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Abstract

Background: Platinum-based chemotherapy and radiotherapy are standard

treatments for non-small cell lung cancer, which is the commonest, most lethal cancer

worldwide. As a marker of treatment-induced cancer cell death, we have developed a

radiodiagnostic imaging antibody, which binds to La/SSB. La/SSB is an essential,

ubiquitous ribonuclear protein, which is over expressed in cancer and plays a role in

resistance to cancer therapies.

Aim: In this study, we examined radiation-induced DNA double strand breaks (DSB)

in lung cancer cell lines and examined whether La/SSB associated with these DSB.

Method: Three lung cancer lines (A549, H460 and LL2) were irradiated with different

X-ray doses or X-radiated with a 5 Gy dose and examined at different time-points post-

irradiation forDNADSB in the formof γ-H2AXandRad51 foci. Using fluorescencemicros-

copy,we examinedwhether La/SSB and γ-H2AX co-localise and performedproximity liga-

tion assay (PLA) and co-immunoprecipitation to confirm the interaction of these proteins.

Results: We found that the radio-resistant A549 cell line compared to the radio-

sensitive H460 cell line showed faster resolution of radiation-induced γ-H2AX foci

over time. Conversely, we found more co-localised γ-H2AX and La/SSB foci by PLA

in irradiated A549 cells.

Conclusion: The co-localisation of La/SSB with radiation-induced DNA breaks

suggests a role of La/SSB in DNA repair, however further experimentation is required

to validate this.
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1 | INTRODUCTION

Lung cancer and its major form, non-small cell lung cancer (NSCLC), is

globally the commonest and most lethal cancer. Radiotherapy given

concurrently with platinum-based chemotherapy (PBT) is the standard

treatment for locally advanced, inoperable lung cancer and may use-

fully prime anti-tumour immune responses.1 PBT, which is the main-

stay of treatment for metastatic NSCLC, is now combined with

immunotherapy2–4 and PBT is also the standard adjuvant therapy

for completely resected early-stage NSCLC.5 Although theseAlexander H. Staudacher and Yanrui Li contributed equally to the work.
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DNA-damaging treatment approaches may have curative potential, it

is mainly treatment resistance that limits their effectiveness.

Although an intent of cytotoxic anti-cancer treatment is cancer cell

death, cancer cells surviving the assault may adopt altered cellular

states, which have reduced proliferative potential, but which may also

exert persisting deleterious effects within the immediate microenviron-

ment and more extensively via elaboration of exosomes for example.6

Although manifold and complex, among the pro-survival mechanisms

contributing to treatment resistance after DNA damage are the induc-

tion of anti-apoptotic signalling pathways7 and accelerated DNA

repair.8 But there are also instances of lower fidelity DNA repair, which

may promote genome instability and adaptive mutations.6

We have been interested to understand the contribution that can-

cer cell death makes to effective radiotherapy, chemotherapy and

immunotherapy. To that end, as an in vivo marker of cancer cell death,

we have developed a novel radiodiagnostic monoclonal antibody (mAb)

for imaging, which is called chimeric DAB4 (chDAB4) and which is

trademarked as APOMAB®.9,10 The chDAB4 mAb has entered a phase

1 clinical imaging trial in advanced NSCLC patients who will receive

first-line chemo-immunotherapy and/or radiotherapy (Australian and

New Zealand Clinical Trials Registry No. 12620000622909). The

chDAB4 mAb is specific for the essential, exceedingly abundant and

ubiquitously expressed 46 kDa RNA-binding protein, La/SSB.11 The

lupus-associated (La) antigen has the HUGO Gene name of Sjögren Syn-

drome B (SSB) and is also known as La-related protein 3 (LARP3). Based

on an earlier preclinical imaging study,9 the clinical rationale for this

radioimmunodiagnostic approach is that patients who respond to the

lung cancer treatment will demonstrate significant tumour uptake of

radiolabelled chDAB4 whereas it is presumed that non-responding

patients will have treatment-resistant disease.

