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Automatic segmentation of coal crack in CT images is of great significance for the establishment of digital cores. In addition,
segmentation in this field remains challenging due to some properties of coal crack CT images: high noise, small targets,
unbalanced positive and negative samples, and complex, diverse backgrounds. In this paper, a segmentation method of coal crack
CT images is proposed and a dataset of coal crack CT images is established. Based on the semantic segmentation model
DeepLabV3+ of deep learning, the OS of the backbone has been modified to 8, and the ASPP module rate has also been modified.
A new loss function is defined by combining CE loss and Dice loss. %is deep learning method avoids the problem of manually
setting thresholds in traditional threshold segmentation and can automatically and intelligently extract cracks. Besides, the
proposed model has 0.1%, 1.2%, 2.9%, and 0.5% increase in Acc, mAcc, MioU, and FWIoU compared with other techniques and
has 0.1%, 0.8%, 2%, and 0.4% increase compared with the original DeepLabV3+ on the dataset of coal CT images. %e obtained
results denote that the proposed segmentation method outperforms existing crack detection techniques and have practical
application value in safety engineering.

1. Introduction

Coal is an important energy source for human society. %e
phenomenon of deformation and damage of coal and rock
mass under load is common, which has a huge impact on
the safety of mining engineering. %e research on digital
core technology based on industrial CT scanning tech-
nology is of great significance for the mining safety, and its
basis is the high-precision segmentation of cracks in in-
dustrial CT scanning images. As the key technology of
digital core, 3D reconstruction needs high-precision seg-
mentation results to reflect the original topology of cracks.
However, artificial segmentation of coal crack CT images
undoubtedly takes a lot of time and energy. And, most of
the existing auxiliary software is based on traditional
threshold segmentation methods which are still impossible
to get rid of the interference of noise even working with
some image preprocessing methods. %erefore, intelligent

and automated segmentation of coal crack CT images is
particularly important.

Digital images contain a lot of important information,
which can be extracted in different ways in different fields.
For example, it can be used in the field of encryption
technology [1, 2], information security [3–6], in the field of
industrial engineering [7], in the field of agriculture [8], and
so on. Digital image processing technology includes many
categories [9, 10], and image segmentation is one of them.
Noise is one of the difficulties in the segmentation of coal
crack images. In order to reduce the noise and enhance
images, methods that were applied in the segmentation of
crack include morphological filter [11], wavelet transforms
[12, 13], anisotropic diffusion filter [14], and so on. However,
many noises cannot be fundamentally removed by the
traditional methods. Machine learning algorithms can
achieve automatic crack detection and segmentation to a
certain extent including structured forests [15, 16], minimal
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path selection [17], support vector machine [18], etc. Nev-
ertheless, most features in machine learning need to be
identified by experts and hand-coded. Deep learning models
have powerful learning ability which can automatically
complete the tasks of classification, detection, and seg-
mentation after training. Starting from FCN [19], many
high-performance semantic segmentation models have
emerged such as U-net [20], SegNet [21], and PSPNet [22].
%ese models are based on convolution operations, apply
feature extraction networks as backbones, and incorporate
multiscale semantic information to achieve pixel-by-pixel
segmentation of images. Deep learning methods have been
applied in different crack segmentation fields [23–25]
nowadays.

In this work, we present an end-to-end coal crack CT
image segmentation method based on the deep learning
model DeepLabV3+ [26]. Compared with existing deep
learning methods, postprocessing is unnecessary for our
method. Besides, our method achieves better performance
on some evaluation metrics. %ese advantages are mean-
ingful for the subsequent 3D reconstruction work and the
establishment of digital cores.

2. Related Work

All data in this paper comes from the tomograms of high-
precision industrial CT during the fracturing experiment of
coal samples.%e CTscanning equipment is from the Nation
Key of Natural Gas Geology and Natural Gas Control of the
Henan University of Technology Laboratory which is a
phoenix v|tome|xm high-resolution industrial X-ray μCT
scanner [27]. %e equipment diagram and CT imaging
principle are shown in Figure 1. Images collected by this
equipment have many noise points in the coal matrix, and
different samples may have different colors. CT image
samples of coal cracks are shown in Figure 2. %e datasets
used for training in this experiment are cut from CT images
obtained by the aforementioned platform at different sizes.
%e diversity of the crack structure is fully considered in the
interception process to adapt to the segmentation of dif-
ferent images.

