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Phytochemistry reflects different 
evolutionary history in traditional 
classes versus specialized structural 
motifs
Kathryn A. Uckele1,2,3,8, Joshua P. Jahner1,2,8*, Eric J. Tepe4, Lora A. Richards1,2,3, 
Lee A. Dyer1,2,3,5, Kaitlin M. Ochsenrider6, Casey S. Philbin3, Massuo J. Kato7, 
Lydia F. Yamaguchi7, Matthew L. Forister1,2,3, Angela M. Smilanich1,2, Craig D. Dodson6, 
Christopher S. Jeffrey1,3,6 & Thomas L. Parchman1,2

Foundational hypotheses addressing plant–insect codiversification and plant defense theory 
typically assume a macroevolutionary pattern whereby closely related plants have similar chemical 
profiles. However, numerous studies have documented variation in the degree of phytochemical 
trait lability, raising the possibility that phytochemical evolution is more nuanced than initially 
assumed. We utilize proton nuclear magnetic resonance (1H NMR) data, chemical classification, 
and double digest restriction-site associated DNA sequencing (ddRADseq) to resolve evolutionary 
relationships and characterize the evolution of secondary chemistry in the Neotropical plant clade 
Radula (Piper; Piperaceae). Sequencing data substantially improved phylogenetic resolution relative 
to past studies, and spectroscopic characterization revealed the presence of 35 metabolite classes. 
Metabolite classes displayed phylogenetic signal, whereas the crude 1H NMR spectra featured little 
evidence of phylogenetic signal in multivariate tests of chemical resonances. Evolutionary correlations 
were detected in two pairs of compound classes (flavonoids with chalcones; p-alkenyl phenols 
with kavalactones), where the gain or loss of a class was dependent on the other’s state. Overall, 
the evolution of secondary chemistry in Radula is characterized by strong phylogenetic signal of 
traditional compound classes and weak phylogenetic signal of specialized chemical motifs, consistent 
with both classic evolutionary hypotheses and recent examinations of phytochemical evolution in 
young lineages.

Plant secondary chemistry affects plant–herbivore interactions at various stages throughout an insect’s lifespan: 
mixtures of compounds can shape adult oviposition preferences1, specific chemical compounds can stimu-
late larval feeding2, specific chemotypes can deter insect herbivores via toxicity or physiological disruptions3, 
and sequestered metabolites can alter immune function against natural enemies4. Plants capable of developing 
novel chemical defenses are hypothesized to accrue higher fitness due to enemy release5, potentially resulting in 
the diversification of plant lineages with conserved chemical phenotypes (the escape and radiate hypothesis6). 
Coevolutionary hypotheses and plant defense theory have yielded clear predictions that herbivory, additional 
trophic interactions, and resource availability shape the evolution of plant defenses, including secondary 
metabolites7,8. However, an evolutionary response to these biotic and abiotic pressures could be complex and 
highly context-dependent.

Due in part to the enzymatic complexity of metabolic biosynthesis, phylogenetic conservatism is the null 
hypothesis for the evolution of plant secondary chemistry9,10. Indeed, expectations of phylogenetic conservatism 
appear to hold at deep evolutionary scales; for example, the family Solanaceae is characterized by the presence 
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of tropane alkaloids11, though they are consistently present in only 3 of 19 tribes (Datureae, Hyoscyameae, 
Mandragoreae) and sporadically found elsewhere12. Further, recent work suggests that classes of secondary 
metabolites are more likely to be phylogenetically conserved in large seed plant clades (e.g., eudicots and superas-
terids) than at lower taxonomic scales (e.g., orders and families)13. At shallower scales, numerous studies provide 
evidence for evolutionary lability in chemical traits within genera7,14–16, suggesting that surveys of phytochemical 
variation within young plant lineages might yield variable perspectives on the evolution of secondary chemis-
try. Adding further complexity, many studies have found evidence for strong evolutionary associations among 
chemical classes16,17. For example, Johnson et al.18 found a strong positive correlation between flavonoids and 
phenolic diversity and a strong negative correlation between ellagitannins and flavonoids across a phylogeny of 26 
evening primroses (Oenethera: Onagraceae). Such associations are relevant because they may reflect evolutionary 
constraints, and their causes may be varied. For example, positive associations may be associated with chemical 
defense syndromes9,19 or synergistic effects of multiple classes on herbivore deterrence20. Alternatively, negative 
associations might be consistent with evolutionary tradeoffs or at least different optima in defense space18,19. By 
leveraging advances in organic chemistry and genomics, we stand to increase metabolomic and phylogenetic 
resolution to provide novel insight into the evolution of phytochemistry.

Recent advances in chemical ecology have improved perspectives on phytochemical diversity across a broad 
range of taxonomic groups and metabolite classes21,22. High throughput processing of plant tissue, rapid advances 
in spectroscopy, and improved ordination and network analyses have enabled characterization of metabolomic 
variation across plant communities10,15,22–24 and stand to enhance our understanding of phytochemical evolution 
across taxonomic scales21. Additionally, structural spectroscopic approaches like 1H NMR can provide improved 
resolution of structural variation across a wide range of metabolite classes. Selection on the plant metabolome 
is inherently multivariate, arising from diverse herbivore communities and environmental conditions10,25, and 
even relatively small structural changes can impart disproportionate shifts in bioactivity. Thus, approaches that 
capture a larger proportion of the structural variation underlying phytochemical phenotypes could be well suited 
to addressing hypotheses concerning evolutionary patterns.

Next-generation sequencing data has reinvigorated phylogenetic analyses of traditionally challenging groups 
characterized by recent or rapid diversification26. Reduced representation DNA sequencing approaches [e.g., 
ddRADseq; genotyping-by-sequencing (GBS)] have been increasingly utilized in phylogenetic studies due to 
their ability to effectively sample large numbers of orthologous loci throughout the genomes of non-model 
organisms without the need for prior genomic resources27. Nearly all such studies have reported increased topo-
logical accuracy and support compared with past phylogenetic inference based on smaller numbers of Sanger-
sequenced loci28,29, especially when applied to diverse radiations30,31. While reduced representation approaches 
have clear phylogenetic utility at relatively shallow time scales, they have also performed well for moderately 
deep divergence29,32.