La/SSB is over expressed in malignancy12 and in clinical samples

including of lung cancer,13 cervical cancer,14 head and neck squamous

cell carcinoma (HNSCC),15,16 chronic myeloid leukaemia (CML),17 poly-

cythaemia rubra vera and primary myelofibrosis.18 The chDAB4 mAb

only binds the La/SSB protein in dead cancer cells. During apoptotic

tumour cell death in vitro, the La/SSB protein translocates from

nucleus to cytoplasm, and as necrosis develops with loss of cell mem-

brane integrity, the La/SSB protein becomes available for antigen-

specific antibody binding in the dead tumour cells.12,13,19–22 Moreover,

after DNA-damaging anti-cancer treatments such as some cytotoxic

chemotherapy drugs or ionising radiation, the binding of specific anti-

bodies to La/SSB in dead tumour cells is even greater because of two

major effects. First, treatment-induced tumour cell death creates more

La/SSB binding targets. Second, for poorly understood reasons, the

per cell binding of La/SSB-specific antibodies to dead tumour cells also

increases.12,19,20,22 In an earlier study, after cytotoxic drug treatment

of tumour cells, chromatin-associated La/SSB was shown to increase

and to co-localise with double strand breaks (DSB) using immunofluo-

rescence.12 In vivo, apoptotic cells, which are created at the rate of a

million cells a second, are never evident because they are cleared

highly efficiently before there is time for them to become necrotic. In

vivo, after chemotherapy is given to tumour-bearing mice, necrotic

tumour cells are cleared inefficiently (unlike dead normal cells) and thus

are available for in vivo binding by La/SSB-specific antibody.21

Although specific aspects of the oncogenic role of La/SSB

overexpression are being uncovered,14,15,23–25 it is likely that La/SSB

plays a multi-functional role in malignancy26 as it has been shown to

perform physiologically. La/SSB is estimated to exist as 20 � 107 copies

per cell, which makes it as abundant as a ribosomal protein.11 The RNA-

binding functions of La/SSB are critical because La/SSB is essential for

eukaryotic life and is required both for dividing and non-dividing post-

mitotic cells, which contribute to the development of normal tissues.27

The La/SSB protein performs a versatile range of chaperone functions

for many different RNA molecules and thus regulates both transcription

and translation.28–32 La/SSB is integral to the processing of various small

non-coding RNAs including such precursor transcriptional products of

RNA polymerase III as pre-tRNA and pre-5S rRNA molecules, precursor

microRNA molecules (miRNAs)32–34 and, by implication, probably also of

DNA damage response miRNAs called Drosha- and Dicer-dependent

small RNAs (DDRNAs).35 Here, La/SSB protects nascent pre-tRNAs and

pre-miRNAs from exonucleolytic degradation and stabilises or ‘holds’
the stem-loop structure of miRNAs to modify their levels of expression,

and to promote miRNA-mediated cleavage of mRNA.32–35

Via different mechanisms, La/SSB can stimulate translation of viral

and cellular mRNA molecules that play important roles in viral replica-

tion, malignant processes and cellular stress responses. Although it

was first shown for polio and hepatitis C viruses that La/SSB can act

as an internal ribosome entry site (IRES) transactivating factor, or ITAF,

and promote cap-independent translation of mRNA by IRES binding,

La/SSB has been shown to function as an ITAF during cellular stress

to promote cap-independent translation of MDM2,17,18 XIAP,36

BiP/GRP78,37 Laminin B1,23,24 CCND114 and NRF2.25 In other cases,

La/SSB destabilises a stem-loop structure, which embeds a translation

start site and promotes ribosomal scanning, and thus stimulates the

translation of mRNA for the pro-survival gene, Bcl2.16 Although

La/SSB is predominantly located in the cell nucleus, it can move from

the nucleus to the cytoplasm particularly after infection,38 cellular

stress,39,40 and during cell death when caspase-mediated cleavage of

the 3 kDa C-terminal nuclear localisation signal results in cytoplasmic

translocation of La/SSB.41,42

Among the putative oncogenic roles of La/SSB overexpression is

resistance to cisplatin, which has been demonstrated in cell lines of

the aerodigestive tract cancer, HNSCC, and in which knock-down of

La/SSB was shown to sensitise the cells to cisplatin.16 In an earlier

study, reducing La/SSB expression was shown to sensitise chronic

myeloid leukaemic cells to chemotherapy.16,17 Together, these data

suggest that La/SSB may be involved either in protection from DNA

damage or repair of treatment-induced DNA damage.

Therefore, we made an initial series of experimental observations

to address the gap in our understanding of the conditions and context

for binding of the chDAB4 mAb to tumour cells dying after DNA-

damaging treatment and to explore the potential involvement of La/SSB

in the DNA repair response to DNA-damaging treatment in lung cancer

cells. Numbers of γ-H2AX foci and Rad51 foci were used to evaluate

the extent of DNA damage caused by DSB overall and the subset of

DSB potentially reparable by the homologous recombination DNA

repair mechanism, respectively. In this study, we performed a more

detailed analysis of the interaction of La/SSB with radiation-induced
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DSB in three lung cancer lines to identify if La/SSB is recruited to DNA

DSB using sensitive imaging techniques and co-immunoprecipitation.

Previously, we observed that, in response to DNA-damaging stimuli

such as ionising radiation, the levels of La/SSB expression in tumour

cells increased before plasma cell membrane integrity was lost.12,21

Hence, immunocytological observations of La/SSB protein interactions

in the current study were made after fixation and permeabilisation of

the cancer cells.

