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Regulation of zygotic gene activation by chromatin structure and 
epigenetic factors
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Abstract.  After fertilization, the genomes derived from an oocyte and spermatozoon are in a transcriptionally silent state 
before becoming activated at a species-specific time. In mice, the initiation of transcription occurs at the mid-one-cell stage, 
which represents the start of the gene expression program. A recent RNA sequencing analysis revealed that the gene expression 
pattern of one-cell embryos is unique and changes dramatically at the two-cell stage. However, the mechanism regulating this 
alteration has not yet been elucidated. It has been shown that chromatin structure and epigenetic factors change dynamically 
between the one- and two-cell stages. In this article, we review the characteristics of transcription, chromatin structure, and 
epigenetic factors in one- and two-cell mouse embryos and discuss the involvement of chromatin structure and epigenetic 
factors in the alteration of transcription that occurs between these stages.
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Upon fertilization, an oocyte and a spermatozoon fuse to form 
a one-cell embryo. The maternal genome, derived from the 

oocyte, undergoes chromosomal segregation to extrude half of 
the chromosomes as a second polar body. In the paternal genome, 
derived from the spermatozoon, protamine, which constitutes the 
compact chromatin structure, is removed and replaced with mater-
nally supplied histones to establish nucleosomes. The paternal and 
maternal genomes independently form pronuclei in one-cell embryos. 
Syngamy occurs during the M phase, where a nucleus containing 
both the maternal and paternal genomes is formed after cleavage 
into a two-cell embryo. During the one- and two-cell stages after 
fertilization, dynamic alterations in transcription, chromatin structure, 
and epigenetic factors occur, which are referred to as gene expression 
reprogramming and genome remodeling. In this review, we outline 
these alterations and discuss the involvement of chromatin structure 
and epigenetic factors in the regulation of transcription. We focus 
on mouse embryos because the mouse is currently the most studied 
species in terms of gene expression and epigenetic factor during the 
early preimplantation stage.

Characteristics of Transcription in One- and  
Two-cell Embryos

Dramatic changes in gene expression occur after fertilization. In 
oocytes, genes are actively transcribed during the growth phase, but 
transcription ceases once the oocytes are fully grown. After fertiliza-

tion, transcription restarts during the mid S-phase of the one-cell 
stage, but the transcriptional activity is low. A drastic activation 
of gene expression is seen during the mid-to-late two-cell stage. 
Therefore, the relatively low levels of gene activation at the one-cell 
stage and the high levels at the two-cell stage are referred to as minor 
and major zygotic gene activation (ZGA), respectively (Table 1) [1, 
2]. Gene expression patterns are very different between these two 
phases [3]. During minor ZGA, low levels of transcription occur 
for more than 90% of all genes [4, 5], as well as from intergenic 
regions including retrotransposons [3]. However, during major ZGA, 
the percentage of transcribed genes decreases to less than 80%, but 
the levels of transcription of some genes increase greatly [4, 5]; 
furthermore, transcription from the intergenic regions decreases 
[3]. The regulation of transcription is different between the one- and 
two-cell stages (Table 1). Reporter gene analysis has revealed that 
transcription does not require an enhancer but only a core promoter at 
the one-cell stage; however, a proximal promoter and enhancers are 
required for transcription at the two-cell stage [3, 6, 7]. This type of 
transcriptional regulation, being dependent on only a core promoter, 
seems to induce cryptic initiation of transcription and was observed 
in embryos at the one-cell, but not two-cell, stage [3]. Thus, the 
transition from promiscuous transcription across the genome to more 
regulated transcription occurs between the one- and two-cell stages.