Piper (Piperaceae) is a highly diverse, pantropical genus of nearly 2,600 accepted species33, with the highest 
diversity occurring in the Neotropics34. Chemically, Piper is impressively diverse35–37: chemical profiling in a 
modest number of taxa has yielded 667 different compounds from 11 distinct structural classes thus far35,36,38,39. 
This phytochemical diversity has likely contributed to the diversification of several herbivorous insect lineages 
that specialize on Piper, including the geometrid moth genus Eois40 (Larentiinae). Furthermore, phytochemical 
diversity in Piper communities has been shown to shape tri-trophic interactions and the structure of tropical 
communities36,39,41. As a species-rich genus with abundant and ecologically consequential phytochemical diver-
sity, Piper represents a valuable system for understanding how complex diversification histories underlie the 
evolution of phytochemical diversity.

Piper is an old lineage (~ 72 Ma), yet most of its diversification occurred in the Neotropics during the last 
30–40 My following Andean uplift and the emergence of Central America34,42. The largest clade of Piper, Rad-
ula, exemplifies this pattern, as much of its extant diversity (~ 450 species) arose relatively recently during the 
Miocene34. Such bouts of rapid and recent diversification have limited the efficacy of traditional Sanger sequenc-
ing methods to resolve the timing and tempo of diversification in Piper42,43. Past phylogenetic analyses utilizing 
Sanger-sequenced nuclear and chloroplast regions have consistently inferred eleven major clades within Piper; 
however, phylogenetic resolution within these clades has been elusive42–45. Phylogenetic inference based on 
genome-wide data spanning a range of genealogical histories should facilitate an understanding of evolutionary 
patterns of phytochemical diversity in Piper and their consequences for plant–insect codiversification.

We leveraged complementary phylogenomic, metabolite classification, and 1H NMR data sets to generate a 
Piper phylogeny and explore the evolution of secondary chemistry within the largest Piper clade (Radula). We 
used reduced representation sequencing (ddRADseq) to generate genome-wide data for 71 individuals, span-
ning eight Piper clades but focusing on Radula, for phylogenetic analyses. Due to its ability to characterize subtle 
structural variation across a wide range of compound classes, we used nuclear magnetic resonance (1H NMR) 
spectroscopy to quantify phytochemical diversity in the same individuals. Our goals were to: 1) resolve the 
evolutionary relationships within the Radula clade of Piper included in this study; 2) characterize metabolomic 
variation across the genus and within Radula in particular; and 3) quantify the strength of phylogenetic signal and 
test for evolutionary associations in Radula secondary chemistry. Because secondary chemistry is an emergent 
composite phenotype of many traits that can evolve semi-independently, we expected to detect mixed strengths 
of phylogenetic signal and strong associations among a subset of traits over evolutionary time.

Results
Phylogenetic analyses.  After contaminant filtering and demultiplexing, we retained ~ 313 million Illu-
mina reads for phylogenetic analyses. Initial clustering, variant calling, and filtering assembled reads into 362,169 
ddRADseq loci. There was a high proportion of missing data, presumably due to allelic dropout increasing with 
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high levels of divergence among Piper clades. For Bayesian phylogenetic inference, we mitigated the influence of 
missing data by removing loci absent in > 30% of samples. The final dataset for phylogenetic analysis consisted 
of 641 ddRADseq loci (~ 86 bp in length each) that housed 9113 genetic variants (51% parsimony informative). 
Aligned loci were concatenated into a nexus alignment with missing data at 18.9% of sites.

Bayesian phylogenetic analysis of ddRADseq data resolved eight major Neotropical Piper clades with high 
posterior support (Fig. 1). While past phylogenetic studies supported the monophyly of seven of these eight 
clades (Macrostachys, Radula, Peltobryon, Pothomorphe, Hemipodium, Isophyllon, and Schilleria)34,43, our 
analysis resolved an additional clade, Churumayu. Notably, Isophyllon and Churumayu were highly supported, 
monophyletic clades and not nested within Radula, as was inferred in previous analyses43. Contrary to previous 
phylogenetic hypotheses of Piper34,43, our analysis might suggest Churumayu is the most basal clade, but we 
caution that this node had very low posterior support (51%). Intrageneric relationships below the clade level 
were highly resolved, with nearly all nodes exhibiting greater than 95% posterior support, including within the 
diverse Radula clade (Fig. 1). Our phylogenetic hypothesis for Radula indicates three species (P. hispidum, P. 
colonense, P. lucigaudens) may be paraphyletic.

Phytochemical diversity in Piper.  All but four individuals included in the inferred Piper tree were suc-
cessfully chemically extracted and profiled. Nearly all common compound classes that have been previously 
reported in Piper46 were observed from our compound characterization analysis (see Table S2). This analysis 
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Figure 1.   Maximum clade credibility tree of 48 samples from the Radula clade of Piper and 23 outgroup species 
inferred with a Bayesian analysis of 641 concatenated ddRADseq loci (55,298 base pairs) comprising 9113 
genetic variants (of which 4674 are parsimony informative). The outgroup taxa were sampled across multiple 
Piper clades: Churumayu, Isophyllon, Hemipodium, Macrostachys, Peltobryon, Pothomorphe, and Schilleria. 
All nodes are supported by at least 95% posterior support except where noted with circles or labels. Blue circles 
indicate support values between 85 and 95%. Red circles indicate support values between 75 and 85%. Three 
nodes with less than 75% posterior support were given numerical support values. Blue bars at each node denote 
the 95% highest posterior density interval on relative node ages. The photos to the right of the tree showcase a 
sample of Piper diversity, including a few of the species which were included in this study: (a) Piper hillianum 
(Macrostachys), (b) P. acutifolium (Peltobryon), (c) P. umbellatum (Pothomorphe), (d) P. pseudofuligineum 
(Radula), (e) P. concepcionis (Radula), (f) P. disparipes (Radula), (g) P. friedrichsthalii (Radula), (h) P. dilatatum 
(Radula), (i) P. bredemeyeri (Radula), (j) P. immutatum (Radula), (k) P. erubescentispicum (Radula), and (l) the 
widespread and often weedy P. aduncum (Radula). (Photo credits: E. J. Tepe).
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revealed the presence of broad metabolite classes that are ubiquitous across plant families (e.g., lignans, flavo-
noids/chalcones, etc.) as well as classes that are specifically common in Piper (e.g., amides) (Fig. 2, Table S2). 
Specific compound characterization revealed genus specific compounds and compound classes (piplartine, 
cenocladamide, crassinervic acid, kava lactones), as well as metabolites that are more rarely reported in plants 
(putrescine diamides, nerolidyl catechol, alkenyl phenols, anuramide peptides) (Fig. 2, Table S2). Alternative 
methods, such as sampling across a species’ ontogeny, sampling reproductive parts or roots, and storing freshly 
collected tissue in methanol rather than air drying would add to a more comprehensive picture of variation in 
phytochemical diversity across and within species, but our sampling was standardized to allow for initial com-
parisons across species, some of which were collected in remote regions.