2 | RESULTS

2.1 | X-radiation induces DNA damage including
DSB in lung cancer cells

ɣ-H2AX and Rad51 were used as biomarkers of DSB. Rad51 is a key

protein marker of error-free repair of DNA by homologous recombi-

nation and helps to maintain genomic integrity and stability. An

increase in the number and size of nuclear Rad51 foci is a hallmark of

the early cellular response to DNA damage. We first examined the

DNA damage response to escalating doses of ionising radiation in the

human lung cancer lines, A549 and H460, and the murine Lewis Lung

(LL2) carcinoma cell line. Cells were exposed to increasing radiation

dose with 0, 1.25, 2.5 or 5 Gy and DNA damage was assessed after

4 h using the DNA damage markers ɣ-H2AX and Rad51. A549 cells

were the most radio-resistant, with lower numbers of residual

ɣ-H2AX (Figure 1A, top row) and Rad51 foci (Figure 1A, bottom row)

with increasing radiation dose at 4 h after radiation. H460 cells were

more sensitive, with the number of ɣ-H2AX (Figure 1B, top row) and

Rad51 foci (Figure 1B, bottom row) robustly increasing with increas-

ing radiation dose (Figure S1A). Patterns of response to radiation dose

with LL2 cells were similar to those observed with H460 cells

(Figure 1C). The greatest number of residual ɣ-H2AX and Rad51 foci

were seen at 5 Gy, with average (±SEM) numbers of ɣ-H2AX foci

being 34.4 ± 2.5, 99.9 ± 7.1 and 62.4 ± 3.4, and average (±SEM) num-

bers of Rad51 foci being 37 ± 2.8, 84.3 ± 5.3 and 108.0 ± 5.5 for

A549, H460 and LL2 cells, respectively. Overall, the number of Rad51

foci changing after irradiation followed similar dose response patterns

to those for ɣ-H2AX foci (Figure 1).

We next examined the temporal DNA damage response to

X-radiation in the same lung cancer lines. Cell lines were untreated or

irradiated with 5 Gy and the resolution of ɣ-H2AX and Rad51 foci

F IGURE 1 DNA damage dose–response in lung cancer lines. A549 (A), H460 (B) and LL2 (C) cells were untreated or irradiated with 1.25, 2.5
or 5 Gy X-radiation and collected after 4 h. DNA damage was assessed by fluorescent staining for γ-H2AX (top row) or Rad51 (bottom row).
Shown are numbers of nuclear foci counted for each condition together with images of representative nuclei (insets). The number of γ-H2AX or
Rad51 foci in at least 50 nuclei was counted, with the bars indicating the mean numbers of foci. Statistically significant differences were in
comparison to untreated cells. Each point represents the count of an individual nucleus. The cells were imaged using a 63 � oil immersion
objective with a 4 � zoom factor. Scale bar, 5 μm
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examined 0.5, 4 and 8 h later by fluorescence microscopy. A549 cells

exhibited a much faster resolution of ɣ-H2AX foci (Figure 2A, top

row) compared to H460 (Figure 2B, top row) and LL2 cells (Figure 2C,

top row), which was confirmed by Western blot (Figure 2D; full-length

blots and gels are presented in Figure S2B) and quantified (Figure S1B).

This is evident at the 8-h time point where average (±SEM) numbers of

ɣ-H2AX foci were 31 ± 2.4, 74.1 ± 3.6 and 52.6 ± 3.1 for A549, H460

and LL2 cells, respectively. The numbers of residual Rad51 foci after

irradiation followed a similar pattern to that of ɣ-H2AX foci (Figure 2,

bottom panels), with the average (±SEM) numbers of Rad51 foci at the

8-h time-point being 31.2 ± 2.2, 47.4 ± 3.0 and 42.3 ± 3.2 for A549,

H460 and LL2 cells, respectively. The time-course of radiation response

according to numbers of ɣ-H2AX and Rad51 foci was similar for A549

cells (Figure 2A). In contrast, this apparent synchronisation between

ɣ-H2AX and Rad51 foci did not apply to the time course of radiation

response for either H460 or LL2 cells (Figure S2). Whereas maximum

numbers of ɣ-H2AX foci occurred 0.5 h post-irradiation in all cell lines,

maximum numbers of Rad51 foci extended until 4 h post-irradiation for

H460 and LL2 cells (Figure 2).

2.2 | Immunofluorescence analysis of La/SSB
expression and radiation-induced DSB formation

To investigate whether La/SSB associated with DNA damage markers,

we examined the expression of La/SSB and ɣ-H2AX by fluorescence

microscopy in untreated and irradiated lung cancer cells. Although the

fluorescence signals indicated co-localisation of La/SSB with

radiation-induced ɣ-H2AX foci (Figure 3), it is difficult to confirm if

these proteins interact directly because of the dominant fluorescence

signal emanating from the abundant and ubiquitous nuclear La/SSB

protein. To elucidate further whether these proteins co-localised, we

generated relative intensity plots of La/SSB and ɣ-H2AX staining

using regions of interest in cells that appeared to co-express both

La/SSB and ɣ-H2AX (represented by the line in the merged image in

Figure 3). From this analysis, we identified varying intensities of

La/SSB throughout the cell, and in most cases La/SSB expression

increased at the same sites where ɣ-H2AX foci were present, thus

suggesting an accumulation of La/SSB specifically at the DSB site.