In one-cell embryos, the pattern and regulation of transcription 
are asymmetric between the male and female pronuclei (Table 2). It 
has been demonstrated through an in vitro transcription assay that the 
male pronucleus has higher transcriptional activity than the female 
pronucleus [1]. In a reporter gene analysis, the male pronucleus 
showed transcriptional activity in the absence of an enhancer [3, 6] 
and the addition of an enhancer did not affect its activity [7]. On the 
other hand, the presence of an enhancer increased the transcriptional 
activity of the female pronucleus, but the degree of this increase was 
much smaller than that seen in two-cell embryos [7, 8]. Therefore, the 
degree of dependence on enhancers in the female pronucleus seems 
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to be intermediate between the male pronucleus and the two-cell 
embryo. RNA sequencing analysis has revealed many genes with 
differential expression between parthenogenetic embryos and normal 
embryos [9], suggesting that the gene expression pattern is different 
between male and female pronuclei. It has also been reported that 
major satellites are more transcribed in the male pronucleus than 
the female one [10].

Chromatin Structure in One- and Two-cell Embryos

Several studies have shown that the chromatin structure changes 
drastically from the one- to two-cell stage (Table 1). Fluorescence 

recovery after photobleaching (FRAP) has demonstrated that the 
mobility of histones is extremely high in one-cell embryos and 
decreases in two-cell embryos [11]. Since the mobility of histones 
and the degree of chromatin looseness are positively correlated [12, 
13], it is likely that the chromatin structure is extremely relaxed in 
one-cell embryos and then becomes more condensed in two-cell 
embryos. Electron spectroscopic imaging has also shown that the 
chromatin is highly dispersed in one-cell stage embryos but becomes 
more condensed in two-cell stage embryos [14]. Interestingly, FRAP 
has also indicated that the level of relaxation is different between the 
parental pronuclei (Table 2). Compared with the male pronucleus, 
histone mobility was lower in the female pronucleus but still higher 
than in two-cell embryos [11]. Thus, the degree of chromatin relaxation 
in the female pronucleus seems to be intermediate to those of the 
male pronucleus and two-cell embryo nucleus. Consistent with 
these results, chromatin was more sensitive to DNase I in the male 
pronucleus than in the female pronucleus [15], suggesting again that 
the chromatin structure is more relaxed in the male pronucleus than 
in the female pronucleus. A recent analysis of three-dimensional 
genome architecture using high-resolution chromosome conformation 
capture also revealed that the pattern of genome compartmentaliza-
tion is different between the male and female pronuclei [16]. A 
genome-wide analysis of chromatin accessibility, using an assay 
for transposase-accessible chromatin in combination with high 
throughput sequencing, showed that chromatin obtained a wide 
open configuration within the transcribed region during minor 

Table 1. Summary of the differences in transcription, chromatin 
structure, and epigenetic factors between one- and two-cell 
embryos

One-cell 
embryos

Two-cell 
embryos

Transcription
transcribed region

genes [4, 5] > 90% < 80%
intergenes [3] extensive less extensive

dependence on enhancers [3, 6, 7] independent dependent

Chromatin structure
condensation [11] relaxed condensed
chromocenter [18, 19] absent present

Epigenetic factors
Histone modification

H3K4me3 [25, 26] + * ± **
H3K64me3 [30] + −
H4K20me3 [27] + −

 H2A variant
H2A.X [39] + +
H2A.Z [39] − −
macroH2A [39, 41] − −
Th2a [40] + +
H2A [39] ± *** ± ***

H3 variant
H3.1/3.2 [38] − +
H3.3 [38] + +

H1 variant
H1foo [49] + −
somatic H1 (H1a,b,c,d,e) [48] − +

Numerals in square brackets indicate reference numbers. Epigenetic 
factors written in red are associated with relaxed chromatin and/
or active transcription, while those in blue are associated with tight 
chromatin and/or transcriptional repression. Epigenetic factors 
written in black are associated with both transcriptional activation and 
repression, depending on the genome region. * The + and − indicate 
that nuclear deposition of the epigenetic factor was detected and 
undetected/hardly detected, respectively, in immunocytochemical 
analyses. ** The ± indicates that the nuclear signal of H3K4me3 was 
weak and much lower in two-cell embryos than one-cell embryos in 
immunocytochemical analyses. *** The ± indicates that the nuclear 
signal of H2A was weak and much lower in one- and two-cell embryos 
than in immature oocytes in immunocytochemical analyses.

