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Abstract

Background: Given its narrow therapeutic range, digoxin’s pharmacokinetic parameters in infants are difficult to
predict due to variation in birth weight and gestational age, especially for critically ill newborns. There is limited
evidence to support the safety and dosage requirements of digoxin, let alone to predict its concentrations in
infants. This study aimed to compare the concentrations of digoxin predicted by traditional regression modeling
and artificial neural network (ANN) modeling for newborn infants given digoxin for clinically significant patent
ductus arteriosus (PDA).

Methods: A retrospective chart review was conducted to obtain data on digoxin use for clinically significant PDA in
a neonatal intensive care unit. Newborn infants who were given digoxin and had digoxin concentration(s) within
the acceptable range were identified as subjects in the training model and validation datasets, accordingly. Their
demographics, disease, and medication information, which were potentially associated with heart failure, were used
for model training and analysis of digoxin concentration prediction. The models were generated using backward
standard multivariable linear regressions (MLRs) and a standard backpropagation algorithm of ANN, respectively.
The common goodness-of-fit estimates, receiver operating characteristic curves, and classification of sensitivity and
specificity of the toxic concentrations in the validation dataset obtained from MLR or ANN models were compared
to identify the final better predictive model.

Results: Given the weakness of correlations between actual observed digoxin concentrations and pre-specified
variables in newborn infants, the performance of all ANN models was better than that of MLR models for digoxin
concentration prediction. In particular, the nine-parameter ANN model has better forecasting accuracy and
differentiation ability for toxic concentrations.

Conclusion: The nine-parameter ANN model is the best alternative than the other models to predict serum digoxin
concentrations whenever therapeutic drug monitoring is not available. Further cross-validations using diverse
samples from different hospitals for newborn infants are needed.
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Background

Digoxin is one of common medications used for pediatric
heart failure [1], especially for premature infants or neo-
nates with clinically significant patent ductus arteriosus
(PDA), which is a condition where the ductus arteriosus
fails to close after birth. While the potential biomarkers
involved in PDA closure were suggested to be cyclooxy-
genase and peroxidase enzymes [2], indomethacin, or
ibuprofen were the commonly used pharmacological
interventions to stimulate PDA close in neonates [2]. In
addition, digoxin is one of the agents to reduce PDA influ-
ence [2], and is particularly useful when natural closure of
PDA, diuretics or nonpharmacological interventions fail,
or when infants are unable to receive surgical treatment
[2, 3]. With considerations of digoxin toxicity, and the
impacts associated with concomitant metabolic abnor-
malities (i.e, hypokalemia) due to diseases or co-
medications (i.e., indomethacin [4, 5]), lower value of
trough serum digoxin concentration range (0.5-0.8
ng/ml) was preferred than the wider range (0.8 to 2.0
ng/ml) for those patients with chronic heart failure
[6]. However, the preferred therapeutic range of di-
goxin in premature infants or neonates and its limited
evidence regarding pharmacokinetic (PK) changes
among these neonates, which were associated with
various conditions (e.g., birth weight, gestational age,
and organ maturity) [7, 8], remain the concerns in
clinical practice.

The published guideline on pediatric dosing did rec-
ommend that drug dosing regimens should be modified
on the basis of drug characteristics and normalized to
body weight for small children, especially newborn in-
fants [9]. Ideally, population PK studies can be a way of
compensating for the small volumes of blood samples
from pediatric patients. For instance, some studies in
different countries did try to predict digoxin concentra-
tions for pediatric patients by conducting population
PK studies [10—14]. While checking digoxin concentra-
tions and determining its PK parameters (i.e. digoxin
clearance) after reaching the steady state is feasible for
adult patients, it remains challenging to access blood
samples for neonatal patients with developing total
body weight and in critical ill. Limited evidence has ad-
dressed the correlations between PK parameters or di-
goxin dose and their therapeutic outcomes in neonates
[7]. An alternative way to predict digoxin serum con-
centrations, other than conducting a PK study and
drawing blood samples, for babies in neonatal critical
care units will be of great value.

Suematsu et al. identified age and weight as two import-
ant factors for estimating digoxin clearance in pediatric
patients [8]. Gender, digoxin dose, the presence of drug
interactions, prematurity, and the presence of heart failure
were not considered as impactful factors [8]. The authors
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applied traditional statistical approaches, assuming linear
correlations existed between digoxin clearance and age,
weight, dose, gender, and other variables, and a normally
distributed digoxin concentration in this study. However,
the assumptions of linear correlations, a normal distribu-
tion, and multicollinearity are usually violated in a com-
plex biological system. Instead, the other recommended
approaches to better capture non-linear relationships and
the existence of multi-collinearity between drugs and
patient characteristics in the complex human body,
especially for infants, is artificial neural network (ANN)
modeling [15].