2.3 | Co-localisation studies of La/SSB protein
with DNA DSB foci

To provide additional evidence for whether La/SSB was located at

the site of radiation-induced DNA DSB, we employed the proximity

ligation assay (PLA) to determine if chDAB4 and ɣ-H2AX antibodies

bind in close proximity (≈40 nm) of each other. We first irradiated

lung cancer cells with increasing doses of radiation, and the presence

of La/SSB protein and ɣ-H2AX PLA foci was examined. There was a

low abundance of PLA foci in untreated cells across all three cell

lines because of low levels of endogenous DSB (Figure 4). Of the

human lung cancer lines, the H460 cell line had the most radiation-

induced ɣ-H2AX foci (Figure 1B), yet it showed the lowest increase

in PLA foci after irradiation compared to A549 cells. Conversely,

A549 cells showed the lowest number of radiation-induced DSB

F IGURE 2 Time-course of radiation-induced DNA damage in lung cancer lines. A549 (A), H460 (B) and LL2 (C) cells were untreated or

irradiated with 5 Gy X-radiation and DNA damage determined at 0.5, 4 and 8 h after irradiation. DNA damage was assessed by fluorescent
staining for γ-H2AX (top row) or Rad51 (bottom row). The cells were imaged using a 63 � oil immersion objective with a 4 � zoom factor. Scale
bar, 5 μm. Shown are numbers of nuclear foci counted for each condition together with images of representative nuclei (insets). γ-H2AX or Rad51
foci in at least 50 nuclei were counted. The bars indicate the mean numbers of foci. Statistically significant differences were in comparison to the
0 h time point. Each point represents the count of an individual nucleus. Scale bar, 5 μm. (D) Western blot analysis of La/SSB and γ-H2AX in
A549, H460 and LL2 cells at different time points after 5 Gy. Cyclophilin B was used as a loading control. Data are representative of three
independent experiments
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(Figure 1A) yet had more PLA foci than H460 cells (9.7 ± 0.6 vs 4.6

± 0.4 PLA foci at 5 Gy; Figure 4). On the other hand, it is noted that

the murine LL2 cells had similarly slow DNA repair kinetics to human

H460 cells but the greatest numbers of PLA foci. For all three

cell lines, increasing radiation dose resulted in an increase in the

numbers of PLA foci.

F IGURE 3 Co-localisation of La/SSB with radiation-induced γ-H2AX. A549 (A), H460 (B) and LL2 (C) cells were untreated or irradiated with
5 Gy and expression of La/SSB and γ-H2AX proteins examined 0.5, 4 or 8 h later by confocal microscopy. Plots show the intensity of antibody
staining for γ-H2AX (red) and chDAB4 (green) within the region marked by the white line in the merged image. The cells were imaged using a
63 � oil immersion objective with a 4 � zoom factor. Scale bar, 5 μm

F IGURE 4 Proximity ligation assay analysis using antibodies specific for La/SSB and γ-H2AX in lung cancer cells treated with radiation. A549,
H460 and LL2 carcinoma cells were untreated or irradiated with varying doses of radiation. Four hours later, cells were stained with La/SSB- and
γ-H2AX-specific antibodies, which had been labelled with Duolink in situ probe maker and developed using Duolink In Situ Detection reagents.
Shown are the number of PLA foci per nucleus with significant differences compared to untreated cells. PLA foci of at least 50 nuclei were
counted. Each point represents the count of an individual nucleus in the graphs. The cells were imaged using a 63 � oil immersion objective with
a 3 � zoom factor. Scale bar, 5 μm
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We next examined the temporal resolution of co-localised La/SSB

and ɣ-H2AX foci by PLA at 0.5, 4 and 8 h after irradiation with 5 Gy.

Again, we saw a higher average (±SEM) number of PLA foci/cell in

A549 cells compared to H460 cells at 0.5 h after irradiation (9.5 ± 0.6

vs. 5.3 ± 0.4 PLA foci at 5 Gy; Figure 5). In all cell lines, the number of

PLA foci per cell peaked at 30 min after irradiation and reduced over

time indicating resolution of the radiation-induced DSB. We confirmed

that the appearance of La/SSB and ɣ-H2AX PLA foci resulted from

DNA damage because treatment of cells with the DNA-damaging

drugs, mitomycin C and cisplatin, but not the tubulin-binding drug, vin-

orelbine, caused both ɣ-H2AX foci and the resulting PLA foci of DAB4

and ɣ-H2AX (Figures S3 and S4).

To further confirm a physical interaction between the La/SSB and

ɣ-H2AX proteins, the La/SSB protein was pulled down from whole

cell lysates using chDAB4-protein A Sepharose beads and the

resulting protein was probed for ɣ-H2AX by Western blotting. In our

hands, we could not pull down La/SSB from A549 cells, so we pulled

down ɣ-H2AX and probed this protein sample for La/SSB with

chDAB4. Radiation increased ɣ-H2AX protein in all cell lines, particu-

larly at 30 min after irradiation (Figure S1B), and when immunoprecip-

itation was performed, it was confirmed that La/SSB and ɣ-H2AX

were bound together (Figure 5B) with full-length blots and gels pres-

ented in Figure S2C. In contrast, no signal was obtained using the

isotype antibody-bound Sepharose beads.