%e high performance of deep learning in computer
vision was first demonstrated in classification tasks. Many
CNN models can provide good classification accuracy
such as Vgg [28], ResNet [29], Xception [30], and so on.
Some of them are applied as feature extractors in seg-
mentation models. FCN replaces the fully connected layer
in the classification model with deconvolution to
upsample the pooled feature map to its original size,
pioneered semantic segmentation. %e application of deep
learning in crack detection can be roughly divided into
three types, methods based on classification [31], object
detection [32], and semantic segmentation [33, 34]. Xue
et al. [35] modified the last few deconvolution modules of
FCN to adapt to the needs of crack segmentation.
However, this FCN-based method may not be able to
guarantee the accuracy of segmentation and maintain the
original topological structure of the crack when facing the
crack of complex structures.

DeepLabV3+ is a high-performance semantic segmen-
tation model derived from DeepLabV1, V2, and V3 [36–38].
In view of the adverse effect of excessive downsampling on
segmentation accuracy, this model proposed to use atrous
convolution to reduce downsampling and enlarge the re-
ceptive field simultaneously. %is model also applied atrous
spatial pyramid pooling to capture and fuse multi-scale
semantic information which is beneficial to improving the
accuracy of segmentation. Besides, Encoder-Decoder ar-
chitecture is used to recover pixels of features better.
DeepLabV3+ achieves new state-of-the-art performance on
PASCAL VOC 2012 dataset. However, compared with the
public semantic segmentation dataset, the crack image
dataset has the characteristics of smaller targets and un-
balanced positive and negative samples. So we have made
some improvements to the original model for these char-
acteristics. %e coal crack CT image segmentation method
that we proposed has the following contributions:

(1) Given that there are no publicly available datasets for
research in this field, we established a dataset of coal
crack CT images for our research. All original pic-
tures come from a professional coal sample frac-
turing experimental platform and all labels are made
by hand marking.

(2) We modified DeepLabV3+ to adapt to the need for
coal crack CT images by adjusting the OS of the
backbone, adjusting the encoder-decoder module,
and changing the rates of the ASPP module. %e
modified model achieves better performance than
the original model under some authoritative eval-
uation indicators commonly used in semantic seg-
mentation: PA, MPA, MIoU, and FWIoU.

(3) A new loss function is defined by combining the CE
loss and Dice loss. While adding contour factors to
the prediction, the curve fluctuation of the Dice
function in the training is alleviated.

3. Methodologies

3.1. Dataset. Since there is no open-source dataset for CT
segmentation images of coal crack, we established a coal
crack dataset manually. All these images were taken from the
original coal fracturing experimental images in different
sizes and different length-width ratios. All data were cap-
tured in images acquired by high precision industrial CT
introduced before. It consists of 437 RGB images and their
segmentation labels, including different crack shapes,
complexities, and different background colors. Some rep-
resentative images and their annotations are shown in
Figure 3. %ese samples can reflect the complexity of crack
morphology, noise situation, and background differences in
the dataset to a certain extent.

Data augmentation is a technique widely used in deep
learning. In supervised learning, fine data annotation is a
time-consuming and energy consuming work. Data aug-
mentation can expand the dataset so that the parameters
learned during model training are more reliable and can
effectively avoid overfitting. So we enhanced the coal crack
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dataset to 5000 in different ways: rotation, flip and zoom.
Angles of rotation were limited to −30 to 30 degrees, the flip
direction is horizontal and the ratios of zoomwere limited to
80% to 120%. Finally, after data augmentation, the training
set contains 3500 images and the test set contains 1500
images.