Table 2. Summary of the differences in transcription, chromatin 
structure, and epigenetic factors between the male and female 
pronuclei

Male Female
Transcription

activity [1] high low
dependence on enhancers [3, 6, 7, 8] independent partly dependent

Chromatin structure
relaxed [11,15] high low

Epigenetic factors
whole nucleus

H3K9ac [57] high low
H3K27ac [57] high low
H4ac [56] high low
H3K9me2/3 [18, 58] low high
DNA methylation [52−55] low high

nucleolar periphery
H3K9me3 [18, 58] −* +
H3K27me3 [59] + −
H3K64me3 [30] − +
H4K20me3 [18, 27] − +

Numerals in square brackets indicate reference numbers. Epigenetic 
factors written in red are associated with relaxed chromatin and/or active 
transcription, while those in blue are associated with tight chromatin 
and/or transcriptional repression. * The + and − indicate that nuclear 
deposition of the epigenetic factor was detected and undetected/hardly 
detected, respectively, in immunocytochemical analyses.
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ZGA [17]. Finally, several chromocenters, where pericentromeric 
heterochromatin congregates, can be observed as densely stained 
foci by DNA staining using 4′,6-diamidino-2-phenylindole and 
DNA-fluorescent in situ hybridization analysis of major satellites 
in somatic cells. No focus of chromocenter has been observed in 
the pronuclei of one-cell embryos [18, 19], but foci do appear at 
the late two-cell stage. Taken together, these results suggest that 
the chromatin structure is globally relaxed at the one-cell stage and 
becomes relatively condensed at the two-cell stage.

In general, relaxed chromatin is believed to facilitate the access 
of transcription factors to their target DNA sequences [20, 21]. This 
is supported by the finding that most upstream regions of active 
genes have a relaxed chromatin configuration [22], which may 
induce a low level of promiscuous transcription across the genome 
in one-cell embryos [5]. This hypothesis explains why enhancers 
are not required for transcription in one-cell embryos, since one of 
the functions of enhancers is to relax chromatin [23, 24] and the 
chromatin of one-cell embryos is already relaxed. At the two-cell 
stage however, the chromatin condenses and enhancers are required 
for transcription. Although major satellites are actively transcribed in 
one- and early two-cell stage embryos, chromocenters are organized 
in late two-cell stage embryos and the level of transcription from 
major satellite is rapidly decreased after the two-cell stage [19]. 
In addition, the male pronucleus of one-cell embryos has a looser 
chromatin structure and a lower degree of dependence on enhancers 
compared with the female pronucleus [7, 8, 11]. This more relaxed 
chromatin state seems to explain the difference in transcriptional 
regulation between the male and female pronuclei.

Epigenetic Factors in One- and Two-cell Embryos

In addition to transcription levels and chromatin structure, various 
epigenetic factors have been reported to change dramatically between 
the one- and two-cell stages (Table 1). Immunocytochemistry using an 
antibody against H3K4me3, which is involved in active transcription, 
revealed that the nuclear level of this modification decreases during the 
one- and two cell stages [25, 26]. H4K20me3 signals were observed 
in the pericentromeric regions of only the female pronucleus of one-
cell embryos and disappeared at the two-cell stage [18, 27]. Ectopic 
expression of Suv4-20h2, which is a methyltransferase acting on 
H4K20me3, maintained the level of H4K20me3 during the one- and 
two-cell stages and induced developmental arrest, suggesting that 
the loss of H4K20me3 in one- and two-cell embryos is necessary for 
preimplantation development [28]. Nuclear localization of H3K64me3, 
which is involved in pericentromeric heterochromatin formation [29], 
developed a pattern similar to that of H4K20me3 in one- and two-cell 
embryos [30]. Finally, a genome-wide analysis of the distribution 
of H3K4me3 using chromatin immunoprecipitation (ChIP) has 
shown that H3K4me3 peaks in the vicinity of the transcription start 
sites (TSSs) of active genes in two-cell embryos and somatic cells. 
H3K4me3 peaks were absent in the TSSs of one-cell embryos but 
were instead present as broad signals covering vast regions [26, 31].