ANN modeling have been increasingly applied in a
variety of pharmaceutical science research predicting
drug discovery, medical diagnoses, or clinical outcomes
(e.g., mortality) [16—19]. These studies focused on adult
patients, and provided limited evidence on the efficacy
and safety of the treatments for pediatric patients, in
particular neonates. For instance, Hu et al. applied ma-
chine learning techniques to predict the initial digoxin
dosage in adult patients using the independent variables
gender, age, weight, serum digoxin concentration, liver
function, serum creatinine, blood urea nitrogen, albu-
min, potassium, and congestive heart failure diagnosis
for adult patients with serum digoxin concentrations
within the normal range (i.e., 0.5 to 0.9 ng/ml) [19]. Al-
though this study found that the initial digoxin dose
could be predicted accurately with ANN techniques
[19], their findings cannot be applied to neonates dir-
ectly, especially to those who are treated in critical care
units. To date, only few ANN models have been applied
with biological relevance to newborn fetal growth [20]
and for survival prediction in pediatric trauma patients
[21] and preterm birth [22]. Thus, the objective of this
study was to compare and contrast the predicted con-
centrations of digoxin estimated from traditional regres-
sion modeling and from ANN modeling for the critically
ill newborn infants prescribed with digoxin for clinically
significant PDA in order to facilitate further medical
decisions about the effectiveness, side effects, and con-
centrations of digoxin for such tiny critically ill patients
in the future.

Methods

Subjects and data

A retrospective medical chart review using data from
routine clinical practice was conducted to prepare the
datasets for modeling and validation, respectively (Ap-
proval by Institutional Review Board [CMUH107-REC3—
083]). Newborn infants who were taken care for in the
Neonatal Intensive Care Unit (NICU) of China Medical
University (CMU) Children’s Hospital and given digoxin
(i.e., expected to reach acceptable therapeutic range) due
to PDA between April 1, 2013 to April 30, 2017 were
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included in the modeling dataset. Their corresponding
data were retrieved and managed for the model train-
ing. Because indomethacin was no longer available in
Taiwan since year of 2010 and some evidences showed
that indomethacin could increase digoxin’s serum con-
centrations [4, 5], ibuprofen was chosen as the first line
to manage PDA closure for the infants in NICU of
CMU Children’s Hospital. However, some patients who
required the fluid restriction and/or had contraindications
to use ibuprofen (e.g., gastrointestinal hemorrhage) were
not appropriate to be prescribed with ibuprofen follow-
ing the practice protocol in this unit. Further, those
who were admitted to NICU between May 1, 2017 and
December 31, 2017, and were prescribed with digoxin
to deal with the PDA effect on heart and having ob-
served serum digoxin concentrations within the accept-
able range were identified as the samples for the model
validation, whereas their data were managed in the val-
idation dataset.

Ideally, the serum digoxin concentrations should be
taken before the next dose or 8-24h after the prior
dose, and were evaluated for free form concentrations
using homogeneous particle enhanced turbidimetric
inhibition immunoassay (PETINIA). The acceptable
digoxin therapeutic range was set up as 0.8 to 2.0 ng/
ml for the management of heart failure or atrial fibril-
lation, where the concentrations equal or above 2.5
ng/ml for adults and 1.5ng/ml for pediatric patients
were considered as risk critical values, respectively.
Such concentration values warrant to be reminded to-
ward the clinicians proactively upon the practice
protocol in CMU Hospital. Thus, all observed serum
digoxin concentrations, especially those concentrations
closed to the acceptable range ie., 0.8 to 2.0 ng/ml,
were tried out first to train the ANN models with the
pre-specified potential variables. Then, only those ob-
served concentrations, which were involved in the
final ANN training models, were finally kept in the
modeling dataset to be used further.

