
OR I G I N A L R E S E A R C H

Identification of a Nomogram with an
Autophagy-Related Risk Signature for Survival
Prediction in Patients with Glioma
Xiaofeng Fu1, Luwei Hong2, Haiying Gong3, Guangjuan Kan4, Pengfei Zhang1, Ting-Ting Cui5,
Gonglin Fan6, Xing Si7, Jiang Zhu1

1Department of Ultrasound, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, People’s Republic of China;
2Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, People’s Republic of
China; 3Department of Ultrasound, Yiwu Traditional Chinese Medicine Hospital, Jinhua, Zhejiang, 321000, People’s Republic of China; 4Department
of Ultrasound, The Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, People’s Republic
of China; 5Department of Ultrasound, Taizhou Traditional Chinese Medicine Hospital, Taizhou, Zhejiang, 318000, People’s Republic of China;
6Department of Ultrasound, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, People’s Republic of
China; 7Hangzhou Normal University, Hangzhou, Zhejiang, 310000, People’s Republic of China

Correspondence: Jiang Zhu, Department of Ultrasound, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000,
People’s Republic of China, Tel +86 13757122629, Email zhujiang1046@zju.edu.cn

Background: Glioma is a common type of tumor in the central nervous system characterized by high morbidity and mortality.
Autophagy plays vital roles in the development and progression of glioma, and is involved in both normal physiological and various
pathophysiological progresses.
Patients and Methods: A total of 531 autophagy-related genes (ARGs) were obtained and 1738 glioma patients were collected from
three public databases. We performed least absolute shrinkage and selection operator regression to identify the optimal prognosis-
related genes and constructed an autophagy-related risk signature. The performance of the signature was validated by receiver
operating characteristic analysis, survival analysis, clinic correlation analysis, and Cox regression. A nomogram model was established
by using multivariate Cox regression analysis. Schoenfeld’s global and individual test were used to estimate time-varying covariance
for the assumption of the Cox proportional hazard regression analysis. The R programming language was used as the main data
analysis and visualizing tool.
Results: An overall survival-related risk signature consisting of 15 ARGs was constructed and significantly stratified glioma patients
into high- and low-risk groups (P < 0.0001). The area under the ROC curve of 1-, 3-, 5-year survival was 0.890, 0.923, and 0.889,
respectively. Univariate and multivariate Cox analyses indicated that the risk signature was a satisfactory independent prognostic
factor. Moreover, a nomogram model integrating risk signature with clinical information for predicting survival rates of patients with
glioma was constructed (C-index=0.861±0.024).
Conclusion: This study constructed a novel and reliable ARG-related risk signature, which was verified as a satisfactory prognostic
marker. The nomogram model could provide a reference for individually predicting the prognosis for each patient with glioma and
promoting the selection of optimal treatment.
Keywords: glioma, autophagy, risk signature, prognosis, nomogram

Introduction
Gliomas, the most common malignant and heterogeneous tumors of the central nervous system, account for 75% of the
malignant primary brain tumors in adults. As the highest grade of glioma, the 5-year overall survival (OS) rate post
diagnosis of patients with glioblastoma multiforme has been shown to be only 5.5%.1 Current treatment of gliomas has
achieved great advances, and the prognosis of patients has been significantly improved by multimodal therapy including
surgery, radiotherapy, chemotherapy, targeted therapy and immunotherapy.2 However, there is considerable heterogeneity
in patient outcomes. Some researchers have hypothesized that this is due to different molecular genetic backgrounds.
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Therefore, finding a comprehensive and accurate tool to assist the clinic and develop appropriate individualized treatment
plan for patients is very essential.