In addition to changes in histone modifications, histone variants 
change dramatically between the one- and two-cell stages (Table 
1). There are three major non-centromeric histone H3 variants: 
H3.1, H3.2, and H3.3. H3.3 is deposited abundantly in the upstream 

regions of active genes [32–34] and is preferentially modified with 
H3K9ac, H3K14ac, and H3K79me2, which promote transcription 
[35, 36], suggesting that H3.3 is involved in the formation of relaxed 
chromatin and active transcription. On the other hand, H3.1/3.2 
possess modifications involved in transcriptional repression, such as 
H3K9me2 and H3K27me2/3 [35, 37]. We previously analyzed the 
nuclear incorporation of flag-tagged H3 variants by microinjecting 
their encoding cRNAs into embryos and found that H3.2 and H3.3, 
but not H3.1, were efficiently incorporated into the pronucleus of 
one-cell stage embryos [38]. However, we have recently found that 
H3.3 is much more efficiently incorporated than H3.2 when the 
concentration of microinjected cRNA is reduced (unpublished data). 
We have also found by immunocytochemistry using an antibody 
against H3.1/3.2 that the nuclear level of H3.1/3.2 is very low at the 
one-cell stage and increases at the two-cell stage (unpublished data). 
In addition to H3 variants, H2A variants have also shown an uneven 
pattern of nuclear deposition in one- and two-cell embryos. In these 
embryos, only H2A.X and TH2A were detected clearly, whereas 
H2A.Z and macroH2A were not [39–41]. A low level of canonical 
H2A was detected when compared with oocytes [39]. In general, 
macroH2A is involved in the repression of transcription, whereas 
H2A.Z is abundantly localized in the promoter regions, but not the gene 
bodies, of active genes and is involved in transcriptional regulation 
[34, 42–45]. H2A.X is involved in DNA repair [46]. Although the 
function of H2A.X in the regulation of gene expression is not clear, 
it has been reported that H2A.X is abundantly localized in actively 
transcribed genes [34]. TH2A is involved in the formation of loose 
chromatin [40]. Therefore, the composition of H3.3/H2A.X and/or 
H3.3/TH2A in the nucleosome may be responsible for the formation 
of extremely relaxed chromatin in one-cell embryos.

Linker histone H1 plays an important role in the construction 
of higher-order chromatin structures. The linker histone H1 fam-
ily consists of seven somatic H1 variants which are ubiquitously 
expressed in somatic cells and four germ cell-specific variants [47]. 
In immunocytochemical analyses for these variants in one-cell 
embryos, the somatic H1 variants H1a, b, c, d, and e were not detected 
in the pronuclei [48], while H1foo, an oocyte-specific H1 variant, 
was detected clearly [49]. However, the nuclear level of H1foo 
decreased drastically at the two-cell stage [49], whereas the nuclear 
level of somatic H1 variants increased [48]. Interestingly, it has been 
suggested that the somatic H1 variants and H1foo are involved in the 
formation of condensed and relaxed chromatin, respectively [50, 51].