In the critical care settings, the dosage regimen for pa-
tients with severe illness is usually determined empiric-
ally. In addition to drawing blood samples from these
neonatal patients, we collected the following information
that was documented in the literature to be associated
with PDA closure, heart failure progression and digoxin
use for newborn infants [10-14] in order to explore its
associations with the “observed serum digoxin concen-
trations”: demographic information (e.g., gender, post-
menstrual age (PMA), total body weight (TBW)), disease
status (e.g., being diagnosed with congestive heart failure
(CHF), dilated cardiomyopathy (DCM), pulmonary
hypertension (PH), ventricular septal defect (VSD)), and
medications related to PDA closure or heart failure
management (e.g., ibuprofen, captopril, furosemide).
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Confirmation of the appropriateness to perform
traditional regression modeling

While there were various extents of correlations between
drug clearance and PMA for different drugs during the
first year of life [23], we examined the correlations be-
tween the volume of distribution (Vd) of digoxin that
was normalized to bodyweight (i.e., /kg) and PMA for
those enrolled newborn infants in the NICU who used
digoxin and whose concentrations were expected to
reach acceptable range first. Then, we examined the nor-
mality of these observed serum digoxin concentrations
using a one-sample Kolmogorov-Smirnov test in order
to explore the appropriateness of performing linear re-
gressions on the modeling dataset. Further, we examined
the bivariate correlations between observed digoxin con-
centrations and the pre-specified potential variables, i.e.,
patients with or without CHF, DCM, PH, VSD and med-
ications used for PDA closure and/or heart failure man-
agement (including ibuprofen and captopril, furosemide)
[10-14] on the modeling dataset to confirm the robust-
ness of performing linear regression modeling.

Model generation

The digoxin concentration models were generated using
the following two methods on the modeling dataset:
standard multivariable linear regressions (MLRs) and
artificial neural networks (ANNs), whereas the initial 11
pre-specified potential variables were used as either in-
dependent variables for MLRs or input variables for
ANN:Ss, respectively.

Multivariable linear regression (MLR) model

We began to construct a 10-parameter digoxin linear re-
gression model, regardless of extent of correlations be-
tween the observed digoxin concentrations and variables
of interest, by using IBM® SPSS® statistics 25 with data
from modeling samples. In particular, the dose, which
was normalized to total body weight (i.e., /kg), was con-
sidered as a composite variable instead of two variables
and was used, in addition to PMA and CHF, to avoid
multicollinearity in MLR modeling. Then, we used the
backward selection method to remove one variable at a
time until the last model, which composed of common
variables to predict digoxin concentrations (i.e., dose,
total body weight, PMA, CHF) in population pharmaco-
kinetics, was developed. Then, the prediction equation
for each MLR model was prepared accordingly and sub-
sequently used in the data obtained from a validation
sample.

ANN model

While ANN modeling is widely used to learn nonlinear
mappings, and multicollinearity is not considered as a
problem in training ANN models [24], both of the dose



Yao et al. BMC Pediatrics (2019) 19:517

per kilogram (i.e., normalized to total body weight) and
the patient’s weight were used to train the ANN models
in this study. Then, an ANN model with a multilayer
perceptron (MLP) was developed on the modeling data-
set by using SPSS 25 [25]. The number of hidden layers,
neuron number, and initial Lambda were modified con-
stantly by repeated attempts in order to establish a
model with better simulation results and avoid over-
learning. Four-layered ANN architecture with 11 input
variables was generated initially, where the following
four layers were constructed: an input layer (input vari-
ables), two layers of hidden nodes and a single output
layer. The ANN models are the mathematical equations
that analyze the data in the input variables to compute
an output variable and the bias neuron was incorporated
in the input and hidden layers. We chose a standard
backpropagation algorithm neural network, which is one
of the most commonly used ANN architectures, for its
robustness and excellent performance for pattern ana-
lysis of multivariable data. In the modeling, the network
was trained 10 times, whereas new random sets of initial
weights were used each time, and the model training
was stopped whenever the maximum error between ob-
served and predicted standardized values decreased to a
value close to 1% was observed. After using reinitialized
weights between neurons for each run several times, the
results with the best fit between observations and the
outputs predicted from training data were adopted as
the optimized ANNs.

Model accuracy and discriminant analysis for MLR and
ANN modeling findings on the validation dataset

To test the derived ANN models and MLR models on
an independent validation dataset, we used leave-one-
out cross validation [26] to evaluate any over-fitting of
the training data and tried to examine the differences
between the prediction concentrations, which were com-
pared with that of observed serum digoxin concentra-
tions on the validation dataset. The four goodness-of-fit
indexes, including the mean absolute deviation (MAD),
mean absolute percent error (MAPE), mean square error
(MSE), root mean squared error (RMSE) (i.e., the square
root of the variance summation of the difference be-
tween observed and predicted outputs divided by the
summation of the observed output variance [26]), were
evaluated to measure the prediction accuracy. When the
range of MAPE was less than 50%, the model was recog-
nized as applicable to predict the serum digoxin concen-
trations. Smaller values of MAD, MAPE, MSE, and
RMSE in the corresponding model were better and were
considered as an optimal model. In addition, we per-
formed receiver operating characteristic (ROC) curve
analysis to classify the concentration as toxic or not (i.e.,
greater than or equal to 1.5 ng/ml upon the consensus
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between the corresponding practicing physicians and
clinical pharmacists in this unit) when comparing the re-
sults obtained from MLR models or ANN models. The
area under the ROC curve (AUC) referred to how well
the prediction model could differentiate toxic and non-
toxic levels, and we would expect to obtain better accur-
acy whenever the AUC range from 0.5 (random guess)
to 1.0 (perfect accuracy) for the ROC curves [27].

