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Abstract

Pain is a significant medical concern and represents a major unmet clinical need. The ability to perceive and react to tissue-
damaging stimuli is essential in order to maintain bodily integrity in the face of environmental danger. To prevent damage
the systems that detect noxious stimuli are therefore under strict evolutionary pressure. We developed a high-throughput
behavioral method to identify genes contributing to thermal nociception in the fruit fly and have reported a large-scale
screen that identified the Ca2+ channel straightjacket (stj) as a conserved regulator of thermal nociception. Here we present
the minimal anatomical and neuronal requirements for Drosophila to avoid noxious heat in our novel behavioral paradigm.
Bioinformatics analysis of our whole genome data set revealed 23 genes implicated in Ca2+ signaling that are required for
noxious heat avoidance. One of these genes, the conserved thermoreceptor TrpA1, was confirmed as a bona fide ‘‘pain’’
gene in both adult and larval fly nociception paradigms. The nociceptive function of TrpA1 required expression within the
Drosophila nervous system, specifically within nociceptive multi-dendritic (MD) sensory neurons. Therefore, our analysis
identifies the channel TRPA1 as a conserved regulator of nociception.
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Introduction

Acute and chronic pain will affect most people at some stage in

their lives [1]. Chronic pain in particular represents an unmet

clinical need [2]. Nociception, the neuronal sensory and

processing apparatus that relays the perception of acute pain,

allows an organism to avoid potential tissue damage and death,

and many genes regulating this process are conserved across phyla

[3]. Transient Receptor Potential (TRP) channels are a family of

sensory ion channels that were first identified in Drosophila

melanogaster [4,5], and have subsequently been identified as critical

mediators of nociception in mammals [6]. The TRP family

channel painless was identified in Drosophila using a larval heat

probe assay [7]. While painless has no mammalian orthologue

[8,9], it is possible that other components of the Drosophila

nociception apparatus are indeed conserved from flies to

mammals.

To interrogate Drosophila for conserved genes that regulate

nociception, we developed a high-throughput screening procedure

[3]. This behavioral system utilizes the robust ability of adult fruit

flies to rapidly avoid noxious heat. This system has led to the

identification of hundreds of candidate fly ‘‘pain’’ genes, for

example straightjacket (stj), as regulators of nociception behavior in

Drosophila [3]. Here we show this innate avoidance behavior is

independent of other sensory modalities known to promote

avoidance responses, such as vision, olfaction, CO2 perception,

hearing, and taste and requires intact antennae and proboscis for a

full response. Importantly, painless-expressing neurons, but not the

mushroom body which is required for sub noxious thermo-

preference [10], are a necessity for this behavior. We further

provide genetic evidence that one of the candidate pain genes,

TrpA1, is a bona fide mediator of thermal nociception in the fly.

Tissue-specific RNAi knockdown of TrpA1 revealed that TrpA1

functions in nociceptive multi-dendritic (MD) sensory neurons.

Thus, TRPA1 regulates the Drosophila behavioral response to a

noxious thermal insult. Combined with TRPA1’s role in chemical

nociception, our results identify TRPA1 as an evolutionary

conserved regulator of polymodal nociception.

Results

Set-up of a high-throughput system to screen for
nociception in Drosophila

We recently developed a high-throughput assay to perform an in

vivo genome-wide pain screen in Drosophila [3]. Here we report the

detailed set-up and anatomical/neuronal requirements for this
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novel behavioral paradigm, data we believe are essential for the

field and future use of this system. In preliminary pilot studies to

address nociceptive responses, we found the Drosophila response to

noxious heat exposure more reliable and robust compared to

mechanical pain paradigms (not shown). Furthermore, while the

commonly used Drosophila larval nociception paradigm has proven

suitable for identifying genes required for nociceptive behavior [7],

it is labor intensive and requires evaluations of larval responses not

compatible with large-scale applications.

