncogenes and tumor suppressor genes on
one side or by pharmacological intervention on the other
[193]. A major hurdle to be overcome is the identification
of cellular networks and all of their constituent units, along
with an understanding of the signaling within networks and
between/among networks.

7. Big Data Management and Security of
Medical Information

The significant improvement of sequencing technologies
makes human genomic data increasingly affordable and
available in the era of precision medicine [194]. This paper
discusses heavily how massive human genomic data open
the door to big data science and speed up discoveries.
Despite encouraging future, there are also emerging problems
with respect to storing, sharing, and analyzing big human
genomic data. The recent NIH data sharing policy change
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allows users to store and analyze human genomic data
using cloud-computing services, which address some of the
issues. But on the other hand, the privacy challenge becomes
more prominent with cloud computing as owners lose the
full control of the data. It becomes more complicated as
copies of data can be stored in a distributed file system
or automatically backed up by the cloud service provider.
Without necessary protection, it is risky to use the cloud
for handling human genomic data, of which information
leakage can lead to reidentification [195–199] and might
negatively impact patients. The NIH Security Best Practices
for Controlled-Access Data Subject to the NIHGenomeData
Sharing (GDS) Policy also states that researchers and their
institutions are accountable for ensuring the confidentiality
of human genomic data, instead of the cloud service provider.
There is an imperative need to develop practical and rigorous
privacy protection methods to alleviate the technical burden
from human genomic researchers. Several recent surveys
[197, 200] discussed the relevant techniques. But it remains
unclear how these techniques will perform when applied to
real human genomic data.There is a lack of direct comparison
of different methods in real-world scenarios. Some recent
efforts between the computer science community and the
biomedical informatics community to jointly tackle the
computation and privacy challenges seem promising [201]
and more collaborations are necessary to push the fronts.
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