3.2. Atrous Spatial Pyramid Pooling. Atrous convolution can
be used to capture multiscale contextual information. %e
parameter can set different dilation rates of atrous convo-
lution which can be regarded as the stride of the input signal
we sample. %e output of atrous convolution of a one-di-
mensional input signal with a filter of length is defined as
follows:

y[i] � 
K

k�1
x[i + r · k]w[k]. (1)

Combined with spatial pyramid pooling, ASPP is applied
as a Multiscale information fusion module. %e structure
which is applied in the DeepLabV3+ model achieved multi-
scale information collection using four different rates of
atrous convolutions (including image-level pooling). Dif-
ferent from the rates of (1, 6, 12, and 18) used in the original

DeepLabV3+, more kinds of combinations of rates were
tried using to make the feature extractor more suitable for
crack segmentation. As the OS (Output Stride) of the
backbone was adjusted to 8 to reduce downsampling, a
larger receptive field is required. We tried to make the
enlargement of the receptive field follow the size of the
feature map output from the backbone. And, the experiment
proved that rates of (1, 12, 24, 36) can achieve a better
performance. A more intuitive situation about ASPP can be
seen in Figure 4.

3.3. Encoder-Decoder. %e encoder-decoder structure is
widely applied in the field of computer vision. As for the
semantic segmentation field, the encoder gains semantic
information from images with feature maps reducing as a
feature extraction module. DeepLabV3+ model uses
DeepLabV3 as the encoder block with some effective im-
provement. %e decoder is applied to reconstruct the seg-
mentation result by restoring the pixel and size of the feature
map, at the same time, keeping the details of the original
image as much as possible. DeepLabV3+ proposed a simple
decoder as shown in Figure 4 and obtained a good effect
practically. %e first upsampling rate was adjusted to 2 as the
OS of the backbone was changed to 8.
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Figure 1: (a) High-precision industrial CT scanning equipment; (b) Schematic diagram of the scanning device.
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Figure 2: CT image samples of coal crack.
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3.4. Adjusted Xception as Backbone. Xception, as a high-
performance convolution neural network is applied as the
feature extractor of ordinary DeepLabV3+. %is deep struc-
ture is developed based on the Inception model and based

entirely on depthwise separable convolution. Unlike con-
ventional convolution, in depthwise separable convolution,
each feature map channel only needs to perform an operation
with each channel of the convolution kernel. %is kind of

Image Ground truth Mask Image Ground truth Mask

Figure 3: Some representative images in our datasets, their ground truth, and masks on original images. It shows that these pictures show
that our dataset contains data of different sizes, different complexities, and different background color depths at the same time. Diversity
allows the model trained on this dataset to adapt to most CT image environmental conditions.

Dcnn
OS=8

1x1 Conv

1x1 Conv

1x1 Conv Concatenate 3x3 Conv Unsample
by 4 Output

Decoder

Encoder

ASPP

Rate = 12

rate = 24

rate = 36

Image Pooling

Unsample
by 2Low-Level
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Figure 4: Modified DeepLabV3+ model structure. Compared with the original DeepLabV3+ architecture, the OS (output stride) was
adjusted to 8, and rates of the ASPPmodule were adjusted to (1, 12, 24, 36). At the same time, the first upsampling rate is changed from 4 to 2
to restore image pixels to their original size.
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convolution can effectively reduce the number of parameters
and computing costs, and by using this, Xception expanded
the scale of the model and became state-of-the-art CNN
architecture in classification tasks. %e ordinary Xception has
an OS� 32 so that it can adapt to the needs of classification
tasks. But excessive pooling makes the feature maps too small
so that the detailed information can be damaged. In order to
get dense feature maps, the OS of 16 or 8 is desirable.

Different from the OS of 16 which performed better in
natural scene datasets, crack images need a denser way to
extract features because the targets of these images are tiny in
most cases. For these small targets, downsampling has a
particularly serious loss of accuracy. So the OS of 8 was used
in this model, at the same time, the ASPP was adjusted to get
a larger receptive field and the decoder also made corre-
sponding adjustments. To achieve this goal, compared with
the Xception structure in the DeepLabV3+ original text, we
adjusted the stride of the third block of entry flow to 1, and
correspondingly doubled the rate of the atrous convolution
in the middle flow and the exit flow. %e adjusted Xception
structure is shown in Figure 5.

