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Abstract: The global coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respi-
ratory syndrome-coronavirus-2 (SARS-CoV-2) infection, threatens the entire world. It has affected
every aspect of life and increased the burden on both healthcare and socioeconomic systems. Current
studies have revealed that excessive inflammatory immune responses are responsible for the severity
of COVID-19, which suggests that anti-inflammatory drugs may be promising therapeutic treatments.
However, there are currently a limited number of approved therapeutics for COVID-19. Toll-like
receptors (TLRs), which recognize microbial components derived from invading pathogens, are
involved in both the initiation of innate responses against SARS-CoV-2 infection and the hyperinflam-
matory phenotype of COVID-19. In this review, we provide current knowledge on the pivotal role of
TLRs in immune responses against SARS-CoV-2 infection and demonstrate the potential effectiveness
of TLR-targeting drugs on the control of hyperinflammation in patients with COVID-19.
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1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic remains a threat to human life.
Since the first case of infection was reported in China in December 2019, severe acute
respiratory syndrome-coronavirus-2 (SARS-CoV-2), which causes COVID-19, has been
rapidly transmitted from person to person worldwide. Confirmed cases of global COVID-
19 have surpassed 238 million, and more than 4.85 million people have died from the
disease according to researchers at Johns Hopkins University. Patients with COVID-19
have reported a wide range of symptoms, ranging from mild to severe illness, with several
studies suggesting that robust expression of proinflammatory cytokines is involved in
the pathogenesis of the most severe cases [1–3]. The dysregulated release of cytokines,
including tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-1β, and IL-6,
are related to a poor prognosis in patients with COVID-19 [4–8].

SARS-CoV-2, which belongs to the Betacoronavirus genus, is an enveloped, positive-
sense, single-stranded RNA (ssRNA) virus. In March 2020, the World Health Organization
declared the outbreak of COVID-19 a pandemic. Before the outbreak, two members of
the Betacoronavirus genus, SARS-CoV and Middle East respiratory syndrome-coronavirus
(MERS-CoV), had previously been documented to have caused epidemics: SARS-CoV
infected 8422 people and killed 916 in 2003 according to the WHO, and MERS-CoV caused
2574 confirmed cases with 886 deaths from 2012 until June 2021 [9,10]. These zoonotic
coronaviruses circulated in bats, jumping to humans via intermediate hosts, and resulted in
public health emergencies. Compared with these two epidemics, the current COVID-19 out-
break has led to an unprecedented burden on both healthcare and socioeconomic systems.

While the mechanism by which SARS-CoV-2 triggers immune responses has not
been fully elucidated, much research has been devoted to investigating the virological
characteristics of SARS-CoV-2 and host immune responses. In this review, we summarize
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the current knowledge of the mechanisms in which host Toll-like receptors (TLRs) recognize
SARS-CoV-2.

2. Virological Features of SARS-CoV-2

Betacoronavirus is one of four genera (Alphacoronavirus, Betacoronavirus, Deltacoronavirus,
and Gammacoronavirus) of the Coronavirinae subfamily, which belongs to Coronaviridae
family. Among these, Alphacoronavirus (HCoV-229E and HCoV-NL63) and Betacoronavirus
(HCoV-OC43, HCoV-HKU1, SARS-CoV, MERS-CoV, and SARS-CoV-2) can infect humans.
Prior to the emergence of SARS-CoV, human coronaviruses were most commonly responsi-
ble for the common cold [11] and mild upper respiratory tract infections. However, highly
pathogenic coronaviruses (SARS-CoV, MERS-CoV, and SARS-CoV-2) have emerged in
human populations, resulting in serious health problems and even death.

The intact SARS-CoV-2 virion is surrounded by a lipid envelope that contains the
envelope protein (E), membrane protein (M), and spike glycoprotein (S). The genome
of SARS-CoV-2 consists of large, single-stranded positive RNA (from 29.8 to 29.9 kb)
that contains 14 open-reading frames (ORFs) encoding 27 proteins [12–15]. The genome
sequence of SARS-CoV-2 displays 79.0% homology with SARS-CoV and 51.8% with MERS-
CoV [14]. Nucleocapsid (N) proteins form complexes with genomic RNA for genome
packaging [16,17].