Next, we performed discriminant analysis of MLR and
ANN model findings for the predicted serum digoxin
concentrations to investigate whether the patient’s pre-
dicted serum digoxin concentration would be equal to
or above the toxic level (i.e., 1.5 ng/ml). A positive num-
ber indicated that the plasma concentration was equal to
or above the toxic concentration, and a negative number
indicated that the plasma concentration was below the
toxic level. Once the results of model training became
available, all the attempted models obtained from both
MLR and ANN models were examined for their classifi-
cations based on the predicted concentrations as toxic
or non-toxic, as compared to the observed serum di-
goxin concentrations, on the validation dataset: true
positive (TP, correctly classified as ‘positive’), true nega-
tive (TN, correctly classified as ‘negative’), false positive
(FP, incorrectly classified as ‘positive’), false negative
(EN, incorrectly classified as ‘negative’), rate of correct
prediction [RCP = (TP + TN)/(TP + TN + FP + FN)], sen-
sitivity [SE = TP/(TP + FN), which infers the rate of cor-
rect predictions among all positive predictions],
specificity [SP =TN/(TN + FP), which infers the rate of
correct negative prediction among all negative predic-
tions]. Specifically, the classifications of model perform-
ance were mainly evaluated its perdition rates by the
following three criteria: SE, SP and RCP.

Overall, the final best model was determined based on
the combined evaluation of accuracy (e.g., MSE, RMSE,
MAD, MAPE), AUC for prediction discrimination, pre-
diction rates (i.e., RCP, SE, SP), the importance and nor-
malized importance, the correlations between observed
and predicted digoxin concentrations by the best ANN
model using the validation dataset, if this model did per-
form better than any of the MLR or ANN models.

Results

After reviewing medical charts thoroughly and extract-
ing needed data, we found originally 91 newborn infants
contributed to 226 observations of serum digoxin con-
centrations in the first place. However, those who only
contributed one observation of serum digoxin concen-
tration, which was expected not reach steady state, or
their concentrations were not within the acceptable
therapeutic range (i.e, 0.8-2.0 ng/ml), especially those
with extreme outliers of digoxin concentrations due to
the neonatal patient’s critical conditions, were excluded
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from the training model. We eventually identified and
used 139 observations of 71 newborn infants staying in
NICU between April 1, 2013 to April 30, 2017 for model
training and another 29 observations of 19 newborn in-
fants staying in NICU between May 1, 2017 and Decem-
ber 31, 2017 for validation.

There were no statistically significant differences be-
tween the observed digoxin concentrations and pre-
specified variables, except PH, in these two samples from
modeling and validation datasets (Table 1). Of these re-
cruited neonates, 58 (81.7%) and 13 (68.4%) were prema-
ture infants in the modeling and validation datasets,
respectively, and their median PMA was 34 and 37, re-
spectively. In all cases, TBW was approximately 1.73 kg.
While the Vd of digoxin in full-term neonates is ex-
pected to be 7.5-10L/kg [28], the mean Vd of digoxin
for all enrolled neonates was relatively low and various
across infants with different PMA (ie, 524L/kg in
Fig. 1). Further, the distribution of observed digoxin
concentrations for these critically ill infants was not nor-
mally distributed (p <0.001 in Additional file 1: Table
S1). There were no statistically significant correlations
between the observed digoxin concentrations and the 10
pre-specified potential variables, except with or without
PH (Additional file 1: Table S2). Thus, performing trad-
itional linear regression modeling to predict the concen-
trations accordingly would violate some assumptions.
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Nevertheless, the 10-parameter MLR model and an
11-parameter ANN model was generated in the first
place using the modeling dataset, respectively. The pre-
diction performance applying findings obtained from the
modeling dataset to the validation dataset were investi-
gated with leave-one-variable-out cross validation as
well. Tables 2, 3, and 4 show the ANN bootstrapping for
a series of different input variables, which were analyzed
using several specific classification techniques. The
ranges of MAPE for all models were less than 50% and
the highest two R* were Model 3 or 4 (74.46, 73.82%, re-
spectively) in Table 2. Although AUC ranges for all
models were all more than 0.5, the highest two AUC
values were Model 3 or 4 (0.738, 0.658, respectively),
even if the confidence intervals of the corresponding
AUC were overlapping across these nine proposed
models (Table 3). Thus, the performance of the specified
models were not significantly different from each other
to differentiate the toxic concentration (i.e., 1.5 ng/ml)
but Model 3 or 4 might the two better choices than the
others.