3.5. Loss Function. DeepLab series model apply the cross-
entropy (CE) loss function which is widely applied in
classification tasks to classify every single pixel. %is loss
function checks each pixel separately and compares the class
prediction (the pixel vector in the depth direction) with the
hot encoding target vector. %e cross-entropy function can
be formulated as follows:

Lce � −
1
N


i



M

c�1
yiclog pic( , (2)

whereM refers to the number of categories,yic refers to the sign
function (0 or 1), and pic refers to the predicted probability that
the observed sample i belongs to category c. %us, we can
consider that the pixels in the image are learned equally with the
cross-entropy loss function, and this kind of equality does not
apply to the situation where the sample is extremely uneven. In
coal crackCTimages, the number of pixels corresponding to the
crack is much smaller than that of the background. Taking the
dataset we established as an example, the proportion of crack
pixels in the whole image is less than 5%. Dice Loss [39] was
proposed in 2016, designed to deal with scenarios where positive
and negative samples are strongly imbalanced in semantic
segmentation. Different from distribution-based cross-entropy
loss, theDice function is based on region and is used to calculate
the similarity between two images. %e Dice coefficient and
Dice loss function can be formulated as follows:

di ce �
2|X∩Y|

|X| +|Y|
,

Ldi ce � 1 −
2|X∩Y|

|X| +|Y|
,

(3)

where X and Y refer to two different samples, they are
ground truth and predict mask in segmentation tasks. In a

different way, the Dice coefficient and the loss function can
be formulated as follows:

di ce �
2TP

2TP + FP + FN
,

Ldi ce � 1 −
2TP

2TP + FP + FN
.

(4)

Where FP, FN refer to true positive, false positive, and
false negative. However, although Dice loss can calculate the
similarity of two contours, it may cause the gradient to
change drastically, and the training is difficult so it is not
credible to a certain extent sometimes. In this experiment,
we did a weighted additive combination of CE loss and Dice
loss to add contour features to the classification of pixels and
avoid the shock of loss in training. %e new loss function is
formulated as follows:

Lnew � β · Lce + Ldi ce, (5)

where β is a weight coefficient for adjusting the proportion of
CE function. It is a constant in the range [0, 1], and the value
of this article is 0.5.%e experiment proved that this new loss
function effectively improves the accuracy of crack seg-
mentation compared to using the cross-entropy loss func-
tion alone.

4. Experiments

All experiments were done in the following environment:
Intel (R) Xeon(R) Bronze 3204 CPU @ 1.90 GHz,
32 GB RAM, GPU Tesla V100, CentOS Linux release
7.6.1810. And experiments related to deep learning are
completed under PyTorch 1.10.0. We compare the pro-
posed method with existing representative algorithms to
the performance of the model on the dataset we estab-
lished and also compare the visual effects of these seg-
mentation results.

4.1.Metrics. In order to evaluate our work, in addition to the
visual effects of segmentation images, we introduced four
authoritative evaluation indicators commonly used in se-
mantic segmentation. All experiments are performed on the
dataset we established.

Suppose k is the number of categories (background is
excluded), pij indicates that the total number of pixels that
are mispredicted. pii means, pij means FP and pji means
FN. Four evaluations are

(1) PA, which means the rate of the number of predicted
right pixels to total pixels. It can be expressed as
follows:

PA �


k
i�0 pii


k
i�0 

k
j�0 pij

. (6)

(2) MPA, which means the average pixel accuracy of
each category. It can be expressed as follows:
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MPA �
1

k + 1


k

i�0

pii


k
j�0 pij

. (7)

(3) MIoU, which represents the IoU of each category. It
can be expressed as follows:

MIoU �
1

k + 1


k

i�0

pii


k
j�0 pij + 

k
j�0 pji − pii

. (8)

(4) FWIoU, which sets the weight for IoU of each class
according to the frequency of its appearance. It can
be expressed as follows:

FWIoU �
1


k
i�0 

k
j�0 pij



k

i�0

pij 
k
j�0 pij


k
j�0 pij + 

k
j�0 pji − pii

.