To develop a high-throughput screening system in adult

Drosophila, we first defined acute noxious heat thresholds. By

subjecting flies to increasing gradients of noxious heat exposure, we

found that flies rapidly became incapacitated following exposure to

temperatures above 40uC (Figure 1A) and continued exposure to

such temperature (.2 minutes) was lethal (not shown). Tempera-

tures below 39uC did not incapacitate flies within the 10 minute

time course. This thermal tolerance profile was very similar to that

reported by others, indicating a common thermal tolerance

threshold across Drosophila strains and experimental paradigms

[11]. Since nociception is the sense an animal employs to detect and

avoid potential harm, and because exposure to temperatures about

40uC were acutely harmful to Drosophila, we exploited this rapid

incapacitation as a means of large-scale screening for nociception

behavior. We therefore developed an experimental test chamber

where the temperature of the base surface of the chamber could be

controlled and rapidly increased when required, giving flies a choice

between a hot and potentially lethal surface and a surface that

remained close to room temperature.

Figure 1. Development of an avoidance assay to noxious heat in adult Drosophila. (A) Temperature-response profiles to identify acutely
noxious temperatures for adult Drosophila. Experimental setup is depicted (left panel) and mean dose-response values are presented (right panel).
(B) painless mutants (pain1) are impaired at avoiding noxious temperatures above 42uC compared to wild-type Canton S controls . wild type (Canton
S) and pain1 avoidance responses are presented. Data are presented as mean +/2 SEM. * P,0.05, ** P,0.01 by Student’s t test. Data are presented as
mean +/2 SEM. (C) Time course of high temperature (46uC) thermal avoidance responses for 3 common Drosophila laboratory strains reveals robust
avoidance responses in all strains tested. In all indicated experiments, n.20 progeny per group. (D) Schematic for high-throughput heat nociception
using adult Drosophila. The final setup used for assaying heat nociception in Drosophila is depicted. Flies are placed into the experimental chamber
and the chamber sealed with scotch tape. Flies are rested for at least 30 minutes in the dark, and the chambers then floated on a 46uC water bath for
4 minutes. Immobilized flies are counted as ‘‘incapacitated’’. Moreover, total fly numbers are recorded to calculate the values for percent avoidance.
doi:10.1371/journal.pone.0024343.g001
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Using this paradigm, we found that wild-type Canton-S flies

rapidly avoid all noxious temperatures tested. Flies mutant for the

classical painless (pain1) gene could avoid surfaces heated up to

42uC, but failed avoiding the surface if the temperature is $42uC
(Figure 1B). These differences between wild-type and pain1 flies

were greatest at 46uC. To assess a potential influence of the genetic

background, we assayed three different laboratory Drosophila

melanogaster strains. Canton-S, Canton-Sw1118, and Oregon-R strains

all rapidly and reproducibly avoided the heated surface during the

course of the experiment (Figure 1C). Our final experimental

apparatus involves an inverted petri dish with ,20 flies, sealed

with tape, and floated on a 46uC water bath (Figure 1D). The

chamber is 35 mm wide with a 10 mm distance between the hot

and warm surfaces. The bottom heated surface reaches 46uC
within 15 seconds of the experiment, while the internal top and

middle surfaces reach 31uC and 33uC by the end of the 4 minute

test period. The maximum internal air temperature recorded

during the experiment was 31uC. Using this system we can

generate a % avoidance value for each genotype tested (Figure 1D).

Thus, adult Drosophila exhibit a robust and highly reproducible

innate avoidance response to noxious heat, and in the fly this

response is dependent on the painless gene.

Mapping anatomical structures critical for high
temperature nociception in Drosophila

Little is known about the anatomy regulating the behavioral

response to an acute noxious insult in adult Drosophila [12]. We

therefore assayed whether noxious heat avoidance requires sensory

and higher order neurons implicated in other avoidance behaviors.

Blocking synaptic transmission in neurons by driving UAS-Shits1

(Shibirets1; a temperature sensitive dynamin mutant [13]) in subsets

of neurons controlling olfaction (OR83b-Gal4), hearing and

hygrosensation (nan-Gal4), and vision (GMR-GAL4) did not affect

nociceptive behaviors, indicating that avoidance of noxious heat is

independent of these sensory modalities (Figure 2A). Furthermore,

thermal nociception did not require neurons previously implicated

in other aversive behaviors such as the Gr21a-expressing CO2-

sensitive olfactory neurons [14], or neurons expressing neuropep-

tide F (NPF-Gal4.UAS-Shits1) or its receptor (NPFR-Gal4.UAS-

Shits1) which have been implicated in bitter taste avoidance [15].