When all the goodness-of-fit and prediction indexes
(e.g, MSE, RMSE, MAD, MAPE, sensitivity, specificity,
and AUC) were employed to evaluate the effectiveness
of the prediction models in the validation dataset, finally,
the Model 3 with 9 parameters stands out as having bet-
ter performance (MAPE =17.70%, R*=74.46%, AUC =

Table 1 Demographic, disease status and medication information among neonatal patients using digoxin on modeling dataset or

validation dataset

In modeling dataset In validation dataset p-value °
Number of observations (male/female) 139 (81/58) 29 (13/16)
Number of patients (male/female) 71 (40/31) 19 (7/12)
Demographic
Gender (Male/Female) 81/58 13/16 0.185
Postnatal age (week) 36.35+808° (34 3841 +5.14°, (37)° 0.190
Total body weight (kg) 1.73+0.90°, (1.44)° 1.88+£0.72° (1.76)° 0407
Diseases
CHF 54 (38.8) 11 (379 0.926
DCM 9(6.5) 4(13.8) 0.243
PH 11(7.9) 7 (24.) 0.010
VSD 16 (11.5) 9 (28.1) 0.072
Medications
Ibuprofen 61 (38/23) 11 (3/8) 0.556
Captopril 6 (6/0) 4 (4/0) 0.072
Furosemide 24 (20/4) 5 (4/1) 0.997
Digoxin information
Digoxin dose (mcgkg™d™") 590+ 193, (5.19) 566+ 181, (5.17) 0542
Drug concentrations (ng/mL) 1254038, (1.2) 1.14 +£0.24, (1.06) 0.138

2 Nonparametric test by t-test for continuous data and Pearson’s Chi-Square test for categorized data; °. Values are expressed as mean + SD; <. Median Value (IQR);
CHF Congestive Heart Failure; DCM dilated cardiomyopathy; PH pulmonary hypertension; VSD Ventricular Septal Defect
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Fig. 1 Digoxin volume distribution (Vd), which were normalized by bodyweight versus postmenstrual age (PMA) among all enrolled newborn
infants in neonatal intensive care unit (one dose after steady-state; n=71). Note: the line in the middle is the mean of Vd per total body weight
(mean =5.24 L/kg) and the upper and lower line are the upper and lower limits of 95% confidence interval for the mean Vd, respectively.

0.738, RCP = 82.8%, SE = 60%, SP = 87.5%) in comparison
with the other ANN models and MLR models (i.e.,
eight-parameter model with MAPE = 16%, R*=54.9%,
AUC=0.9, RCP=82.76%, SE=16.67%, SP=100% in
Additional file 1: Tables S3, S4, and, S5). The Model 4 of
8-parameter ANN model and Model 4 of 7-parameter
MLR model, respectively, were also better than the other
models but relative less perfect than the Model 3 for
both approaches. The TBW and PMA, other than
“dose”, which was normalized to TBW, showed the
greatest impact on the prediction of digoxin concentra-
tions of all the pre-specified variables (Table 5).

The final best nine-parameter ANN model consisting
of the following three structural layers was identified as
a better model (which was structured as that in Fig. 2)
than the others: an input layer with 11 processing pa-
rameters (demographic, disease, and medications), two
hidden layers with more parameters according to the
number of input parameters (i.e., 22 and 16 parameters,
respectively in layer two and layer three for the model
with eight parameters), and an output layer with one
processing element (predicted serum digoxin concentra-
tion). Consequently, the correlation between the ob-
served and predicted serum digoxin concentrations on

Table 2 MSE, RMSE, MAD, MAPE of each ANN model between the observed serum digoxin concentrations and the corresponding

predicting concentrations on validation dataset

Model No. of parameters Parameters MAPE(%) MSE RMSE MAD R?(%)
1 11 All Variables 16.72 0.05 023 0.19 63.00
2 10 -Sex 15.88 0.05 0.22 0.17 65.17
3 9 -Sex-DCM 17.70 0.06 024 0.19 7446
4 8 -Sex-DCM -PH 15.03 0.04 020 0.16 73.82
5 7 -Sex-DCM -PH -Captopril 2141 0.09 0.30 0.24 57.30
6 6 -Sex-DCM -PH -Captopril -Furosemide 23.18 0.09 0.29 0.25 6343
7 5 -Sex-DCM -PH -Captopril -Furosemide -VSD 25.16 0.11 033 0.26 46.37
8 4 -Sex-DCM -PH -Captopril -Furosemide -VSD -ibuprofen 24.68 0.10 031 0.26 4443