(9)

4.2. Ablation Experiments. To scrutinize the effectiveness of
the methods we proposed, we conduct experiments with two
different backbones which are used in the original Deep-
LabV3+. Hyperparameters used by these methods are shown
in Table 1. When using the ResNet101 as the backbone, the
model is trained by three following strategies: (1) Deep-
LabV3+-res, which is an unmodified DeepLabV3+ model
applying ResNet101 [40] as the backbone. (2) DeepLabV3+-
res-8 changes OS to 8 and ASPP rates to (1, 12, 24, 36) on the
basis of DeepLabV3+-res. (3) DeepLabV3+-x-8-NL changes
loss function to the new loss on the basis of DeepLabV3+-x-
8. And, the experiment results are shown in Table 2. When

using the Xception as the backbone, the model is trained by
three following strategies: (1) DeepLabV3+-x, which is an
unmodified DeepLabV3+ model applying Xception as the
backbone. (2) DeepLabV3+-x-8 changes OS to 8 and ASPP
rates to (1,12,24,36) on the basis of DeepLabV3+-x. (3)
DeepLabV3+-x-8-NL changes loss function to the new loss
on the basis of DeepLabV3+-x-8. Results are shown in
Table 3. In order to more vividly reflect the advantages of our
method, histograms were drawn in Figures 6 and 7.

It can be seen in Tables 2 and 3, adjusted the OS to 8 and
using new loss improve all evaluation metrics. When the
backbone is RseNet101, by our methods, the Acc, mAcc,
MIoU, and FWIoU improved by 0.1%, 1.1%, 2.3%, and 0.4%.
When the backbone is Xception, by our methods, the Acc,
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Conv 728, 1x1
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Figure 5: Modified Xception architecture. OS of the third block was adjusted to 1 to change the OS of the overall Xception to 8.

Table 1: Hyperparameters of six training strategies.

Batch
size LR Epochs LR

scheduler
Weight
decay Momentum

16 0.007 100 Poly 5e− 4 0.9

Table 2: Comparison of model modifications with the backbone of
ResNet101.

Methods Acc
(%)

mAcc
(%)

MIoU
(%)

FWIoU
(%)

DeepLabV3+-res 98.4 94.0 86.2 97.1
DeepLabV3+-res-8 98.5 94.5 87.1 97.4
DeepLabV3+-res-8-
NL 98.5 95.1 88.5 97.5
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mAcc, MIoU, and FWIoU improved by 0.1%, 0.8%, 2.0%,
and 0.4%. Experimental results confirm the effectiveness of
the proposed method.

4.3. Comparing with Exiting Methods. We compare the
proposed method in this paper with other three typical
methods: (1) FCN, the most classic semantic segmentation

Table 3: Comparison of model modifications with the backbone of Xception.

Methods Acc (%) mAcc (%) MIoU (%) FWIoU (%)
DeepLabV3+-x 98.5 94.6 87.4 97.3
DeepLabV3+-x-8 98.6 94.9 88.0 97.5
DeepLabV3+-x-8-NL 98.6 95.4 89.4 97.7

DeeplabV3+-res

DeeplabV3+-res-8

DeeplabV3+-res-8-NL

97.597.497.1

88.5
87.1

86.2

95.194.594

98.5 98.598.4

FWIoUMIoUmAccAcc

(%
)

80
82
84
86
88
90
92
94
96
98

100

Figure 6: Histogram ablation experiment results with the backbone of ResNet101.

97.797.597.3

89.4
88.087.4

95.494.994.6

98.698.698.5

FWIoUMIoUmAccAcc
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)

80
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88

90

92

94

96

98

100

DeeplabV3+-x

DeeplabV3+-x-8
DeeplabV3+-x-8-NL

Figure 7: Histogram ablation experiment results with the backbone of Xception.