Metabolite phylogenetic signal and evolutionary associations.  We recovered 35 metabolite 
classes, of which only eight were sufficiently present across our taxa to afford tests of phylogenetic signal and 
correlated evolution. For all eight metabolite classes, estimates of D did not deviate from a null distribution 
generated under a scenario of Brownian motion (Table 1), consistent with phylogenetic signal. Two of the eight 
traits, phenolic glycosides and lignans, exhibited strong phylogenetic signal (D < 0), while the remaining six 
traits exhibited weak phylogenetic signal (0 < D < 1). Further, all but one of the metabolite classes had observed 
values of D that differed from a null distribution generated under a phylogenetic randomness scenario (Table 1). 
The mean of the observed D estimates for the metabolite classes was 0.06, with the largest D statistic observed 
for the chalcone class (D = 0.62) and the smallest observed for the phenolic glycosides (D = − 1.18) (Table 1).

Of the 28 pairwise tests of correlated evolution, only two were significant based on a significance level of 0.05. 
Evidence for correlated evolution was detected in two pairs of metabolite classes: (1) flavonoids and chalcones; 
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Figure 2.   Patterns of chemical variation are displayed for individuals in this study. Taxa comprise the columns 
of the matrix and are ordered according to their inferred phylogenetic relationships. Groups of columns are 
colored according to their designated Piper clade. Black circles within the phylogenetic tree designate nodes 
with posterior support values greater than 85%. Each row of the matrix represents a metabolite class that was 
detected from 1H NMR and MS-based methods, and dark grey cells indicate the presence of that class in that 
taxa. Classes are hierarchically nested; capitalized font signifies the three classes at the highest level (and coarsest 
resolution), italicized font signifies the intermediate level, and black font signifies the lowest level (and highest 
resolution). Rows outlined in white indicate traits that were analyzed for phylogenetic signal in Radula. To 
the left of the matrix are representative compounds for a subset of metabolite classes that were detected in our 
samples.
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and (2) p-alkenyl phenols and kavalactones/butenolides. For the first pair of traits, a model of contingency in 
which changes in chalcones depend on the state of flavonoids provided the best fit to the data (Table 2). In this 
model, when flavonoids are present, chalcone gains are 1.4 times more probable than chalcone losses; however, 
when flavonoids are absent, chalcone losses are much more probable than chalcone gains (Fig. 3). The alterna-
tive contingency model for this pair of traits (i.e., changes in flavonoids depend on the state of chalcones) was 
also a good fit to the data (Table 2). According to this model, when chalcones are present, flavonoid gains are 
approximately nine times more probable than flavonoid losses. Alternatively, when chalcones are absent, fla-
vonoid losses are approximately five times more probable than flavonoid gains (Fig. 3). For the second pair of 
traits, p-alkenyl phenols and kavalactones/butenolides, the best fit model was one of interdependent evolution 
in which changes in p-alkenyl phenol depend on the state of kavalactones/butenolides, and vice versa (Table 2). 
When kavalactones/butenolides are present, p-alkenyl phenol transitions are more probable than when they 
are absent, with the loss of p-alkenyl phenols being much more probable than the gain of p-alkenyl phenols 
under both scenarios. Alternatively, when p-alkenyl phenols are present, the loss of kavalactones/butenolides is 
extremely probable relative to the gain of kavalactones/butenolides, which is rarely observed. When p-alkenyl 
phenols are absent, kavalactones/butenolides are rarely gained or lost (Fig. 3). 

Phylogenetic signal in high‑dimensional metabolomic data.  While the eight metabolite classes 
uniformly exhibited at least moderate levels of phylogenetic signal, evidence for phylogenetic signal in multi-
variate analyses of the crude 1H NMR data was largely absent. PCo axes 1 & 2 and 3 & 4 explained 32.8% and 
16.0% of variance in the 1H NMR data, respectively, but showed little clustering by clade (Fig. 4a). Permutational 
multivariate analyses of variance were not significant for combinations of either PCo 1 & 2 (P = 0.407) nor 3 & 4 
(P = 0.142), suggesting that different clades do not form distinct clusters in chemospace based on their 1H NMR 
spectra.

According to the MRM models, phylogenetic distance significantly predicts phytochemical distance within 
Radula (β = 4.503, P = 0.013) but not across all clades (β = 1.775, P = 0.146) (Fig. 4b). It is important to note that the 

Table 1.   Estimates of phylogenetic signal (D)57 for a subset of metabolite classes (see “Methods” for 
explanation of subset). To ask whether traits evolved under scenarios of Brownian motion (D = 0) or 
phylogenetic randomness (D = 1), observed values of D were compared to null distributions of D modeled 
under each scenario.