3 | DISCUSSION

The DNA damage response (DDR) comprises a highly redundant

system for the crucial protective task of rapidly repairing DNA

damage, particularly the DSB, which, unless it is repaired, will not per-

mit continued survival of the cell. Although components of the DDR

system are often impaired during carcinogenesis, mutational and non-

mutational mechanisms in cancer cells may improve the control and

efficiency of this system during DNA damaging treatment and thus

contribute to treatment resistance.

Given that DNA damage may happen as rapidly as electron-transfer,

the transcripts involved in the DDR are expressed before the DNA repair

process begins, and dynamic and intricate regulation of transcript stabil-

ity allows cells to react promptly to the damage and maintain genomic

integrity. The DDR involves at least hundreds of RNA molecules and

proteins including mRNA, non-coding RNA molecules and RNA-binding

proteins (RBP). In response to DSB induced by ionising radiation, acti-

vated ATM phosphorylates the histone variant H2AX on Ser139 to

form γ-H2AX. This key step in signal amplification enables recruitment

of additional DDR mediator proteins,43 which in turn recruit more

ATM-containing complexes, thus establishing a positive feedback loop.35

A maximum number of γ-H2AX foci form 10–30 min after irradiation.

The stoichiometry suggests that hundreds to several thousand γ-H2AX

molecules surround each DSB44 with the positive feedback signalling

F IGURE 5 Temporal proximity ligation assay analysis and co-immunoprecipitation of La/SSB protein with γ-H2AX after X-irradiation in lung
cancer cell lines. (A) A549, H460 and LL2 cells were irradiated with 5 Gy and 0.5, 4 or 8 h later cells were stained with La/SSB- and γ-H2AX-
specific antibodies, which had been labelled with Duolink in situ probemaker and developed using Duolink In Situ Detection reagents. Shown are
the number of PLA foci per nucleus with significant differences compared to untreated cells. PLA foci of at least 50 nuclei were evaluated and
each point represents the count of an individual nucleus. The cells were imaged using a 63 � oil immersion objective with a 4 � zoom factor.
Scale bar, 5 μm. (B) Protein lysates from untreated or treated cells were co-immunoprecipitated using protein A Sepharose beads bound with
either DAB4 (H460 and LL2 cells) or γ-H2AX antibody (A549 cells) or protein A Sepharose beads bound with isotype control antibody was used
as a control. Immunoprecipitated (IP) samples were analysed by Western blot using biotin-γ-H2AX antibody (for H460 and
LL2 cells) or chDAB4 (A549 cells)
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enabling γ-H2AX to spread for hundreds of kilobases beyond the DSB,

permitting cytological detection of DDR foci.35 Furthermore, γ-H2AX

facilitates recruitment of DNA repair protein complexes that include

RAD51, which is involved in homologous recombination repair of DSB.35

As a RBP, La/SSB is engaged in most steps of miRNA processing

including indirect RNA-mediated interactions with Drosha and Dicer, which

are catalytic engines of miRNA biogenesis and which together with

γ-H2AX are essential for secondary recruitment of DDR factors and thus

the amplification of DDR signalling.45,46 In addition to its presumed

localisation at DDR foci in the nucleus at the time of DNA damage, La/SSB

can also be found in the nucleus and cytoplasm bound to the 50 UTR of

mRNAs and to the stem-loop structures of pre-miRNAs.32–34,47 Interest-

ingly, La/SSB is one protein found to associate with γ-H2AX in unirradiated

cells48 and in cisplatin-treated cancer cells.12 La/SSB is also a calmodulin-

binding protein49 and calmodulin is upregulated after radiation exposure

and is involved in the γ-H2AX-mediated DNA repair pathways.50,51

It is becoming apparent that overexpression of La/SSB in cancer

cells promotes treatment resistance. For example, overexpression of

La/SSB in CML increases the expression of the proto-oncogene mouse

double minute 2 (MDM2), a member of the tyrosine kinase family, by

direct binding of the 50 UTR of MDM2, thereby enhancing its translation

and, in turn, reducing expression of the tumour suppressor protein

p53.17 To show that this resulted in increased resistance to chemother-

apy in vitro, siRNA-mediated downregulation of La/SSB reduced MDM2

expression and increased the sensitivity of cells to apoptosis induced by

chemotherapy.17 A single point mutation of the tyrosine kinase JAK2,

common in myeloproliferative cancers, results in upregulation of La/SSB

in both cell culture and in CD34+ progenitor cells from patients with

myeloproliferative neoplasms. Similarly to CML, the La/SSB protein binds

to MDM2 RNA, resulting in increased MDM2 protein expression and as

a consequence reduced p53 expression. By knocking down La/SSB using

short hairpin RNA, expression of both p53 and phosphorylated p53 were

increased, particularly in response to genotoxic treatment, resulting in

treatment sensitisation.18 Furthermore, Heise et al. showed that the level

of overexpression of La/SSB in different HNSCC lines correlated with

the extent of their cisplatin resistance. As we have previously shown that

there may be co-localisation of La/SSB with DNA DSB in cells treated

with DNA-damaging agents, we examined in more detail whether

La/SSB was present at the DNA DSB site.12

In the three lung cancer lines analysed herein, radiation induced a

rapid, dose-dependent formation of ɣ-H2AX and Rad51 foci. Indeed,

our data indicating co-localisation of La/SSB with γ-H2AX suggest

that La/SSB is present at DDR foci as early as even 30 min after

radiation-induced DNA damage. Since La/SSB is a RBP involved in

nuclear processing of miRNA and, by implication, probably also of

DDRNAs, RNA-bound La/SSB may already be present in abundance

at the instant that DNA damage occurs as well as be rapidly induced

as part of the DDR.