Table 4: Comparison of performance of our method and others.

Methods Acc (%) mAcc (%) MIoU (%) FWIoU (%)
Proposed method 98.6 95.4 89.4 97.7
FCN-32s-vgg16 [10] 97.6 85.4 76.7 93.3
PSPNet-res50 [12] 97.0 80.4 75.1 92.9
U-net-res50 [13] 98.5 94.2 86.5 97.2
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U-net-res50 [13]
PSPNet-res50 [12]Proposed Method
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Figure 8: Histogram comparison of performance of our method and others.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 9: Visual effect comparison of prediction results of different methods. %e columns are (a) original image, (b) ground truth, (c) our
method. (d) DeepLabV3+-Xception, (e) U-net, (f ) FCN32s-vgg16, (g) PSPNet, (h) Ostu, and (i) Max Entropy.
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network. (2) U-net, the most widely used segmentation
network in the medical field. (3) PSPNet, a very efficient
model which applies a pyramid pooling module to fusion
features on different levels. %e feature extractors of all
networks apply transfer learning techniques and are fine-
tuned on our augmented dataset. Besides, all these models
have trained 100 epochs with regular hyperparameters, and
the convergence of these models was guaranteed. We also
implement two different threshold segmentation methods
on our test set to compare the segmentation effects between
traditional methods and deep learning methods: (1) Otsu
[41] (2) Max Entropy [42]. %e two methods represent
different automatic threshold determination methods.

A comparison of evaluation metrics of all these methods
is shown in Table 4. As we can see, since the proportion of
cracks in the images is very low, and the judgment error rate
of image background pixels is low so that the total pixel
accuracy of every method is not very different. However, the
performance of different methods can still be judged from
the remaining evaluation indicators. PSPNet and FCN may
have good performance in semantic segmentation under
natural conditions, but they do not perform well on the coal
crack CT image dataset. U-net is designed to deal with
medical images which have similarities with the images we
used, so this model can have a nice performance. As the best
performing comparison method, U-net achieved an Acc of
98.5%, mAcc of 94.2, MIoU of 86.5%, and a FWIoU of 97.2%
which are 0.1%, 1.2%, 2.9%, and 0.5% lower than proposed
method. A histogram comparison of the experimental re-
sults is shown in Figure 8.

Figure 9 shows a visual effect comparison of segmen-
tation results of all methods. It can be seen that the method
we proposed has a certain improvement in the dataset in this
paper. Compared with the original DeepLabV3+, the ability
to capture details has been improved and cracks whose pixel
values are close to the background can be identified. Many
locations that should be connected become disconnected
during the segmentation process of other models, this
problem is also alleviated by our method. Other deep
learning methods even have a large number of separation
cracks sticking together, which is caused by the insufficient
segmentation performance. In addition, the shape and
structure of cracks is not guaranteed. Experiments show that
less downsampling and the addition of the Dice loss function
allow the details to be effectively preserved and recovered.
Comparing deep learning methods and traditional threshold
segmentation methods, the noise problem is difficult to solve
for threshold even though different thresholding methods
are used. Although some deep learning methods are rough
for object segmentation, they often do not misidentify noise.

5. Conclusions

In this paper, we propose a deep learning method to
complete the CT image segmentation task of coal crack CT
images. Since the target in the crack image is small, and
downsampling can lose the accuracy to some extent, the OS
of the backbone was proposed to be reasonably adjusted to
reduce the loss of accuracy and adjusted the structure of

ASPP to adapt to this adjustment. In order to solve the
problem of uneven sample distribution, CE loss and Dice
loss were combined to define a new loss function. %e ex-
perimental results show that our method is effective and has
practical application value.

Nevertheless, the presentedmethod can be improved in the
following directions. First, scale-up datasets to accommodate
more complex environments. And, more data will be added to
this dataset which has more complex topologies and tiny
targets. Moreover, we will define a new loss function according
to the specific target proportion in the data set combined with
probability mathematics which may be more adaptable to the
needs of the field than the loss function in this paper.
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