Epigenetic factors show different patterns of localization between 
male and female pronuclei in one-cell embryos (Table 2). Previously, 
it was reported that the male, but not the female, pronucleus undergoes 
active DNA demethylation [52]; however, recent studies have revealed 
that a conversion of methyl to hydroxymethyl groups, rather than just a 
removal of methyl groups, occurs in the male pronuclei [53–55]. It has 
also been reported that various histone modifications are asymmetric 
between the male and female pronucleus. The levels of histone H4, 
H3K9, and K27 acetylation associated with active transcription 
are higher in the male pronucleus than in the female pronucleus 
[36, 56, 57]. On the other hand, the levels of histone methylation 
(H3K9me2/3) associated with transcriptional repression are lower 
in the male pronucleus compared with the female pronucleus [18, 
37, 58]. The pericentromeric regions of the genome are localized in 
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the periphery of the nucleolus in one-cell embryos. This region is 
enriched in H3K9me3, H3K64me3, and H4K20me3 in the female 
pronucleus but not in the male pronucleus [18, 27, 30, 58]. On the 
other hand, H3K27me3 is abundantly localized in this region of the 
male pronucleus only [59]. Regarding histone variants, H3.3 was found 
predominantly in the male pronucleus soon after fertilization [38].

Distinctive patterns of nuclear localization of various epigen-
etic factors seem to be involved in the establishment of unique 
characteristics of chromatin structure and transcription in one- and 
two-cell embryos. In one-cell embryos, the epigenetic factors that 
are associated with relaxed chromatin and active transcription, i.e. 
H3K4me3, H3.3, H2A.X, and H1foo, are abundantly deposited in 
the pronucleus, whereas macroH2A, H3.1, and H3.2, which are 
associated with condensed chromatin and gene repression, are absent 
or present at low levels. At the two-cell stage, the levels of H3.1 
and H3.2 increase while those of H3K4me3 and H1foo decrease, 
which may condense the chromatin structure. In one-cell embryos, 
the absence of H3K4me3 peaks in the vicinity of the TSSs of active 
genes but instead having a broad signal presence covering vast regions 
may contribute to enhancer-independent and cryptic transcription. 
MacroH2A, which is associated with tight chromatin, is absent from 
the nucleus at the two-cell stage as well as from the pronucleus at 
the one-cell stage and then appears at the late preimplantation stage 
[39, 41]. Although macroH2A does not seem to be involved in the 
change in chromatin structure between the one- and two-cell stages, 
it may be involved in the formation of a tight chromatin structure in 
the late preimplantation stage. Notably, FRAP has shown that the 
chromatin structure in two-cell embryos is still much more relaxed 
than that seen in late-preimplantation-stage embryos [11], even 
though it is more condensed than that of one-cell embryos.

In one-cell embryos, the differences in chromatin structure and 
transcriptional activity between male and female pronuclei may be 
caused by asymmetric localization of certain epigenetic factors. 
DNA methylation and H3K9me2/3, which are associated with tight 
chromatin and a transcriptionally repressive state, were detected in the 
female pronucleus only. This may induce more condensed chromatin 
and lower levels of transcriptional activity in the female pronucleus 
than in the male pronucleus. Furthermore, asymmetric localization 
of H3K9me3, H3K64me3, and H4K20me3 in the periphery of the 
nucleolus may be associated with the different levels of transcription 
from major satellites between the parental pronuclei.

Future Prospects

As described above, epigenetic factors are altered dramatically from 
the one- to two-cell stage. However, little is known about the precise 
roles of these epigenetic factors in the regulation of transcription, 
chromatin structure, and development in one- and two-cell embryos, 
since most studies have examined the changes in these factors but 
not their functions. An analysis of the transcriptional activity and/or 
chromatin structure of embryos with either a knockdown or knockout 
of epigenetic factors of interest is needed. The recent development of 
the CRISPR-Cas9 system will facilitate the generation of knockout 
animals for various epigenetic factors. Furthermore, recent technical 
advances have enabled ChIP-seq experiments using a smaller number 
of cells. Using these technologies, knowledge gained regarding the 

genome-wide distribution of various epigenetic factors will help 
elucidate the whole picture of chromatin structure and transcriptional 
regulation during the one- and two-cell stages.
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