During viral entry into host cells, the surface trimeric S glycoprotein mediates receptor
recognition and viral-host cell membrane fusion. The host protease furin cleaves the S
protein into S1 and S2 subunits for preactivation, and the receptor-binding domain (RBD)
of S1 binds to angiotensin-converting enzyme 2 (ACE2) expressed on the surfaces of
host cells [18–21]. Then, SARS-CoV-2 enters host cells by either direct fusion [22,23] or
endocytosis [24,25]. The transmembrane protease serine subtype 2 (TMPRSS2) on host
cells leads to a conformational change in the S protein by cleaving the S2′ site to initiate
membrane fusion [25,26]; additionally, the endosomal cysteine proteases cathepsins B
and L promote the fusion of viral and endosomal membranes [25,27,28]. Following viral
entry into host cells, the viral RNA genome is released into the host cell cytoplasm and is
translated into the viral proteins required for viral replication.

SARS-CoV-2 replicates in the host cell cytoplasm [29]. Initially, viral polymerase
proteins are directly translated from the RNA genome, which the polymerases use as a
template [30]. Two major ORFs, ORF1a and ORF1b, encode pp1a and pp1b polyproteins
that are proteolytically cleaved into 16 nonstructural proteins (nsps) [15,31]. The nsps com-
pose the viral replication and transcription complex (RTC), and nsp12, the RNA-dependent
RNA polymerase, synthesizes viral RNAs, including genomic RNA and subgenomic (sg)
RNA, in double-membrane vesicles (DMVs) in the perinuclear region [29,32–34]. The other
ORFs encode structural proteins S, E, M, and N, as well as accessory proteins [31]. sgRNAs
are translated into viral proteins, and newly synthesized viral RNAs and proteins are
translocated to single-membrane vesicles (SMVs) where viral assembly occurs, with new
virions released from infected cells by exocytosis [33,35] (Figure 1).
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Figure 1. SARS-CoV-2 replication cycle. Viral entry of SARS-CoV-2 is initiated by the recognition of 
the host cell receptor ACE2 via the RBD of the S glycoprotein. After binding to host cell receptors, 
SARS-CoV-2 enters cells by endocytosis or direct fusion with the plasma membrane. The host pro-
teases TMPRSS2 and cathepsins B and L mediate the proteolytic cleavage of the S protein, triggering 
membrane fusion and viral genome release into the cytoplasm. The RTC carries out viral RNA syn-
thesis in DMVs, and newly produced viral RNAs and proteins are delivered to SMVs for assembly 
of new viruses. Finally, virions are secreted by exocytosis. This figure was created by BioRender.com 
accessed on 10 September 2021 (BioRender, Toronto, ON, Canada). 

3. TLRs Are Involved in SARS-CoV-2 Recognition 
During an infection, the immune system works to protect the host from foreign in-

vaders. Innate immune responses are the first line of defense against pathogens entering 
the body and are responsible for the priming of adaptive immune responses. Innate im-
mune cells express pattern-recognition receptors, such as TLRs, retinoic acid-inducible 
gene-I-like receptors, nucleotide-binding oligomerization domain-like receptors, C-type 
lectin receptors, and absent in melanoma-2-like receptors, to recognize pathogen-associ-
ated molecular patterns (PAMPs) on pathogens [36]. Among them, TLRs play a crucial 
role in the activation of innate immune responses against various pathogens (Table 1). 
TLRs are expressed in immune cells, fibroblasts, and epithelial cells, including type II 
pneumocytes which highly express ACE2 in the airways [37–39]. The activation of TLRs 
initiates the recruitment of adaptor molecules, such as MyD88 and TRIF, that lead to the 
subsequent production of type I IFNs and inflammatory cytokines via the activation of 
nuclear factor-κB (NF-κB) and IFN-regulatory factors (IRFs). 