Metabolite class Observed D �dobs

Randomness (H0: 
D = 1) Brownian (H0: D = 0)

Mean(�dr ) P Mean(�db) P

Flavonoids 0.49 14.18 17.56 0.012 11.01 0.093

Chalcones 0.62 11.59 13.33 0.095 8.79 0.088

Phenolic glycosides −1.18 3.11 7.01 0.000 5.19 0.950

Lignans −0.02 4.16 5.47 0.036 4.19 0.564

PBA 0.22 12.40 17.51 0.001 10.96 0.293

p-alkenyl phenols 0.33 9.47 12.30 0.010 8.19 0.265

Kavalactones/butenolides 0.02 5.17 6.99 0.027 5.18 0.504

Piper amides 0.1 5.37 7.00 0.033 5.18 0.482

Table 2.   Correlated evolution was detected in two pairs of metabolite classes with Pagel’s method76: (1) 
chalcones and flavonoids; and (2) kavalactones/butenolides and p-alkenyl phenols. A model comparison 
framework was employed to evaluate four potential models of trait evolution using AIC: interdependent 
evolution (transition rate in one trait depends on state at another, and vice versa); contingent change 
(transition rate in one trait depends on state at another, but not the converse); and independent evolution.

Comparison Model AIC Δ AIC AIC weight

Chalcones, flavonoids

Chalcones contingent on flavonoids 95.58 0 0.51

Flavonoids contingent on chalcones 96.02 0.44 0.41

Interdependent evolution 99.84 4.26 0.06

Independent evolution 102.46 6.88 0.02

Kavalactones/butenolides, p-alkenyl phenols

Interdependent evolution 62.35 0 0.95

Kavalactones/butenolides contingent on p-alkenyl 
phenols 69.65 7.29 0.03

p-alkenyl phenols contingent on kavalactones/bute-
nolides 70.61 8.26 0.02

Independent evolution 71.57 9.22 0.01
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Figure 3.   Evolutionary associations were detected in two pairs of traits according to Pagel’s test76 of correlated 
evolution: (1) flavonoids and chalcones and (2) p-alkenyl phenols and kavalactones/butenolides. Filled shapes 
indicate presences and unfilled shapes indicate absences of flavonoids (circles), chalcones (squares), p-alkenyl 
phenols (diamonds), and kavalactones/butenolides (triangles), respectively. The shapes used in the phylogenetic 
plots (a,c) are repeated below (b,d) to depict four states comprising all combinations of presences and absences 
in the pair of traits. Arrows represent transition rates between states. (b) As both models of contingent change 
provided good fits to the flavonoid and chalcone data, both sets of transition rates are displayed, with the 
first set of values (bolded) corresponding to the best supported model (chalcone evolution contingent on 
flavonoid state) and the second set of values corresponding to the alternative contingency model (flavonoid 
evolution contingent on chalcone state). (d) The best fit model to the p-alkenyl phenol and kavalactone/
butenolide data was one of interdependent evolution, where p-alkenyl phenol evolution is dependent on the 
state at the kavalactone/butenolide trait, and vice versa. Panel (e) illustrates the enzymatic processes and branch 
points along biosynthetic pathways that give rise to the four classes of metabolites. Chalcones are immediate 
biosynthetic precursors of flavonoids, where the inherent reactivity of the chalcone moiety permits cyclization 
to the flavonoid scaffold. Subtle structural changes to the flavonoid scaffold caused by late-stage oxidation can 
produce protoflavonoids, a rare class of metabolite with potent cytotoxic activity. In contrast, the pathways of 
p-alkenyl phenols and kavalactones diverge much earlier and embark on distinct chain elongation pathways 
that lead to long-chain lipophilic substituent characteristic of the p-alkenyl phenols in one case, and lactones 
(kavalactones and butenolides) in the other case.
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proportion of variance explained by the significant MRM model is low (R2 = 0.039), suggesting that the majority 
of variation in NMR data cannot be explained by phylogenetic distance.

Analyses with the generalized K statistic (Kmult) indicated lower levels of phylogenetic signal in the metabo-
lomic data than expected under a Brownian motion model of evolution for Piper generally (Kmult = 0.1606, 
P = 0.001) and for Radula specifically (Kmult = 0.1803, P = 0.001). Still, the observed Kmult was higher than all Kmult 
values obtained with permutations of the 1H NMR dataset (Fig. S1). Additionally, few Kmult tests of the permuted 
data yielded significant P-values (4.4% of permutations), indicating that the estimate we observed, though subtle 
and lower than Brownian motion expectations, was real and not a statistical artifact of zero-inflation in the data.

Discussion
Piper is a hyper-diverse lineage in which phytochemical diversity has influenced evolutionary and ecological 
processes and shaped complex tropical communities15,39. However, limitations in both the degree of phyloge-
netic resolution and the understanding of phytochemical diversity in this group have precluded analyses of 
phylogenetic signal and correlated evolution of phytochemistry. Phylogenies inferred here with ddRADseq data 
substantially improved resolution and support compared to past studies of Piper, which were limited by interspe-
cific variation in small numbers of Sanger-sequenced loci34,42,43. Although the data set did not include members 
from all previously recognized groups, analyses resolved eight monophyletic Neotropical Piper clades, seven 
of which have been inferred in previous analyses of the genus based on chloroplast psbJ-petA and nrITS34,43. 
Two of the eight clades, Churumayu and Isophyllon, had been previously nested within Radula43; however, our 
results suggest that they are independent monophyletic lineages (Fig. 1). Despite low support for several deep 
divergences, the phylogeny inferred here had strong resolution and support for recent relationships, including 
within Radula (Fig. 1), consistent with other recent reduced representation sequencing studies that have gener-
ated high quality phylogenies at shallow time scales28,31,32. However, a potential limitation of such sequencing 
designs may include the recovery of fewer loci shared by more distantly related samples due to allelic dropout47. 
It is possible that allelic dropout, potentially exacerbated by strict filtering based on missing data, led to weak 
support values for deep splits in the phylogeny, many of which occurred early in the history of the Neotropical 
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Figure 4.   (a) Chemospace of all 67 Piper samples constructed with the crude 1H NMR data across 263 peaks. 
Point colors were chosen according to clade designation as portrayed in the phylogenetic tree in Fig. 1. A 
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errors for each clade. (b) MRM analyses recovered a significant positive relationship between phylogenetic and 
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Piper lineage34. Nonetheless, the resulting subset of data (641 loci; 9113 SNPs) was sufficient for inferring a 
largely resolved phylogeny, highlighting the potential promise of reduced representation sequencing for resolv-
ing evolutionary histories even in groups spanning moderately deep divergence. Although our sampling was 
limited to 44 of 450 estimated species within Radula, the extent of sampling is a substantial improvement over 
past phylogenetic analyses for the group42,43.