The repair kinetics differed between the two human lung cancer

lines, with a reduction in γ-H2AX and Rad51 foci at 4 h after irradiation

in A549 cells compared to H460 cells, suggesting faster repair of DSB

in A549 cells compared to H460 cells. Similar to our results, it has been

shown by others that A549 exhibit fewer γ-H2AX and Rad51 foci after

irradiation than H460 cells.52 Furthermore, Sak et al. showed elevated

Rad51 foci in γ-irradiated H460 cells compared to A549 and that H460

cells had a higher fraction of residual Rad51 foci, which is predictive of

radiosensitivity.53 Indeed, the A549 cell line is more radio-resistant than

the H460 cell line and shows reduced radiation-induced apoptosis,

which could be explained by faster or more efficient repair kinetics.

Although in a separate study, Yu et al. did not find any differences in

the repair kinetics between H460 and A549 cells irradiated with 2 Gy,

they did note that radiation increased autophagy and senescence in

H460 cells compared to A549 cells.54 Compared to H460 cells, A549

cells have a higher expression of the nuclear factor erythroid-2 related

factor 2 (NRF2).55 NRF2 is a transcription factor that regulates antioxi-

dant genes and its activation increases repair of radiation-induced DNA

damage.56 Given that La/SSB can increase NRF2 protein translation

from oxidative stress,25 radiation-induced expression of La/SSB may

contribute to the radio-resistance of A549 cells.

In keeping with our previous findings, there was co-localisation of

La/SSB at DNA DSB by immunofluorescence imaging techniques, and

this interaction was confirmed both by PLA and co-immunoprecipitation

of La/SSB and γ-H2AX. We found that the proportion of PLA foci was

inversely proportional to the number of γ-H2AX foci in the treated

human lung cancer lines. That is, although A549 cells had, on average,

fewer γ-H2AX foci after irradiation compared to H460, they did have

more PLA foci. Given that γ-H2AX foci were resolved more quickly in

A549 cells than in H460 cells after X-radiation, we postulate that inter-

actions of La/SSB protein with RNA molecules or other proteins at the

DNA DSB site, which are marked by the PLA foci, contribute to faster

DNA repair. Although murine LL2 cells, which have the highest PLA sig-

nal number compared to human H460 cells, may have a different mech-

anism to account for their slower DNA repair kinetics, which is also

observed in H460 cells.

Finally, a specific relationship to DNA-damaging treatment of the

interaction between La/SSB and γ-H2AX was confirmed by using cis-

platin and mitomycin C as cytotoxic inducers of DNA damage includ-

ing DSB or vinorelbine, which is a microtubulin-binding agent. In

contrast to the time-dependent appearance of PLA foci after treat-

ment with the DNA-damaging drugs, few PLA foci were observed

after treatment with vinorelbine irrespective of the period of observa-

tion. In this respect, foci of γ-H2AX have been observed as the result

of apoptotic endonuclease-mediated chromatin cleavage and before

apoptotic cell death is evident.57

Of course, it must be recognised that this study has its limitations.

For example, tumour microenvironmental effects, which are not inves-

tigated here, increase the biological complexity of the DNA damage

response.58,59 And it is known that ionising radiation and radiomimetic

drugs such as platinating agents can produce clustered DNA damage,

which comprises complex arrangements of single-strand damage and

which may or may not include DSB.60,61 Investigation of specific

mechanisms of DNA repair is beyond the scope of this study.

In summary, we found that La/SSB localised at the DSB site after

ionising radiation or DNA-damaging cytotoxic drugs. We hypothesise

that co-localised staining of La/SSB with γ-H2AX, which we identified

using PLA, represents a very minor subset of all possible La/SSB
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molecules but only the molecules that are present in association with

DSB. Although we do not know why La/SSB might associate with DSB,

the fact of its abundance and ubiquity as a multifunctional RNA-binding

molecule may mean that La/SSB is present as an ‘innocent bystander’.
We hypothesise that the known role of La/SSB in binding of miRNA

molecules together with the emerging role described for the miRNA sub-

set of DDRNAs may account for the presence of La/SSB at DSB in close

proximity to γ-H2AX. Alternatively, La/SSB may play an active role in the

DNA-damage response by facilitating DNA repair, a proposition we wish

to test in future studies. Although further studies are required to investi-

gate the mechanisms underlying these hypotheses, the results of this

study do posit an explanation for why significantly higher binding of the

chDAB4 to dead tumour cells is found after DNA-damaging anti-cancer

treatments such as ionising radiation and platinating drugs.