According to the latest research [40–45], several TLRs are involved in the sensing of 
PAMPs from SARS-CoV-2. It has been suggested that TLR2, TLR3, TLR4, TLR7/8, and 
TLR9 contribute to antiviral responses against SARS-CoV-2 infection (Figure 2). 

Table 1. Toll-like receptors (TLRs) in humans. 

TLRs Ligands Primary  
Localization 

Adaptor  
molecules 

Signaling  
Characteristics Refs. 

TLR1 Triacyl lipopeptides Cell surface MyD88 Heterodimerization 
with TLR2 [46] 

TLR2 Lipoproteins, Zymosan, etc Cell surface MyD88  [47,48] 

Figure 1. SARS-CoV-2 replication cycle. Viral entry of SARS-CoV-2 is initiated by the recognition of the host cell receptor
ACE2 via the RBD of the S glycoprotein. After binding to host cell receptors, SARS-CoV-2 enters cells by endocytosis or
direct fusion with the plasma membrane. The host proteases TMPRSS2 and cathepsins B and L mediate the proteolytic
cleavage of the S protein, triggering membrane fusion and viral genome release into the cytoplasm. The RTC carries out
viral RNA synthesis in DMVs, and newly produced viral RNAs and proteins are delivered to SMVs for assembly of new
viruses. Finally, virions are secreted by exocytosis. This figure was created by BioRender.com accessed on 10 September
2021 (BioRender, Toronto, ON, Canada).

3. TLRs Are Involved in SARS-CoV-2 Recognition

During an infection, the immune system works to protect the host from foreign
invaders. Innate immune responses are the first line of defense against pathogens entering
the body and are responsible for the priming of adaptive immune responses. Innate
immune cells express pattern-recognition receptors, such as TLRs, retinoic acid-inducible
gene-I-like receptors, nucleotide-binding oligomerization domain-like receptors, C-type
lectin receptors, and absent in melanoma-2-like receptors, to recognize pathogen-associated
molecular patterns (PAMPs) on pathogens [36]. Among them, TLRs play a crucial role in
the activation of innate immune responses against various pathogens (Table 1). TLRs are
expressed in immune cells, fibroblasts, and epithelial cells, including type II pneumocytes
which highly express ACE2 in the airways [37–39]. The activation of TLRs initiates the
recruitment of adaptor molecules, such as MyD88 and TRIF, that lead to the subsequent
production of type I IFNs and inflammatory cytokines via the activation of nuclear factor-κB
(NF-κB) and IFN-regulatory factors (IRFs).

According to the latest research [40–45], several TLRs are involved in the sensing of
PAMPs from SARS-CoV-2. It has been suggested that TLR2, TLR3, TLR4, TLR7/8, and
TLR9 contribute to antiviral responses against SARS-CoV-2 infection (Figure 2).
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Table 1. Toll-like receptors (TLRs) in humans.

TLRs Ligands Primary
Localization

Adaptor
Molecules

Signaling
Characteristics Refs.

TLR1 Triacyl
lipopeptides Cell surface MyD88 Heterodimerization

with TLR2 [46]

TLR2 Lipoproteins,
Zymosan, etc Cell surface MyD88 [47,48]

TLR3 dsRNA Intracellular TRIF [49]

TLR4
LPS, Viral
envelope

glycoproteins, etc
Cell surface MyD88/TRIF [50–53]

TLR5 Flagellin Cell surface MyD88 [54,55]

TLR6 Diacyl
lipopeptides Cell surface MyD88 Heterodimerization

with TLR2 [48]

TLR7 ssRNA Intracellular MyD88 [56,57]
TLR8 ssRNA Intracellular MyD88 [58]

TLR9
Unmethylated
CpG-rich DNA

fragment, mtDNA
Intracellular MyD88 [59,60]

TLR10 Undefined Cell surface MyD88 [61–63]
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3.1. Cell Surface TLRs 
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TLR3, TLR7, TLR8, and TLR9 are intracellular TLRs that sense nucleic acid ligands [65]. 