“- “in the column of parameters refers to “exclude” that specific variable from the model 1, which contain all variables. MAPE Mean Absolute Percentage Error; MSE
Mean Square Error; RMSE Root Mean Square Error; MAD Mean Absolute Deviation, R?% determination of coefficient

All 11 variables include: dose per total body weight, gender, postmenstrual age (PMA), Congestive heart failure (CHF), dilated cardiomyopathy (DCM), pulmonary
hypertension (PH), Ventricular septal defect (VSD), with captopril, with furosemide, with ibuprofen

*Common variables used in population pharmacokinetics were dose per total body weight, PMA, CHF
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Table 3 Area under the curve (AUC) of the receiver operating characteristic (ROC) curves to differentiate toxicity concentration (i.e,,
equal and above 1.5 ng/ml) or not for each ANN model on validation dataset

Model No. of Parameters AUC SE Sig. 95% Cl
parameters Lower Bond Upper Bond

1 11 All Variables 0.558 0.151 0.686 0.263 0.854
2 10 -Sex 0.658 0.152 0.273 0.361 0.956
3 9 -Sex-DCM 0.738 0.140 0.100 0463 1.000
4 8 -Sex-DCM -PH 0658 0.152 0273 0361 0.956
5 7 -Sex-DCM -PH -Captopril 0.575 0.147 0.603 0.286 0.864
6 6 -Sex-DCM -PH -Captopril -Furosemide 0617 0.150 0419 0.324 0910
7 5 -Sex-DCM -PH -Captopril -Furosemide -VSD 0633 0.141 0.356 0.357 0.909
8 4* -Sex-DCM -PH -Captopril -Furosemide -VSD -ibuprofen 0638 0.151 0.341 0.342 0.933

“-"in the column of parameters refers to “exclude” that specific variable from the model 1, which contain all variables. AUC area under the curve; SE standard

error of AUG; Sig. significance of AUC finding

All 11 variables include: dose per total body weight, gender, postmenstrual age (PMA), Congestive heart failure (CHF), dilated cardiomyopathy (DCM), pulmonary
hypertension (PH), Ventricular septal defect (VSD), with captopril, with furosemide, with ibuprofen
*Common variables used in population pharmacokinetics were dose per total body weight, PMA, CHF

the validation dataset was 0.743 (Fig. 3), which met
expectations.

Discussion
Other than applying population PK approaches to pre-
dict digoxin concentrations and PK parameters for
pediatric patients as has been done in Thailand and
Japan [15-19], our study demonstrates that ANN mod-
eling is a better alternative approach to predicting di-
goxin concentrations whenever drawing blood samples
from critically ill newborn infants for therapeutic drug
monitoring is very challenge. Especially, the nine-
parameter ANN model is the final better model among
all of the trained ANN and generated MLR models.
There is increasing interest in developing outcome
prediction models using either traditional regression
modeling and/or ANN modeling for pediatric patients,
i.e., to predict survival in pediatric patients with trauma,

as tools to assess medical quality, to evaluate reasonable
resource allocation and research in medical care, and for
use in comparing performance among institutions [21].
While the digoxin volume distribution in these critically
ill newborn infants was relative low and also different
from that of normal full-term neonates, it is understand-
able that the distribution of observed digoxin concentra-
tions was not normally distributed and there were not
strong enough correlations between the observed di-
goxin concentrations and the pre-specified potential var-
iables. Such findings support that to perform traditional
linear regression modeling and to predict the concentra-
tions accordingly is not only problematic but also a big
challenge.