Comparative studies have taken diverse approaches to analyzing metabolomic data, each providing a unique 
perspective on the evolution of specialized metabolites10,24. Here, we first characterized the presence/absence of 
35 metabolite classes commonly used to categorize plant secondary compounds that are hierarchically nested into 
three levels of structural resolution. Specific categories at the lowest level of the hierarchy, representing specialized 
structural motifs or specific molecules, were rare across species and precluded tests of phylogenetic signal and 
correlated evolution at our level of taxonomic sampling (Fig. 2). Despite not being able to test for phylogenetic 
signal, clustering is evident for more specific categories, such as crassinervic acid and prenylated flavonoids, 
which are only present in small subclades but include particularly effective defenses36,46. Alternatively, broader 
metabolite classes at intermediate and high positions in the hierarchy that are directly tied to fundamental 
secondary metabolite biosynthetic pathways were more abundant across species and exhibited moderately high 
levels of phylogenetic signal across Radula (Table 1, Fig. 2). This pattern may be expected if initial biosynthetic 
steps are conserved over longer evolutionary scales, permitting the abundance of broad chemical classes, yet 
later stage modifications of these core structures are more evolutionarily labile, causing structural similarity to 
be low even among related species. Flavonoids are a good example of this pattern, with pathways that form the 
flavonoid scaffold being very conserved, as they are catalyzed by modified enzymes from ubiquitous metabolic 
pathways, but then subsequent biosynthetic steps (e.g., those catalyzed by p450 enzymes) modify these scaffolds48, 
yielding unique molecules towards the tips of evolutionary trees (Fig. 3E). For example, late-stage modification 
of common flavonoid scaffolds can result in the production of non-aromatic protoflavonoids. These compounds 
rarely occur across the plant kingdom and have only recently been found in one species of Piper49, but this type 
of subtle structural modification that leaves most of the flavonoid scaffold intact dramatically enhances the 
cytotoxic properties compared to that of the parent flavonoid50,51.

One key prediction from the escape and radiate hypothesis is that adaptive defensive traits should be phy-
logenetically conserved within the lineage they evolved, but this prediction has mostly been evaluated with 
broad classes of secondary metabolites at high taxonomic scales6,13,48 rather than specific compounds in recent 
diversifications7,10,16. A growing number of studies conducted at shallow evolutionary scales suggests low phy-
logenetic signal in many chemical traits14,15,18. While evidence for low phylogenetic signal is often attributed 
to high evolutionary rates (i.e., evolutionary lability), simulations under various evolutionary processes and 
conditions indicate that the relationship between phylogenetic signal and rate of trait evolution is not neces-
sarily straightforward, and evidence for low phylogenetic signal is not an indication of any single evolutionary 
process52. Nonetheless, understanding how phylogenetic signal responds to variation in phylogenetic scale is 
informative in a comparative sense, especially among different traits or classes of traits generated with different 
levels of analytical resolution. Phylogenetic signal is also a useful starting point for developing insights into the 
drivers of herbivorous insect radiations, as codiversification in many of these lineages is structured in part by 
chemical defense and biotic interactions40,53. Our results are generally consistent with the predictions of mod-
erately strong signal for broad classes of compounds, as well as the lack of signal for specific structures captured 
by 1H NMR data.

The 1H NMR data address a different set of hypotheses than data from categorization of individual mol-
ecules—peaks represent resonances associated with particular molecular structures rather than individual com-
pounds, and the chemical shift (frequency), shape, and abundance of these resonances are extremely sensitive 
to subtle structural changes. 1H NMR spectroscopy easily detects a great range and subtle differences in com-
positional and structural complexity, including increasing size, asymmetry and oxidation states, that might be 
predicted to evolve in response to divergent selection across plant populations responding to different suites of 
enemies22. Low levels of phylogenetic signal in the 1H NMR data is also likely due to the fact that many molecular 
features of small defensive molecules have potentially evolved in a convergent manner across Piper, such as the 
kavalactones, p-alkenyl phenols, piplartine, oxidized prenylated benzoic acids, chromenes, anuramide peptides, 
and phenethyl amides.

There are numerous limitations that could affect estimates of phylogenetic signal in comparative studies54 that 
are relevant to the analyses presented here. First, incomplete taxon sampling likely influenced our results to some 
degree, but sampling was conducted randomly, and the probability that a particular species was sampled was 
unlikely related to any aspect of its chemical phenotype55. Low sampling proportion in clades other than Radula 
may have reduced our power to detect phylogenetic signal across all our sampled clades55 (Fig. 4b). However, 
despite only sampling approximately 10% of the Radula clade of Piper, our sample size should provide sufficient 
power to infer phylogenetic signal in this clade if present56,57 (Fig. 4b). Second, while topological errors and small 
sample size may have reduced our power to detect phylogenetic signal at deeper time scales58, more compre-
hensive genomic sampling produced enhanced phylogenetic resolution of the Radula clade, where we focused 
the majority of phylogenetic comparative methods. In addition, we were unable to quantify the measurement 
error associated with the chemical traits within species, which can decrease the statistical power for detecting 
phylogenetic signal56,59,60. It is also possible that environmental effects on our chemical traits could bias estimates 
of phylogenetic signal and correlations59.