TLR2 is a surface receptor that recognizes diverse ligands derived from viruses, bac-
teria, fungi, and parasites [66]. TLR2 forms heterodimers with TLR1 and TLR6, utilizing 
MyD88 for signal transduction. While the involvement of TLR2 in immune responses 
against coronavirus infections has not been elucidated, a recent study revealed that the 
SARS-CoV-2 E protein is sensed by TLR2 [40,67]. Zheng and colleagues reanalyzed the 
expression of MyD88 and TLRs in patients with different severity grades of COVID-19 
using a public dataset and found that the expression of MyD88, TLR1, TLR2, TLR4, TLR5, 

Figure 2. SARS-CoV-2 recognition by Toll-like receptors (TLRs). TLRs are responsible for recognizing pathogen-associated
molecular patterns (PAMPs) derived from invading pathogens. Surface TLR2 and TLR4 and intracellular TLR3, TLR7/8,
and TLR9 are thought to be involved in the sensing of SARS-CoV-2 infection. Activated TLRs initiate downstream
signaling pathways by recruiting adaptor molecules, such as MyD88 and TRIF, which results in the subsequent production
of inflammatory cytokines and type I IFNs through transcription factors NF-κβ and IRFs. This figure was created by
BioRender.com accessed on 10 September 2021 (BioRender, Toronto, ON, Canada).

3.1. Cell Surface TLRs

Currently, 10 members of the TLR family have been identified in humans. TLRs
are currently classified into two categories based on their cellular localization [64]: TLR1,
TLR2, TLR4, TLR5, TLR6, and TLR10 belong to cell surface TLRs that recognize microbial
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components including proteins and lipids derived from invading pathogens, whereas
TLR3, TLR7, TLR8, and TLR9 are intracellular TLRs that sense nucleic acid ligands [65].

TLR2 is a surface receptor that recognizes diverse ligands derived from viruses,
bacteria, fungi, and parasites [66]. TLR2 forms heterodimers with TLR1 and TLR6, utilizing
MyD88 for signal transduction. While the involvement of TLR2 in immune responses
against coronavirus infections has not been elucidated, a recent study revealed that the
SARS-CoV-2 E protein is sensed by TLR2 [40,67]. Zheng and colleagues reanalyzed the
expression of MyD88 and TLRs in patients with different severity grades of COVID-19
using a public dataset and found that the expression of MyD88, TLR1, TLR2, TLR4, TLR5,
TLR8, and TLR9 was increased in patients with severe to critical illness. To clarify which
TLRs were essential for the sensing of Betacoronavirus, they infected bone marrow-derived
macrophages deficient in TLR2, TLR4, TLR7, or TLR9 with mouse hepatitis virus, which
belongs to the Betacoronavirus genus, and found that TLR2 deficiency resulted in the
abrogated expression of inflammatory cytokine genes. They then investigated the role of
TLR2 in SARS-CoV-2 infection using human peripheral blood mononuclear cells treated
with a TLR2 inhibitor. They performed experiments using heat-inactivated SARS-CoV-2
to identify the viral components responsible for TLR2 activation, and structural proteins
were identified as promising targets. Among four viral structural proteins identified, the
E protein activated the TLR2 signaling pathway. In addition, the authors found that the
SARS-CoV-2 E protein induced TLR2-dependent inflammation in mice and that the TLR2
inhibitor protected mice from lethal SARS-CoV-2 infection, indicating that the SARS-CoV-2
E protein is a novel ligand for TLR2 activation.

However, a separate group identified the SARS-CoV-2 S protein as a TLR2 ligand
in non-peer reviewed preprints [68]. They observed that recombinant S protein induced
inflammatory mediators in macrophages, monocytes, and human lung epithelial A549
cells via the activation of the TLR2-mediated NF-κB pathway. Indeed, intraperitoneal
injection of recombinant S protein triggered TLR2-mediated proinflammatory cytokine
production in mice. While further studies are required, these results offer valuable insight
into TLR2-dependent immune responses against SARS-CoV-2 infection.