While traditional statistical approaches assume linear
correlations between the predicted digoxin concentrations
and the pre-specified variables, MLR modeling is not a
good approach because many statistical assumptions

Table 4 Classification performance of prediction to differentiate toxicity concentrations (i.e., equal and above 1.5 ng/ml) or not, as
compared to the observed serum digoxin concentrations, for each ANN model on validation dataset

Model No. of parameters Parameters TP N FP FN RCP(%) SE(%) SP(%)
1 " All Variables 1 22 2 4 793 20 91.7
2 10 -Sex 2 22 2 3 82.8 40 91.7
3 9 -Sex-DCM 3 21 3 2 82.8 60 87.5
4 8 -Sex-DCM -PH 2 22 2 3 82.8 40 91.7
5 7 -Sex-DCM -PH -Captopril 2 18 6 3 69.0 40 75.0
6 6 -Sex-DCM -PH -Captopril -Furosemide 2 20 4 3 759 40 833
7 5 -Sex-DCM -PH -Captopril -Furosemide -VSD 3 16 8 2 65.5 60 66.7
8 4% -Sex-DCM -PH -Captopril -Furosemide -VSD -ibuprofen 2 21 3 3 793 40 87.5

“- “in the column of parameters refers to “exclude” that specific variable from the model 1, which contain all variables. TP true positive (correctly classified to be
‘positive’); TN true negative (correctly classified to be ‘negative’); FP false positive (incorrectly classified to be ‘positive’); FN false negative (incorrectly classified to
be ‘negative’), respectively; RCP rate of correct prediction; SE sensitivity; SP specificity

All variables include: dose per total body weight, weight, gender, postmenstrual age (PMA), Congestive heart failure (CHF), dilated cardiomyopathy (DCM),
pulmonary hypertension (PH), Ventricular septal defect (VSD), with captopril, with furosemide, with ibuprofen

*the common variables used in population pharmacokinetics were dose per total body weight, weight, PNA, CHF
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(non-linearity and multicollinearity) were violated. Never-
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( Synaptic Weight > 0 )
e theless, we attempted to perform MLR modeling by ignor-
ing these assumptions. Given that the ANN approach is
= one of the approaches recommended to overcome non-
linearity concerns and multicollinearity of predictor vari-
= ables [15], our study showed that ANN modeling did
perform better than traditional regression modeling in
/”H(m predicting serum digoxin concentrations for critically ill
// / newborn infants. This implies that ANN modeling is a
)/ & = better alternative choice of modeling approach, in agree-
- ‘ LRI ment with other studies on the prediction of newborn in-
</ // ﬂ//’/' et N\ ’//H(Zv‘) fant growth [20], survival [21], and preterm birth [22].
.* / /Z/‘ / A\ Ve While Hu et al. demonstrated the usefulness of data
7N ,4; “"f) LN\ mining techniques (e.g., decision-tree-based and MLP)
) \% 0, ‘ S%‘ to predict the initial dose of digoxin using relevant vari-
4 AP W ables for adults in Taiwan [19], our study showed that
bl VO LR the ANN model with nine pre-specified variables (i.e.,
AR AT Vi dose/kg, TBW, PMA, PH, CHF, VSD, captopril use, fur-
a— \ PP \ osemide use, and ibuprofen use) exhibited better accur-
m Y :‘“‘” '- R0\ acy and prediction rate compared with the other ANN
Ace=0 \ ’\ \.\ models. The eight-parameter model, excluding TBW,
R AR was also the better one among all MLR models. In other
an\ & «;'Q Y \ | words, these pre-specified variables are the best choices
| \ ’%‘ o I\ e as the inputs or independent variables to predict serum
"’"”""’"ﬂ AL “‘:;‘ A NGV digoxin concentrations in ANN modeling or MLR mod-
AR (AR RSN R LN o eling, respectively, for newborn infants with critical
| \\ 3 @) 0L\ illness in the clinical practice setting in Taiwan. Chow
O Y SRR e AT / et al. demonstrated that applying ANN modeling to in-
= '\‘ A corporate demographic variables, weight, other diseases,
—AE A | i\ L || (R / and the dosage regimen to predict tobramycin concen-
e VAL \\ ’:,,v AN / trations for newborn infants resulted in findings similar
L \\ 1o Jig e he / to those obtained from a PK population using NON-
o ' AN £ G ? ) “ / MEM" software [29]. All these evidences confirmed our
x \ B AN / findings that ANN is an alternative and useful modeling
i 5 \ o approach to predict digoxin concentrations or PK
: M oo J fzis) / parameters without drawing blood samples from new-
P ,\ 0 born infants. However, further research to compare and
4 Han Ao / contrast our findings with analysis using population PK
veorr | DN B /] ) / for digoxin concentrations in critically ill newborn
\\ Haste) Hats) infants is needed.
\ i@l 7 Our final nine-parameter ANN model to predict
\ (B izt whether or not a toxic digoxin concentration is reached
in newborn infants in their critical illness status has
shown moderate sensitivity but better specificity, RCP
and AUC for prediction discrimination (SE =60%, SP =
87.5%, RCP = 82.8%, area under the ROC = 0.738). Such
result was similar to the findings of a model developed
by Hu et al. to predict the adult digoxin dose (RCP =

H(1:

/

20)

W77
W\

85.671% and area under the ROC =0.813) [19]. Up to

H(1:21)

H(1:22)

now, all these MLR or ANN models did not need to in-
clude the digoxin clearance of newborn infants, which is

Output layer activation function: Identity

Hidden layer activation function: Hyperbolic tangent

a necessary variable in traditraional PK approach or
population PK software, e.g, NONMEM® software.