Importantly, thermal nociception was dependent on synaptic

transmission in painless-expressing neurons (Figure 2A). Taken

together, these findings indicate that thermal nociception in adult

Drosophila requires painless expressing neurons but does not rely on

sensors or cells previously implicated in vision, olfaction, hearing,

CO2 sensing, hygrosensation, or bitter avoidance.

To map the anatomy of thermal nociception in adult fly, we

surgically removed the Drosophila wings, proboscis and antennae to

determine if these structures are involved in the response to avoid

noxious heat. We found flies lacking wings respond normally to

noxious heat, indicating that wings are not required for thermal

nociception (Figure 2B). Previous studies have implicated the

third-antennal segment as a component of the sensory apparatus

required for rapid avoidance of elevated temperatures between

25uC and ,33uC [16,17]. We observed a modest requirement for

antenna in avoidance of noxious heat, which appeared to

cooperate with the proboscis in the observed avoidance response

(Figure 2C). Thus, the antenna and proboscis are candidate organs

for sensing noxious heat.

In the adult fly, it has been reported that painless is expressed in

the wing, proboscis, leg, and in central brain neurons that include

the mushroom bodies ([18] and Figure 2D). Mushroom bodies

have been implicated in thermal preference in the more long-term

(15 minutes) behavioral response to sub-noxious temperatures

[10]. To silence mushroom body neurons, we used the mushroom

body drivers OK107-Gal4 [19,20] and MB247-Gal4, two of the

same Gal4 driver implicated in sub-noxious thermal preference

[10], both of which express broadly throughout the mushroom

bodies [21]. In addition we used the mushroom body associated

DPM driver c316-Gal4 [22]. Using the Gal4/UAS system to express

Shits1, we again found that synaptic silencing of pain-Gal4 neurons

was sufficient to abolish the heat avoidance response. However,

silencing of the mushroom body itself, or mushroom body

associated neurons, had no effect on the avoidance response to

noxious heat (Figure 2E). Flies with UAS-Shits1, or pain-Gal4 alone

showed wild-type avoidance, indicating the avoidance defects

observed in pain-Gal4;UAS-shits1 are due to the silencing of pain-

expressing neurons. Importantly, silencing of painless-expressing

neurons did not result in general coordination defects, as assessed

by negative geotactic response (Figure 2F). Thus, pain-Gal4

expressing cells outside of the mushroom bodies are required for

adult Drosophila to sense noxious heat.

Genes implicated in calcium signaling are over-
represented among candidate heat nociception genes

We have previously reported 580 candidate genes involved in

nociception in Drosophila [3]. Based on these primary hits, we

performed hypergeometric enrichment analysis using KEGG

pathways and Broad Institute C2 gene sets to identify groups of

genes that were over-represented in our genome wide screen for

nociception. One prominent gene category identified by this

analysis was calcium signaling (Figure 3A, Table S1 for full data

set). For instance, Calphotin (Cpn; CG4795) is a calcium binding

molecule implicated in rhabdomere development. Moreover, we

hit the calcium channel subunit straightjacket as we have reported in

detail elsewhere [3]. We also found the fly ortholog of DREAM

(Calsenilin, KChip3), a calcium-regulated central pain gene in

mice [23], the calcium regulated cell adhesion molecule CG7100

(CadN), a calcium-dependent EF hand protein serine/threonine

phosphatase (CG6571, rdgC), CAMKII, a gene that has also been

linked to the modulation of TRPV1 channel function [24], as well

as the CAMKII activator Caki (CG6703, Camguk), a member of

the MAGUK family of proteins that contains a CaMKII-like

domain and participates in regulation of calcium channel function

in other species [25]. Finally, our approach identified dTrpA1

(TrpA1), the Drosophila ortholog of the chemical and cold sensing

human TRPA1, a Ca2+-permeable non-selective cation channel

implicated in acute chemical pain and cold hypersensitivity in

rodents [26,27] and infrared sensation in snakes [28].

TRPA1 is required for thermal nociception in both larvae
and adult Drosophila

TrpA1 is a member of the TRPA subfamily of TRP channels.

Drosophila TRPA1 is the fly ortholog of human TRPA1 and the

two proteins share ,33% overall sequence identity, whereas other

insect TRPA family members such as painless and pyrexia belong to a

distinct subclass of TRPAs lost during vertebrate evolution [8].