TLR4 is well known to recognize lipopolysaccharides produced by Gram-negative
bacteria. Early in the COVID-19 pandemic, an in silico study suggested a possible interac-
tion between the SARS-CoV-2 S protein and TLR4 [69]. Investigators used a computational
approach to study the interaction between the S protein and host receptors. Interestingly,
they found that the SARS-CoV-2 S protein strongly bound to TLR4, suggesting a poten-
tial role for TLR4 in SARS-CoV-2 recognition. This hypothesis has been supported by
other evidence demonstrating that TLR4 and its downstream signaling molecules are
significantly upregulated in patients with severe COVID-19 compared to those with mild
illness [40,70]. Recently, two groups confirmed that the S protein leads to proinflammatory
cytokine production in monocytes and macrophages in a TLR4-dependent manner [43,44].
However, the identity of TLR4-binding sites in the S protein remains unclear. Shirato
and Kizaki showed that the S1 subunit (residues 16–671) induced the activation of the
NF-κB and mitogen-activated protein kinase pathways as well as subsequent proinflamma-
tory cytokine production in macrophages [44]. S1-induced proinflammatory responses in
macrophages were abrogated following treatment with a TLR4 antagonist or by transfec-
tion with TLR4 siRNA. On the other hand, Zhao and colleagues demonstrated that only
the trimeric S protein, rather than its N-terminal domain (NTD) (residues 1–307) or RBD
(residues 319–541), activates immune responses in macrophages [43]. They suggested that
a conformational binding site composed of the RBD and NTD of the S protein was likely
to interact with TLR4. Further studies are required to elucidate the relationship between
TLR4 and the S protein.

3.2. Intracellular TLRs

Nucleic acid-sensing TLRs (TLR3, TLR7, TLR8, and TLR9) are localized in endo-
somes to prevent the recognition of self-DNA or -RNA. As SARS-CoV-2 is an ssRNA
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virus and produces double-stranded RNA (dsRNA) during replication in host cells [34,71],
intracellular RNA sensors are thought to be involved in the recognition of SARS-CoV-2
infection. TLR3 senses dsRNA in endosomes, and TLR3 stimulation leads to the production
of proinflammatory cytokines and type I IFNs via the activation of the TRIF signaling
pathway. In contrast, ssRNA is recognized by TLR7 and TLR8, which use MyD88 as a
downstream adapter protein. Recently, the roles of TLR3 and TLR7 in antiviral responses
following SARS-CoV-2 infection were identified using three-dimensional lung multicellular
spheroids [41]. The relative expression levels of TLR3 and TLR7, as well as the production
of proinflammatory cytokines and type I IFNs, were elevated in SARS-CoV-2-infected
multicellular spheroids, and both IRF3 and NF-κB appeared to participate in the signaling
pathway downstream of TLR3 and TLR7. Furthermore, another group demonstrated that
an ssRNA fragment of SARS-CoV-2 genomic RNA was responsible for the activation of
the TLR7/8-dependent MyD88 pathway in human DCs [45]. As TLR7/8 is activated by
guanosine (G)- and uridine (U)-rich ssRNA [72], this group scanned putative TLR7/8 lig-
ands within the SARS-CoV-2 genome and selected two GU-rich ssRNA sequences—termed
SCV2-RNA—to test their hypothesis. Using human monocyte-derived DCs (MoDCs), the
authors found that SCV2-RNA treatment induced the expression of pro-inflammatory
cytokines, including TNF-α, IL-6, and IL-12, as well as the secretion of the T cell-recruiting
chemokine CXCL9. SCV2-RNA-stimulated MoDCs exhibited a mature form and triggered
cocultured CD4 and CD8 T cells to produce IFN-γ, suggesting that SCV2-RNA can mediate
DC activation. Similar results were observed in pDCs. SCV2-RNA induced the upregula-
tion of CD86 expression and the production of IFN-α and TNF-α in pDCs. The authors
suggested that such ssRNA-induced activation is mediated via the TLR8/MyD88/NF-κB
pathway in MoDCs and by TLR7 in pDCs. Taken together, these results indicate that
ssRNA and dsRNA produced by SARS-CoV-2 are recognized by endosomal RNA sensors.