Given that renal excretion functions are weak at birth

Fig. 2 Multi-Layer Perceptron (MLP) model for the final best model
(ANN Model 3 with 9-parameters) using modeling dataset
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Table 5 The importance of input variable for the best ANN
model (Model 3 with 9 parameters) using validation dataset

Importance Normalized Importance
Dose/kg per dose 0.138 63.9%
TBW 0.216 100%
PMA 0.185 85.6%
PH 0.082 37.8%
CHF 0.066 30.7%
VSD 0.066 30.6%
Captopril 0.125 57.7%
Furosemide 0.050 233%
Ibuprofen 0.071 32.7%

Final model includes the following variables: dose/kg per dose, TBW total body
weight; PMA postmenstrual age; PH pulmonary hypertension; CHF Congestive
heart failure; VSD Ventricular septal defect, with captopril, with furosemide,
with ibuprofen

but mature over a few months later [23], it is important
to continually modify the drug dosage regimens de-
signed for treating neonatal patients, including treatment
with digoxin. That is because their developmental rates
are rapid during the first few weeks and months of life.
In contrast, our study revealed that TBW, PMA, PH,
CHEF, VSD, concomitant use of ibuprofen, captopril and/
or furosemide, in addition to the dose variable, which
was normalized to TBW, showed the greatest impact on
digoxin concentrations when treating the newborn in-
fants in critical illness. Of these variables, dose, TBW,
and PMA, comparing to the other pre-specified vari-
ables, showed higher importance.
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Some limitations of this study should be addressed
when interpreting the findings. As in the other predic-
tion study using MLR or ANN modeling, our datasets
also have inherent imperfections in data collection and
other factors. Further, the sample size was relatively
small. Although Pasini demonstrated that ANN for small
dataset analysis in complex medical areas is not a prob-
lem [30], we believe the generalizability of this study is
still limited. That is because the modeling and validation
dataset were derived from critically ill newborns in
NICU in a single medical center, and these patients were
relatively small, had lower volume distribution and had
lower birth weight than in the other studies. A cross-
validation study in other hospitals will be critical to con-
firm the validity of the better performance of ANN
model in the future. Second, the ANN structure we
chose to develop may not be sufficiently robust because
the sensitivity of predicted toxic digoxin concentrations
was relatively low even if the specificity and rate of cor-
rect prediction was high. One of the reasons could be
that the power of the data search engine for model train-
ing might not be sufficient. Third, those outliers of ob-
served serum digoxin concentrations in both directions
were excluded for model training so that the findings
limit its clinical use of ANN model for those patients
who not reached the acceptable therapeutic range (i.e.,
0.8-2.0 ng/ml) or those who were confronted with ex-
treme higher concentrations due to some unknown con-
ditions. Nevertheless, this is the first study to apply
ANN modeling to predict serum digoxin concentrations
in critically ill newborn infants. Fortunately, we obtained
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Fig. 3 Correlation between observed and predicted digoxin concentrations by the best ANN model (ANN Model 3 with 9 parameters) using
validation dataset. Correlation r=0.743.
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important input variables (including use of the other
medications to close PDA or manage heart failure, e.g.,
ibuprofen, captopril, furosemide) to demonstrate that
the nine-parameter ANN model was better calibrated
than the other models, including MLR-derived models.
Continuous application of this nine-parameter ANN
model in the clinical practice settings for newborn in-
fants with critical illness will be essential to validate its
predictive value.

Conclusion

While ANN models are better than MLR models, the
nine-parameter ANN model is the best alternative to
predict serum digoxin concentrations whenever blood
samples from newborn infants for therapeutic drug moni-
toring are not available. This model has high specificity
and better prediction accuracy to differentiate toxic from
non-toxic predicted serum concentrations for newborn in-
fants with critical illness than the other models. In this
first study applying ANN and MLR modeling to predict
serum digoxin concentrations especially in newborn in-
fants with critical illness, we were fortunate to identify that
the nine pre-specified input variables are important for
training the ANN model as the better model relative to all
other models. Further cross-validations using different
samples of newborn infants in various disease states from
different institutes are needed.
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