Drosophila TRPA1 has been found to act as a warmth-activated ion

channel required for thermotaxis at non-noxious temperatures and

to act as a receptor mediating avoidance of reactive electrophilic

chemicals [8,29,30]. To definitively demonstrate that fly TrpA1 is

essential for noxious heat avoidance, we tested whether classical

mutants for TrpA1 exhibit impaired avoidance of noxious heat.

Consistent with the RNAi knockdown results, animals homozy-

gous for a loss-of-function mutation in TrpA1 (TrpA1ins) [30] failed

to avoid noxious temperature to a level similar to painless mutants

(Figure 3B). To determine if the observed TrpA1 adult pain

TrpA1 Regulates Thermal Nociception in Drosophila

PLoS ONE | www.plosone.org 3 August 2011 | Volume 6 | Issue 8 | e24343



phenotype was the result of increased temperature-induced

paralysis at 46uC, we exposed TrpA1 and control flies to a

chamber set to 46uC and recorded the kinetics of temperature-

induced paralysis. In support of an adult pain phenotype, we

observed no difference in temperature-induced paralysis between

these lines (36.6+/21.4 seconds control, 33.2+/21.3 seconds

TrpA1 flies, n = 12, not significant by t test). The avoidance defect

was rescued by reintroduction of a TrpA1 minigene into the TrpA1

mutant background, confirming that the observed defect in

thermal nociception was due to the disruption of TrpA1

(Figure 3C). In contrast, we did not observe a noxious heat

avoidance phenotype in a mutant for another Drosophila TRPA,

pyrexia (pyx3) (Figure 3B), previously implicated in high temperature

(40uC) thermal tolerance [31]. Importantly, painless and TRPA1

Figure 2. The Drosophila antenna, proboscis, and painless expressing neurons are required for avoidance of noxious heat.
(A) Synaptic output from painless expressing neurons (painless-Gal4.UAS-Shits1), but not other sensory modalities tested, is required to avoid
noxious heat. Sensory nerves mediating olfaction (OR83b-Gal4.UAS-Shits1), hearing and hygrosensation (Nan-Gal4.UAS-Shits1), the CO2 sensing
apparatus (GR21a-Gal4.UAS-Shits1), bitter avoidance (NPFR-Gal4.UAS-Shits1), and vision (GMR-Gal4.UAS-Shits1) are not required for thermal
nociception. Control line is w11186UAS-Shits1. (B) Wings are not required for noxious thermal avoidance in Drosophila. Wings were dissected off and
flies were tested for the ability to avoid noxious temperature. (C) Antenna and proboscis cooperate to promote avoidance of noxious temperature.
One or both antenna and the proboscis were dissected from wild type flies and then tested for avoidance of noxious temperature. (D) pain-Gal4
driving UAS-CD8:GFP labels painless expressing neurons in the mushroom body and other regions of the adult fly brain. MB247-Gal4.UAS-CD8:GFP
labels the mushroom body. (E) Synaptic output from painless expressing nerves (pain-Gal4.UAS-Shits1), but not neurons from the mushroom body
(MB247-Gal4.UAS-Shits1, OK107-Gal4.UAS-Shits1) or mushroom body associated DPM neurons (c316-Gal4.UAS-Shits1), is required for thermal
nociception in adult Drosophila. Cs (Canton S). (F) Synaptic silencing of painless expressing nerves (pain-Gal4.UAS-Shits1) does not affect basic motor
coordination as assayed by a negative geotactic assay. All experiments involving UAS-shibireTS1 were pre-incubated at 30uC for 1 hour to induce
shibire-mediated synaptic silencing. Data are presented as mean values +/2 SEM. ,20 flies tested per group, in replicates of at least four cohorts. In
all experiments adult flies were challenged with 46uC as outlined in Figure 1D. * P,0.05, ** P,0.01 (Student’s t-test).
doi:10.1371/journal.pone.0024343.g002
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mutant flies exhibit normal coordination as assessed by a negative

geotactic response (Figure 3D). Thus, both painless and TrpA1 are

required for avoidance of noxious heat in adult Drosophila.

As TrpA1 participates in thermal nociception in adult Drosophila,

we also assayed whether TrpA1 is involved in thermal pain

behavior in larvae (Figure 4). Larvae were gently touched with a

46uC probe and avoidance time was measured. While control

larvae showed a rapid response to noxious heat, the TrpA1 mutants

showed a significantly diminished capacity for thermal nociception

(Figure 4). In contrast to adult flies, pyx3 mutant larvae also showed

an impairment in this larval nociception assay. Thus, we report a

key role for Drosophila TrpA1 in larval and adult thermal

nociception, i.e. TrpA1 is a bona fide pain gene in Drosophila.