TLR9 recognizes CpG-rich DNA fragments derived from bacteria, viruses, and mito-
chondrial DNA (mtDNA) [60]. While the relationship between TLR9 and the recognition
of SARS-CoV-2 infection is not clear, the coding region of the E protein and ORF10 in
the SARS-CoV-2 genome was shown to be enriched with CpG [73]. Recently, TLR9 was
suspected of inducing severe COVID-19 [42]. This TLR9-COVID-19 hypothesis, presented
by Bezemer and Garssen, proposes that CpG islands in SARS-CoV-2 or mtDNA released
from damaged host cells could trigger TLR9 activation and subsequently elicit pathogenic
hyperinflammatory responses. As it is still unclear whether TLR9 directly detects viral
components derived from SARS-CoV-2, future studies are needed to address this issue.

While it is well known that intracellular TLRs are physically separated from the cell
surface to prevent autoimmune responses following receptor activation by host nucleic
acids [74], interestingly, several studies have suggested the cell surface positioning of endo-
somal TLRs in certain cell types [75–78]. Cell surface expression of TLR3 was observed in
human fibroblast cell lines [79], mouse splenic CD8+ dendritic cells, and marginal zone B
cells [80]. Mouse bone marrow (BM)-derived macrophages, BM-conventional dendritic
cells, BM-plasmacytoid DCs and B cells expressed TLR7 on the cell surface [77]. TLR9
was expressed on the surface of mouse splenic DCs [78], monocytes [81], and human
neutrophils [82]. These findings suggest that both the cell surface and intracellular expres-
sion of nucleic acid-sensing TLRs may participate in the activation of immune responses.
Interestingly, human airway epithelial cells expressed TLR3, TLR7 and TLR9 on the apical
cell membrane [76], indicating that nucleic acid-sensing TLRs on the epithelial cell surface
may play a crucial role in innate responses against inhaled pathogens such as SARS-CoV-2.
However, further studies are required to prove this hypothesis.

4. Conclusions

TLRs participate in the first line of defense against invading pathogens. They rec-
ognize a broad range of PAMPs derived from microorganisms, and the main function of
TLRs is the ability to activate innate immune responses, including cytokine production.
At present, TLR2, TLR4, TLR3, TLR7, TLR8, and TLR9 have been suggested as possible
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receptors capable of recognizing SARS-CoV-2 infection. Viral components including the
S protein, E protein, ssRNA, and dsRNA seem to serve as ligands for these TLRs. TLR-
mediated immune responses are essential for host protection; however, uncontrolled and
exacerbated inflammation can result in pathologic responses such as tissue damage. In
patients with COVID-19, robust innate immune responses and hyperinflammation were
observed in severe cases [3,4,7], resulting in septic shock [83], acute lung injury [84], and
acute respiratory distress syndrome [85]. Therefore, immunomodulatory therapeutic strate-
gies, including the use of anti-inflammatory drugs, have been suggested as promising
treatments for severe COVID-19. Many approaches targeting TLR signaling pathways
have been tested for their ability to attenuate hyperinflammation following SARS-CoV-2
infection. For example, the U.S. FDA has approved an investigation into the efficacy of a
PUL-042 inhalation solution that blocks TLR2/6/9 to reduce the infection rate, progression,
and disease severity of COVID-19 (NCT04312997, NCT04313023) [42,86]. Additionally,
a clinical study to evaluate the inhibition of TLR3-mediated inflammatory responses
by Famotidine [87] to improve outcomes in patients with COVID-19 has been conducted
(NCT04389567, NCT04504240, NCT04724720, NCT04370262) [88,89]. Various TLR4 modula-
tors, such as EB05 (NCT04401475), Eritoran (NCT02735707), Naltrexone [90] (NCT04604704,
NCT04604678), Curcumin [91] (NCT04382040), and Berberine [92–94] (NCT04479202) are
undergoing clinical trials for COVID-19. Although current studies have not produced
sufficient encouraging results, based on the evidence presented in this review, targeting
TLRs could be an effective treatment for COVID-19.
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