4 | MATERIALS AND METHODS

4.1 | Cell cultures

The mouse Lewis lung (LL2) tumour cell line was purchased from

CellBank, Australia (Cat. No. 90020104). We employed two human

NSCLC cell lines, A549 pulmonary adenocarcinoma (Cat. No. CCL-185,

ATCC), and H460 large cell lung carcinoma, which was a gift from

Associate Professor Carleen Cullinane (Peter MacCallum Cancer

Centre, Australia). The human cell lines were authenticated by short

tandem repeat testing using AmpFISTR Identifier Kit (Thermo Fisher

Scientific) by SA Pathology (Adelaide, South Australia). Cells were cul-

tured in RPMI-1640 (Sigma-Aldrich) with 5% foetal bovine serum

(Bovogen Biologicals) at 37�C with 5% CO2. Cells were checked for

mycoplasma contamination using MycoAlert Mycoplasma Detection

Kit (Cat. No. LT07-318, Lonza) and were mycoplasma negative.

4.2 | Immunofluorescence assay

Cells were grown overnight on coverslips and irradiated with varying

doses of X-radiation at a dose-rate of 5 Gy/min using a 160 kV

RS-2000 X-ray machine (Rad Source Technologies Inc.). At selected

time-points, cells were washed with phosphate-buffered saline (PBS)

and fixed with 10% neutral-buffered formalin for 10 min followed by

1:10 dilution in ice-cold methanol for 3 min. After washing with PBS,

cells were blocked with 5% bovine serum albumin in PBS for 30 min

and incubated overnight at 4�C with 2 μg/mL mouse anti-phospho-

H2AX (ser139) monoclonal antibody (Cat. No. 630856, Merck), 4 μg/

mL rabbit anti-Rad51 mAb (Cat. No. ab133534, Abcam), or 5 μg/mL

of the anti-La/SSB monoclonal antibody chimeric DAB4 (chDAB4)

which was created at CSIRO Molecular and Health Technologies

(Victoria, Australia)62 by genetically fusing the variable region

sequences of murine DAB4 to the constant region sequences of

human IgG1, and trademarked as APOMAB®.63 Coverslips were

washed and incubated with 4 μg/mL goat anti-rabbit IgG Alexa

Fluor488 (Cat. No. A-11008, Thermo Fisher Scientific), goat anti-

mouse IgG Alexa Fluor594 (Cat. No. A-11032, Thermo Fisher Scien-

tific) and goat anti-human IgG Alexa Fluor647 (Cat. No. A-21445,

Thermo Fisher Scientific). Nuclei were counterstained with 0.5 μg/mL

DAPI (Cat. No. D9542, Sigma-Aldrich) and mounted onto microscope

slides using Fluoro-shield medium (Cat. No. F6182, Sigma-Aldrich).

4.3 | Microscopy

Slides were imaged using a Zeiss LSM800 confocal microscope with a

63 � oil magnification objective lens. To determine the number and

spatial arrangement of DSB, optical slices at 0.2–0.3 μm intervals were

imaged in a Z-series pattern and were analysed using Fiji software.64

During analysis, individual planes were stacked to produce a maximum

intensity projected (MIP) 2D image to show the maximum intensity

along the z axis for each x, y position. The number of γ-H2AX foci and

Rad51 foci per cell was determined automatically using the ‘Find
Maxima’ plug-in and at least 50 nuclei per treatment group were

examined. A line was manually drawn to cross several γ-H2AX foci

and the fluorescence intensity profiles were obtained from each chan-

nel. Each group was tested in biological triplicate.

4.4 | Proximity ligation assay

chDAB4 and anti-γ-H2AX mAbs were converted into alternate plus

and minus probes for PLA using Duolink in situ probemaker (Cat.

No. DUO92009(PLUS) and DUO92010(MINUS), Sigma-Aldrich) fol-

lowing the manufacturer's instructions. The resulting probes form cir-

cular DNA and the addition of Duolink In Situ Detection reagents

(Cat. No. DUO92008, Sigma-Aldrich) results in amplification of the

circular DNA with complementary fluorescent oligonucleotides bind-

ing to the amplified DNA, allowing for antibody binding events within

40 nm of each other to be detected. The number of PLA foci per cell

was counted manually in at least 50 nuclei per treatment group. Each

group was tested in biological triplicate.

4.5 | Treatment of cells with DNA and non-DNA
damaging drugs

Tumour cells were untreated or treated with the DNA crosslinking

drugs, mitomycin C (MMC) and cisplatin (CDDP), or the tubulin-

binding drug, vinorelbine (VNL) for 5, 24, 48 and 72 h. Cells were col-

lected, stained with 1 μg/mL propidium iodide (PI) and the percentage

of dead (PI+) cells was determined by flow cytometry using a BD

Accuri C6 Plus (Becton Dickinson, CA), with a minimum of 10 000

cells counted. Each group was tested in biological triplicate.