Blocking neurotransmission from multi-dendritic (MD) sensory

neurons reduces thermal nociception responses in Drosophila larvae

[7]. To localize the site of TrpA1 function in thermal nociception

we therefore employed UAS-TrpA1-IR flies. Driving TrpA1-RNAi

in all neurons using elav-Gal4 (elav-Gal4.TrpA1-UAS-IR) resulted in

significant impairment of the larval thermal nociception response

(Figure 5A). Driving TrpA1 RNAi in MD-sensory neurons alone

(MD-Gal4.TrpA1-UAS-IR) also impaired the larval thermal

nociception response (Figure 5B). These results indicate that

TRPA1 is, at least in part, acting in multi-dendritic sensory

neurons.

Discussion

Our novel high-throughput system for assessing nociception

behavior in adult Drosophila has allowed us to screen the entire

Drosophila genome to examine the neural basis of thermal

nociceptive behavior. Here we describe neuronal requirements

and anatomical structures involved in this innate behavioral

paradigm of thermal nociception. We also provide first experi-

mental proof that TrpA1 functions in sensory neurons as a novel

component of the Drosophila thermal nociception apparatus.

TRPA1 is recognized as a key component of the nociception

apparatus in mammals. Not only do mice mutant for TRPA1

show defects in nociception, a mutation in TRPA1 underlies a

human episodic pain syndrome [32]. At the molecular level, the

role of the mammalian TRPA1 as a receptor for electrophilic

chemicals and other irritants is well established [27], and the

mechanism of how TRPA1 functions in chemical nociception is

highly conserved between humans and flies [8]. Mammalian

TRPA1 is also implicated in cold nociception, at least under

pathological conditions [26], suggesting it contributes to multiple

nociceptive sensory modalities. In Drosophila, TrpA1 has been

shown to act as an internal thermosensor regulating temperature

preference at non-noxious temperatures [30] and as a chemore-

ceptor for noxious electrophilic irritants [8]. That TRPA1

Figure 3. TrpA1 is a novel Drosophila nociception gene. (A) Thermal avoidance of a select list of elav-Gal46UAS-IR lines targeting genes
involved in Ca2+ signaling are depicted with Z-score and calculated significance. (B) TrpA1 and painless (pain1), but not pyrexia (pyx3) mutant flies
exhibit defects in thermal nociception in adult Drosophila. (C) Re-introduction of TrpA1 on the TrpA1 mutant background is sufficient to rescue the
defective adult thermal nociception response, establishing that the observed thermal nociception defect is specific to TrpA1 expression and not the
result of secondary effects. (D) Loss of painless or TRPA1 does not affect basic motor coordination as assayed by a negative geotactic assay. Data are
presented as mean values +/2 SEM. ,20 flies tested per group, in replicates of at least four cohorts. In all experiments ,20 flies were tested per
group in replicates of at least four. In all experiments adult flies were challenged with 46uC as outlined in Figure 1D. * P,0.05, ** P,0.01, *** P,0.001,
**** P,0.0005 (based on (A) Z score and (B–C) Students t-test).
doi:10.1371/journal.pone.0024343.g003
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participates in both subnoxious thermal preference [30] and

avoidance of noxious heat is an interesting observation. This could

reflect distinctions between the mechanisms that control responses

to steep versus shallow gradients, with thermal preference

behavior involving long-term (.15 minute) exposure to shallow

(,0.5uC/mm) temperature gradients [30], while the current assay

assesses behavioral short-term (,4 minutes) responses to much

steeper gradients (,4.5uC/mm by assay endpoint). These

potential distinctions are currently being explored in our

laboratories.

Our study expands the role of Drosophila TrpA1 signaling to

responses to noxious heat. Combined with recent work demon-

strating its role in chemical nociception [8], TrpA1 mediates both

chemical and thermal nociception in Drosophila. Thus, while the

temperature-responsiveness of TRPA1 has undergone significant

diversification within the animal lineage, from being heat-

activated in flies [33] and snakes [28] to potentially cold-

responsiveness in mammals [26,34], a role for TRPA1 in

polymodal nociception has been retained from flies to mammals.