The causes of correlated evolution, including linkage, epistasis, and selection, are difficult to detect without 
careful approaches in quantitative genetics and population genomics. Nevertheless, one advantage of exam-
ining the presence/absence of multiple classes of defensive compounds in a phylogenetic context is that it is 
possible to test for expected patterns of correlated evolution due to shared metabolic pathways (e.g., flavonoids 
and cardenolides7) or due to adaptive advantages of specific mixtures. Recent studies detecting evolutionary 



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:17247  | https://doi.org/10.1038/s41598-021-96431-3

www.nature.com/scientificreports/

associations among chemical traits17,18 have posited that the branching structure of metabolic pathways could 
potentially drive this pattern. If metabolite classes share a common precursor, one might expect evolutionary 
tradeoffs and negative covariation. Alternatively, if metabolite classes lie along the same metabolic pathway, an 
increase in one class may be concomitant with increases in another (or vice versa), causing positive covariation 
among the classes. There are also numerous empirical examples supporting the hypotheses that correlations may 
be driven by functional redundancy61 or selection for synergistic effects on herbivores20 rather than the structural 
constraints of metabolism. Suites of covarying defensive traits, or defense syndromes, have been detected in sev-
eral plant genera9,53 and plant communities62, and have been predominantly used to describe covariation among 
mechanical and chemical defenses. It is interesting to note the correlated evolution of the flavones/chalcones 
and the p-alkenyl phenols/kavalactones could be due to metabolic constraints, as well as possible adaptations via 
synergistic (e.g., kavalactones in P. methysticum) or other mixture-associated defensive attributes22. Flavonoids 
and chalcones are directly linked biosynthetically, such that the inherent reactivity of the chalcone moiety permits 
the enzymatic processes that result in cyclization to the flavonoid scaffold (Fig. 3e). This strong biosynthetic tie 
yields a clear prediction that the presence of one would depend on the other, and indeed our structural analysis 
found many cases where both metabolite classes co-occurred in the same sample. Revealing the relationship 
between the kavalactones and p-alkenyl phenols is more tenuous because both classes are less prevalent across 
our samples. Kavalactones and p-alkenyl phenols are dramatically different compounds that diverge at a much 
earlier branch point from a common cinnamic/coumaric acid precursor. Whereas one polyacetate chain exten-
sion pathway leads to the long-chain lipophilic substituent, characteristic of the p-alkenyl phenols, the other 
chain extension pathway conserves oxidation states through the chain extension process to produce the lactones 
(kavalactones or butenolides) through cyclization reactions (Fig. 3e). The overall outcome is different than the 
chalcone-flavonoid relationship; in this case, two dramatically different compounds are produced by divergence 
from a common early-stage biosynthetic precursor in contrast to the immediate biosynthetic precursor relation-
ship between chalcones and flavonoids. Broader sampling across Piper and Radula will be necessary to confirm 
this unexpected relationship between kavalactones and p-alkenyl phenols.

Conclusion
Here we sought to advance understanding of phylogenetic relationships within Piper while simultaneously inves-
tigating the mode and manner of phytochemical evolution in this group. In addition to generating a well-resolved 
phylogeny, our results support theoretical expectations that broad classes of compounds display higher degrees of 
phylogenetic signal than molecular features revealed by 1H NMR data. In addition, trait associations observed in 
Radula can be used to pose functional hypotheses about genetic constraints or biases on phytochemical evolution 
and how these factors structure plant-animal interactions. Such investigations are one of the emerging frontiers in 
terrestrial ecology, and we hope that our study provides one example of how collaborative and multi-disciplinary 
research can progress in this area.

Methods
Study system and sample collection.  For phylogenetic and chemical analyses, we collected leaf 
material from 71 individuals representing 65 Neotropical Piper species from the following clades: Churum-
ayu (N = 3), Hemipodium (N = 1), Isophyllon (N = 5), Macrostachys (N = 4), Peltobryon (N = 2), Pothomorphe 
(N = 1), Radula (N = 44), and Schilleria (N = 5). This study complied with all local and national regulations/
guidelines, and vouchers for all collections were deposited in herbaria in the country of origin as stipulated 
in the permit documents (Table S1). Brazilian collections were made under permit No. 15780-6 from the Sis-
tema de Autorização e Informação em Biodiversidade (SISBIO). Costa Rican collections were made under the 
permits R-054-2018-OT-CONAGEBIO and R-055-2018-OT-CONAGEBIO from the Ministerio del Ambiente 
y Energía (MINAE). Collections from Ecuador were conducted under the permit 03-IC-FAU/FLO-DNP/MA 
granted by the Ministerio del Ambiente. Collections from Panamá were covered by the permit SE/AP-15-13 
from the Autoridad Nacional del Ambiente (ANAM). Finally, Peruvian collections were covered by the permit 
288-2015-SERFOR-DGGSPFFS granted by the Servicio Nacional Forestal de Fauna Silvestre (SERFOR). All 
collections were identified by E.J.T. in the field, and confirmed with vouchers in the herbarium using regional 
keys, where available, comparison with type specimens, and experience with the genus. For chemical profiling 
and DNA sequencing, we collected the youngest, fully expanded leaves and dried them immediately with silica 
gel. While drying on silica gel may not inhibit enzymatic activity and could limit our analyses to relatively stable 
molecules, this is not an issue for the phylogenetic analyses described below. Collections were only made from 
mature individuals in the field. Vouchers were pressed, dried, and deposited in one or more herbaria for future 
reference and species verification (Table S1). To investigate the evolution of phytochemistry at a relatively shal-
low evolutionary scale, we conducted the majority of our sampling within Radula34.

Phylogenetic analyses.  Genome-wide polymorphism data was generated for 71 individuals for phyloge-
netic analyses. Either the same accession sampled for chemical analysis, or an individual from the same popu-
lation as the one sampled, were sequenced with a genotyping-by-sequencing approach63 that is analogous to 
ddRADseq64. Briefly, genomic DNA was digested with two restriction enzymes, EcoRI and MseI. Sample-specific 
barcoded oligos containing Illumina adaptors were annealed to the EcoRI cut sites, and oligos containing the 
alternative Illumina adaptor were annealed to the MseI cut sites. Fragments were PCR amplified and pooled 
for sequencing. The library was size-selected for fragments between 350 and 450 base pairs (bp) with the Pip-
pin Prep System (Sage Sciences, Beverly, MA), and sequenced on two lanes of an Illumina HiSeq 2500 at the 
University of Texas Genome Sequencing and Analysis Facility (Austin, TX). Single-end, 100 bp, raw sequence 
data were filtered for contaminants (E. coli, PhiX, Illumina adaptors or primers) and low quality reads using 
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bowtie2_db65 and a pipeline of bash and perl scripts (https://​github.​com/​ncgr/​tapio​ca). We used custom perl 
scripts to demultiplex our reads by individual and trim barcodes and restriction site-associated bases.