For γ-H2AX analysis, cells grown on coverslips were treated with

5 μg/mL MMC, 20 μg/mL CDDP or 0.1 μg/mL VNL for 48 h and sta-

ined for γ-H2AX as described above. For PLA analysis, cells were

treated with the same doses of MMC, CDDP or VNL for 0.5, 4 or 8 h

and PLA performed as described above.
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4.6 | Western blot and co-immunoprecipitation

Cells were seeded at a density of 8 � 105 cells/well in a six-well plate

and treated the following day with 5 Gy X-radiation at room tempera-

ture. At 0.5, 4 and 8 h post irradiation, the cell medium was removed,

cells washed twice with cold PBS and total protein was extracted with

200 μL/well of RIPA buffer containing 150 mM sodium chloride, 1.0%

NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris (pH 8.0)

and cOmplete™ Protease Inhibitor Cocktail (Cat. No. 11697498001,

Merck) and incubated on ice for 30 min with pipetting up and down

every 10 min followed by sonication on ice. The total protein concen-

tration was quantified using the Pierce™ BCA Protein Assay Kit (Cat.

No. 23227, Thermo Fisher Scientific) following the manufacturer's

instructions.

Fifty micrograms of sample was separated by sodium dodecyl

sulphate polyacrylamide gel electrophoresis (SDS-PAGE) with a 4%

stacking and 10% separating gel at 100 V for 1.5 h and wet trans-

ferred to a polyvinylidene difluoride (PVDF) membrane with 0.45 μm

pore size (Cat. No. 10600023, GE Healthcare) for 30 min at 4�C. The

membranes were blocked for 1 h with blocking buffer (5% BSA in

PBS) and incubated with 5 μg/mL anti-La chDAB4 and 2 μg/mL bio-

tinylated mouse anti-phospho-H2AX (ser139) mAb (Cat. No. 16-193,

Merck) overnight at 4�C. The membranes were washed three times

with PBS with 0.05% Tween-20 and incubated with 4 μg/mL

anti-human IgG-HRP (Cat. No. ab99759, Abcam) or 2 μg/mL anti-

streptavidin-HRP (Cat. No. DY998, R&D) for 1 h at room temperature.

Following three washes with PBS with 0.05% Tween-20 for 5 min at

room temperature, the membrane was incubated with SuperSignal™

West Pico PLUS Chemiluminescent Substrate (Cat. No. 34577,

Thermo Fisher Scientific), imaged using a Bio-rad ChemiDoc MP

system and analysed using ImageLab™ software.

The membranes were stripped with stripping buffer (200 mM Gly-

cine, 3 mM SDS, 1% Tween-20, pH 2.2) for 20 min followed by blocking

with blocking buffer and incubated with 2 μg/mL rabbit anti-cyclophilin

B antibody (Cat. No. ab16045, Abcam) at 4�C overnight. After washing,

the membranes were incubated with 0.2 μg/mL anti-rabbit HRP (Cat.

No. ab6721, Abcam) for 1 h at room temperature. The membrane was

imaged using a Bio-rad ChemiDoc MP system and analysed using Imag-

eLab™ software. Densitometry was performed using software ImageJ

software (National Institutes of Health, Bethesda MD).

For co-immunoprecipitation, protein lysates were collected as

above, primary antibody (murine DAB4 or ɣ-H2AX) added and incu-

bated with rotation at 4�C for 1 h. Washed protein G beads (Cat.

No. 10-1242, Thermo Fisher Scientific) were added into the antibody-

lysate mixture and incubated overnight at 4�C with rotation. The

beads were collected by centrifugation, washed with RIPA buffer

and the bound protein released by heating at 95�C for 5 min. Sam-

ples were analysed by SDS-PAGE as described above, with 30 μg of

protein lysate loaded per well. The La/SSB protein was detected

using 5 μg/mL chDAB4 followed by 4 μg/mL anti-human IgG-HRP

(Cat. No. ab99759, Abcam) and ɣ-H2AX detected using 1 μg/mL

biotinylated mouse anti-phospho-H2AX (ser139) mAb (Cat.

No. 16-193, Merck) followed by 2 μg/mL anti-streptavidin-HRP (Cat.

No. DY998, R&D).

Following stripping and blocking as described above, actin was

detected using 0.25 μg/mL anti-actin mouse monoclonal antibody

(Cat. No. 612656, BD) followed by 0.1 μg/mL anti-mouse-HRP (Cat.

No. ab97046, Abcam) or 2 μg/mL rabbit anti-cyclophilin B antibody

(Cat. No. ab16045, Abcam) followed by 0.2 μg/mL anti-rabbit HRP

(Cat. No. ab6721, Abcam). The blots were imaged using a Bio-rad

ChemiDoc MP system and analysed using ImageLab™ software.

4.7 | Statistical analysis

Statistical analyses were performed using GraphPad Prism (v7.0)

software. Data were tested for normality using the D'Agostino's

K-squared test. For normally distributed data, an unpaired two-

tailed t-test was used to compare two groups, and one-way

ANOVA was used to compare three or more groups. For data that

were not normally distributed, the Mann–Whitney test was used to

compare two groups and the Kruskal–Wallis test to compare three

or more groups. Data are shown as mean ± standard error of the

mean, and p-values are shown. Unless otherwise stated, significance

values are when compared to untreated cells and *p < .05, **p < .01

and ***p < .001.
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