In addition to TrpA1, painless and stj (and to a lesser extend

pyrexia in larvae) are required for the pain response in Drosophila.

Thus it appears that, similar to mammals, multiple cation channels

are involved in pain-responses in flies. While painless and pyrexia

encode insect-specific TRPA-channels, TrpA1 and stj are con-

served in humans. Both TRPA1 and stj (CACNA2D3 in humans)

have been implicated in human nociception suggesting core

genetic regulators of nociception are strongly conserved from flies

to humans [3].

The ability to perform high-throughput screening for mediators

of nociception has until now been limited to in vitro models and not

intact behaving animals. Our in vivo system expands the toolbox

available for pain researchers. Coordinated use of this fly system

could accelerate the identification of new compounds to be short

listed for validation in mammalian models of pain. Using this

novel paradigm, we have now described hundreds of new

candidate ‘‘pain’’ genes, opening the field up to multiple new

candidate analgesic targets. Among these genes, our RNAi-screen

identified multiple genes that are predicted to play a role in Ca2+

signaling such as TRPA1. Future analysis of these genes should

provide valuable insight into the neural basis of nociceptive

behavior and the role of calcium signaling in pain.

Materials and Methods

Fly stocks
UAS-IR transgenic fly lines and Canton S, Oregon R, and w1118

flies were obtained from the VDRC RNAi library [35]. elav with

UAS-Dicer 2 was a gift from B. Dickson (Institute for Molecular

Pathology) [35]. painless (EP(2)2451), pain-Gal4 and MD-Gal4 were

gifts from D. Tracey (Duke Medical School). Pyrexia3 was a gift

from J. Kim (Korea Advanced Institute of Science & Technology).

Nan-Gal4 was a gift from C. Kim (Chonnam National University).

GR21a-Gal4 was a gift from D. Anderson (Cal Tech). NPFR-Gal4

was obtained from P. Shen (University of Georgia). OR83b-Gal4

was a gift from L. Vosshall (Rockefeller University). MB247-Gal4

was generated by Robert Schulz [21], OK107-Gal4 was described

in [19] and characterized further in [20], and c316-Gal4 was

described in ref. [22]; all three lines were provided by Scott

Waddell (University of Massachusetts Medical School). Eyeless-

Gal4, gmr-Gal4, UAS-Shibirets1, and UAS-CD8-GFP were obtained

from Bloomington. dTrpA1ins and TrpA1 rescue lines have been

previously described [30].

Behavior experiments
For adult avoidance of noxious heat, ,20 four day old flies

were placed into a behavioral chamber (35 mm610 mm Petri

Figure 4. Both Painless and TrpA1 are required for thermal nociception in the Drosophila larvae. TrpA1 (TrpA1ins), painless (pain1), and
pyrexia (pyx3), mutant larvae were tested for their response to high temperature using a 46uC probe. % Response for each genotype is presented at
each second within a ten second test period. A Kruskal-wallis non-parametric test for median comparison followed by the Dunn’s post-hoc test was
used for statistical analysis. P values are indicted in the panels. Data are presented as mean values +/2 SEM. In all experiments ,20 larvae were tested
per group in replicates of at least four.
doi:10.1371/journal.pone.0024343.g004
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dish; Nunclon) and the chamber was sealed with scotch tape.

Flies were rested for at least 30 minutes in the dark. The

chambers were then floated on a 46uC water bath for 4 minutes.

The bottom of the chamber was heated to 46uC over 15 seconds

by floating on a water bath while the sub-noxious zone was

measured to be 31uC (inner top of chamber) and 33uC (middle

edge of the chamber) at the end of the 4 minute experiment.