Assembly and initial filtering was conducted with ipyRAD v.0.7.3066. ipyRAD was specifically designed 
to assemble ddRADseq data for phylogenetic applications, permits customization of clustering and filtering, 
and allows for indel variation among samples66. Because a suitable Piper genome was not available at the time 
of analysis, we generated a de novo consensus reference of sampled genomic regions with ipyRAD. Briefly, 
nucleotide sites with phred quality scores lower than 33 were treated as missing data. Sequences were clustered 
within individuals according to an 85% similarity threshold with vsearch67 and aligned with muscle68 to 
produce stacks of highly similar ddRADseq reads (hereafter, ddRADseq loci). The sequencing error rate and 
heterozygosity were jointly estimated for all ddRADseq loci with a depth > 6, and these parameters informed 
statistical base calls according to a binomial model. Consensus sequences for each individual in the assembly 
were clustered once more, this time across individuals, and discarded if possessing > 8 indels (max_Indels_
locus), > 50% heterozygous sites (max_shared_Hs_locus), or > 20% variable sites (max_SNPs_locus). To reduce 
the amount of missing data in our alignment matrix, ddRADseq loci were retained if they were present in at least 
50 of 71 samples. The nexus file of concatenated consensus sequences for each individual, including invariant 
sites, was used as input for the Bayesian phylogenetic methods described below. Individual FASTQ files, nexus 
alignment, and complete information on additional parameter settings for this analysis are archived at Dryad 
(https://​doi.​org/​10.​5061/​dryad.​j6q57​3nc7).

To resolve patterns of diversification and to provide a foundation for investigating variation in patterns of 
phytochemical evolution, we estimated a rooted, calibrated tree according to a relaxed clock model in RevBayes 
v.1.0.1269, which provides the ability to specify custom phylogenetic models for improved flexibility compared 
with other Bayesian approaches. The prior distribution on node ages was defined by a birth–death process in 
which the hyper priors on speciation and extinction rates were exponentially distributed with λ = 10. We relaxed 
the assumption of a global molecular clock by allowing each branch-rate variable to be drawn from a lognormal 
distribution. After comparing the relative fits of JC, HKY, GTR, and GTR + Gamma nucleotide substitution 
models with Bayes factors, we modeled DNA sequence evolution according to the best-fit HKY model. Eight 
independent MCMC chains were run for 100,000 generations with a burn-in of 1,000 generations and sampled 
every 10 generations. Chains were visually assessed for convergence with Tracer v.1.7.170 and numerically 
assessed with effective sample sizes (ESS), the Gelman − Rubin convergence diagnostic71, and by comparing 
the posterior probabilities of clades sampled between MCMC chains. The maximum clade credibility (MCC) 
tree provided the ultrametric fixed tree topology and relative node ages for phylogenetic comparative methods 
described below.

Chemical profiling.  Crude proton nuclear magnetic resonance (1H NMR) spectroscopy was chosen for 
chemotype mapping due to its ability to characterize subtle structural variation across a wide range of com-
pound classes in a single, reproducible, non-destructive analysis39. Briefly, after leaf samples were ground to 
fine powder, approximately 100.0–2000.0 mg of leaf material were ground and transferred to a glass screw cap 
test tube with 10 ml of methanol, sonicated for 10 min, and filtered. This step was repeated and both filtrates 
were combined in a pre-weighed 20 ml scintillation vial. The solvent was removed in vacuo and dissolved in 
0.6  ml methanol-d4 for 1H NMR analysis. Crude 1H NMR solutions were standardized to 13.1 ± 3.8  mg/mL 
when possible and analyzed on a Varian 400 MHz solution state NMR spectrometer with autosampler. Data were 
processed using MestReNova software (Mestrelab Research, Santiago de Compostela, Spain). Spectra from the 
crude extracts were aligned with the solvent peak (CD3, δ = 3.31 ppm), baseline corrected, and phase corrected. 
Solvent and water peaks were removed and the binned spectra were normalized to a total area of 100. This data 
set is referred to as “crude 1H NMR”.

In addition to crude 1H NMR spectral chemotyping, we further annotated samples based upon the presence or 
absence of compound classes. To further gain structural resolution across the crude extracts that were sampled, 
aliquots of the 1H NMR extracts were diluted and subjected to GC–MS and LC–MS analysis (see Supplementary 
Information for additional details). Crude extracts were classified using chemotaxonomic classifications outlined 
in Parmar’s comprehensive review of Piper phytochemistry35, and our rationale for assigning chemical classes is 
outlined for each species in Table S2. Briefly, phenolic compounds were identified from high-resolution matches 
to the METLIN mass spectrometry database72. Database hits were then confirmed by agreement of crude 1H 
NMR chemical shifts with literature values for phenolics known to be found in Piper, but not always Radula spe-
cies. Many compounds identified by LC–MS as flavonoids and chalcones had multiple possible METLIN matches, 
which confounded NMR confirmation. In these cases, we were still able to differentiate flavonoids from chalcones 
by characteristic UV spectra (lmax ~ 350 nm). Phenylpropanoids and p-alkenyl phenols were identified based on 
characteristic GC–MS fragmentation for these compound classes known to be found in Piper. Piper amides were 
characterized in a similar fashion, starting from high-resolution mass spectrometric matches and confirming 
with known 1H NMR data from the literature. In some cases, crude 2D-NMR analysis (COSY, HSQC) was used 
to confirm structural classifications. COrrelated SpectroscopY (COSY) was used to identify 1H NMR that were 
contained within the same molecule, while Heteronuclear Single Quantum Coherence (HSQC) spectroscopy was 
used to identify the carbon (13C) resonances associated with certain proton (1H) signals to verify the presence 
of specific functional groups73. Only the most abundant and spectroscopically apparent compounds were classi-
fied due to the low sensitivity of NMR. 35 total classes were identified at three levels of structural resolution. At 
the coarsest level of resolution, we identified compounds as phenolics, nitrogen-containing, or sesquiterpenes. 
Within the phenolics, we identified nine intermediate and 17 high-resolution subclasses. Within the nitrogen-
containing compounds, we identified three intermediate and three high-resolution subclasses. Finer resolution 
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was not characterized for the sesquiterpene class. This hierarchical set of 35 traits is referred to as “metabolite 
classes” (Fig. 2). Additional details on chemical profiling can be found in the Supplementary Information.