Chamber temperature was monitored using an electronic

thermometer (Testo 925, Germany) coated in heat sink gel (RS

components, UK). Chambers were then removed from the water

and immobilized flies were counted as ‘‘incapacitated’’. In

addition, total fly number was recorded. Percentage Avoidance

was calculated by determining the percentage of flies that avoid

the noxious temperature compared to the total number of flies in

the chamber. All tests were performed under low red light. Of

note, this assay is an absolute measurement where flies that avoid

the bottom heated surface were considered capable of noxious

thermal avoidance, independent of how far they move away from

the 46uC surface, though the vast majority of flies avoiding the

hot surface were found on the top of the chamber. For

experiments involving UAS-Shibirets1, flies were transferred to

the experimental chambers followed by a temperature shift to

30uC for 60 minutes. Larval pain assays were performed as

described [7]. For assessing noxious temperature-induced paral-

ysis, wild type flies were placed in 5 ml polystyrene round bottom

tubes (BD Falcon, Germany) and exposed to temperatures

ranging from 37–46uC with 1u increments) or only 46uC (for

control vs TrpA1 flies) and the temperature at which 100% of flies

were paralyzed was recorded. General coordination was assessed

by tapping the test chamber on the bench and observing activity

as flies move away from the site of impact [35]. This response was

quantified using a geotactic repulsion assay where flies were

knocked to the bottom of a 15 ml polystyrene tube and the

geotactic response (number of flies climbing up the tube / total

number of flies) was recorded.

Confocal microscopy
Drosophila brains were dissected in PBS, fixed in 4%

paraformaldehyde in PBS for 30 min at room temperature

(RT), washed three times for 10 min in PBS containing

0.3%Triton X-100, blocked for 1 hr at RT in PBT containing

5% normal goat serum, and incubated with primary anti-GFP

(Sigma) and NC82 (Iowa Hybridoma Bank) counterstain

antibodies in blocking solution overnight at 4 C. Samples were

washed three times for 10 min in PBT at RT, and secondary

antibodies were applied in blocking solution for 2 hr at RT. After

washing three times for 10 min in PBS, samples were mounted in

Vectashield (Vector Labs). Confocal images were captured on a

Zeiss LSM510 Meta, Axiovert 200 M, and processed with

LSM510 Image Examiner.

Figure 5. TrpA1 functions in multi-dendritic sensory neurons in the larval pain response. Larvae pain response profiles in (A) elav-
Gal4.TrpA1-UAS-IR lines to target TrpA1 in all neurons and (B) MD-Gal4.TrpA1-UAS-IR to target TrpA1 in sensory neurons. % Response to a 46uC heat
probe is presented for each genotype at each second within a ten second test. A Kruskal-wallis non-parametric test for median comparison followed
by the Dunn’s post-hoc test was used for statistical analysis. P values are indicted in the panels. Data are presented as mean values +/2 SEM. In all
experiments ,20 flies were tested per group.
doi:10.1371/journal.pone.0024343.g005
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Hypergeometric enrichment test
A hypergeometric test, similar to the test used for GO

enrichment analysis, was used to identify over-represented gene

lists (C2 from Msigdb, BROAD Institute) and pathways (KEGG)

amongst the pain hits. The hypergeometric test considers only the

percentage representation of genes corresponding to a biological

pathway in the pre-computed heart function gene list. This

analysis was performed on the gene list identified as adult pain hits

(Z-score.1.65) in Drosophila and their corresponding mouse or

human orthologs.

Statistics
For analysis of adult Drosophila avoidance responses a Student’s t

test was performed. For analysis of larval pain behavior we have

performed the Kruskal-wallis non-parametric test for median

comparison followed by the Dunn’s post-hoc test. For presentation

of screening data, a Z-score was generated from (mean control

avoidance 2 mean test avoidance)/standard deviation control)

and P values were generated from total Z-score distributions.

Unless otherwise indicated, data are represented as mean values 6

SEM.

Supporting Information

Table S1 Ca2+ signalling involved in thermal nocicep-
tion responses. Ca2+ signaling components (elav-Gal4.UAS-IR

fly lines) that exhibit defects in thermal nociception are listed from

the strongest to weakest phenotype for noxious heat avoidance. An

avoidance Z-score +/2 SEM and repetitions are included.

Lethality was scored for each cross (0 = lethal, 0.5 = semi-lethal,

1 = viable). A mean score of #0.6666 was considered lethal. A

qualitative coordination score (0 = uncoordinated, 1 = coordinat-

ed) +/2 SEM and number of repetitions are indicated for the re-

screened lines. The CG numbers according to flybase annotation

version 4.3 (FB4.3) and flybase annotation 5.7 (FB5.7) are

included, as is the S19 score for RNAi off targeting effects (OTEs)

and number of can repeats. A p-value is also included. Drosophila

gene symbols and predicted human and mouse orthologs are

shown.

(XLSX)
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