Phylogenetic signal and evolution of metabolite classes.  To assess whether metabolite classes were 
phylogenetically conserved across Radula, we quantified phylogenetic signal in these binary traits using the D 
statistic57. The D statistic calculates the sum of sister-clade differences, Σdobs for an observed tree and binary trait, 
and scales this value with the distributions of sums expected under two disparate evolutionary models, random 
and Brownian motion (Σdr and Σdb, respectively), using the following equation:

Thus, D is expected to equal 1 when the observed binary trait is distributed randomly, lacking phylogenetic 
signal, and is expected to equal 0 when it exhibits phylogenetic signal as expected under Brownian motion. As 
tests of phylogenetic signal with the D statistic are most accurate when the ratio of presences and absences is 
closer to 1:157, we tested for phylogenetic signal in eight of the 35 metabolite classes (outlined in white in Fig. 2) 
which were present in a sufficient proportion of taxa. We used the phylo.d function in the caper package74 in R 
v.4.0.075 to calculate the observed D for a subset of binary traits that were sufficiently present across the phylog-
eny. This value was compared to a distribution of D values simulated under models of phylogenetic randomness 
(D = 1) and pure Brownian motion (D = 0) to determine whether the observed D differed from either zero or one.

To detect evolutionary associations among pairs of metabolite classes within Radula, we used Pagel’s method76 
that models evolutionary changes in two binary traits, X and Y, as continuous-time Markov processes in which 
the probabilities of state transition at one trait may depend on the state at the other trait. We tested all pairwise 
associations among the eight metabolite classes that were represented by a sufficient number of Radula taxa to 
provide accurate tests of evolutionary associations (N = 28). Significant tests of correlated evolution were followed 
by tests of contingency, in which changes at X depend on the state of Y, or vice versa. Model fits, comparisons, 
and plots were performed with the fitPagel function in the phytools package77 in R.

Multivariate analyses of phylogenetic signal with crude 1H NMR spectra.  While the analyses 
above based on broad classifications of structurally determined metabolites provide a coarse view of phytochem-
ical evolution, these classifications are anchored to the foundations of plant secondary metabolite biosynthesis. 
Using 1H NMR spectra as a raw chemotype should allow a more detailed multivariate perspective on phyto-
chemical diversity. Studies on other plant taxa have typically detected some signal and evolutionary correla-
tions for broad classes of compounds but not necessarily for specific compounds or biologically active moieties, 
both of which can be inferred from 1H NMR data. Multivariate approaches to phylogenetic comparative meth-
ods have provided insight into covarying suites of related traits, while simultaneously increasing the statistical 
power to detect phylogenetic signal78 and differences in trait means among taxa79. Indeed, these multivariate 
approaches might be particularly useful when exploring the evolution of complex phenotypes, like the plant 
metabolome, which exhibit trait covariances due to metabolomic or functional associations20. Here we utilize 
three multivariate methods to detect patterns of phylogenetic signal for 263 resonances found in the crude 1H 
NMR data representing all 35 metabolite classes: (1) principal coordinate analyses (PCoA); (2) multiple regres-
sion on distance matrices (MRM); and (3) multivariate estimation of phylogenetic signal.

To visualize patterns of chemotypic variation across all sampled species from all clades, we first analyzed the 
1H NMR data with PCoA. First we calculated the Manhattan distances between all pairwise species with the dist 
function in R, and then conducted PCoA on the distance matrix using the pcoa function in R. If the major axes 
of metabolomic variation are phylogenetically conserved, the plotted species scores should be clustered by clade 
in a rotated principal coordinate (PCo) space. Alternatively, if metabolomic variation is randomly distributed 
across the phylogeny, there should be little to no clustering by clade80. The degree to which plant clade predicted 
chemical similarity was assessed using permutational multivariate analysis of variance (permanova)81 in the 
vegan package82 in R based on Euclidean distances of the first four PCo axes.

Mantel tests have been frequently used to assess the degree of phylogenetic signal in multivariate data10,83,84 
by estimating the relationship between phylogenetic and phenotypic distances. Simulations under scenarios 
of measurement error have found instances where Mantel tests outperform traditional univariate methods in 
detecting phylogenetic signal, especially as the number of traits increases60. Because we were unable to account 
for measurement error in our study, we utilized Multiple Regression on distance Matrices (MRM)85 to examine 
the relationship between metabolomic and phylogenetic distance at two evolutionary scales (within Radula and 
across all clades). Euclidean distances were calculated from the crude 1H NMR spectra using the dist function in 
R, and phylogenetic distances for Radula only and all clades were calculated using the cophenetic.phylo function 
in the ape package86 in R. MRM analyses were implemented using the MRM function with 1000 permutations 
in the ecodist package87 in R.

Since Blomberg’s K56 statistic exhibits higher statistical power to detect phylogenetic signal relative to Mantel 
tests88, we quantified phylogenetic signal of the crude 1H NMR at both evolutionary scales using a multivariate 
generalization of the K statistic (Kmult)89 with the physignal function in the geomorph package90 in R. Similar to 
the aforementioned D statistic, the K statistic compares the observed variation to that expected under Brownian 
motion, but the K statistic does not scale this comparison by the variation exhibited under a completely random 
evolutionary model56,89. Values of K greater than 1 indicate phylogenetic signal greater than expected under 
Brownian motion, whereas values between 0 and 1 indicate less signal than expected under Brownian motion. 
Significance for the generalized K statistic was assessed by permuting the 1H NMR peak data among the tips of the 
phylogeny for 999 iterations. To determine whether the zero-inflated nature of the 1H NMR data influenced the 

D =

[�dobs −mean(�db)]

[mean(�dr)−mean(�db)]
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detection of phylogenetic signal, we permuted our 1H NMR data set over 1000 iterations by randomly indexing 
our original 1H NMR data matrix. This permutation method preserves the original proportion of zeros in the 
matrix while obfuscating any observed phylogenetic signal. The generalized K statistic test was calculated for each 
permutation, and our observed generalized K statistic was compared to the null distribution of permuted values.
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