In the World Health Organization (WHO) Classification of Central Nervous System Tumors published in 2016,
molecular markers such as isocitrate dehydrogenase (IDH) mutation and 1p/19q codeletion status were firstly used for the
early diagnosis and subgroup classification of patients with glioma.3 Other diagnostic molecular markers include tumor
protein p53, ATRX chromatin remodeler, O6-methylguanine-DNA methyltransferase, and telomerase reverse transcrip-
tase promoters.4,5 With the rapid development of high-throughput sequencing, gene chip technology, and bioinformatics
analyses, researchers combined molecular characteristics with clinicopathological information to establish some signa-
tures for the risk stratification and prognosis prediction of patients with glioma, such as immune-related 6,7 and
metabolism-related 8 prognostic signature, epithelial–mesenchymal transition-related risk signature,9 etc. These
approaches achieved satisfactory results, which suggests that it is promising to investigate new prognostic biomarkers
and predictors.

Autophagy is a critical cellular process responsible for eliminating damaged organelles, misfolded proteins, and other
discarded intracellular macromolecules via a lysosomal degradation mechanism. The purpose of autophagy is to protect
cells and organisms from stressors, such as hypoxia, inflammation, and nutrient deficiency.10 In addition, autophagy is
also involved in various pathophysiological processes, especially in cancer. In recent years, the regulation or targeting of
autophagy for the treatment of cancer, including glioma, has shown a wide range of prospects.11,12 Some studies have
carried out in-depth investigation on the role of ARGs in the development and treatment of glioma. Wen et al found that
depletion of ATG4C suppressed Temozolomide (TMZ)-activated autophagy and promoted sensitivity of glioma cells to
TMZ, and knockdown of the ATG4C suppressed the growth of glioma remarkably in nude mice.13,14 Autophagy-related
gene VMP1 knockout blocked autophagic flux and made glioma cells sensitive to radiotherapy and chemotherapy.15

Researchers have found that high LC3/beclin1 expression indicated poor prognosis of glioma patients.16 It follows that
current studies on the relationship between ARGs and prognosis in patients with glioma mostly focused on the function
of a single gene. Moreover, some studies have begun to use gene expression profiles to explore the relationship between
ARG-related signature and glioma prognosis. Xu et al identified an autophagy-related lncRNA (ARL) signature including
38 ARLs for classification of diffuse glioma and verified that the signature was associated with glioma prognosis.17 Chen
et al developed 24 ARG signature that can effectively classify low-grade glioma patients into low-risk and high-risk
groups and be used to predict prognosis.17 Fan et al constructed a nomogram for survival assessment by integrating
clinicopathological features and three-gene autophagy signature.18 However, some current models consist of too many
genes and are often not suitable for clinical application, and models with fewer genes lack a certain degree of accuracy.
Many studies are limited to algorithmic success and lack validation in independent cohorts or experiments. But these
findings do suggest that ARG may be a promising therapeutic target and prognostic factor, and the exploration of new
ARG signatures as biomarkers for glioma prognosis can improve current prognostic models and facilitate further
stratification of patients.

The aim of this study was to construct a novel autophagy-related risk signature, which can predict prognosis and
suggest personalized treatment strategies for patients with glioma. We obtained the mRNA sequencing data and clinical
characteristics of 1738 patients with glioma from four databases and collected an ARG set consisting of 531 genes.
Univariate Cox analysis was used for the preliminary screening of ARGs. Based on least absolute shrinkage and selection
operator (LASSO) regression model, we identified 15 ARGs related to patient OS and constructed an autophagy-related
risk signature with good prognosis potential. The expression levels of ARGs were verified by immunohistochemical
(IHC) staining and Western blotting analyses. This signature also proved to be an independent risk factor for patients
with glioma. In addition, we developed a nomogram that incorporated the autophagy-related risk signature and clinical
factors to predict the survival of patients with glioma. Three external validation sets were used to evaluate the prognostic
and predictive accuracy of this model. This research may help clinicians make more accurate diagnoses in terms of risk
stratification and prognostic prediction, as well as to develop individualized treatment strategies, with the aim to improve
patient prognosis and OS rate.
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Materials and Methods
Human ARG Set
We obtained ARGs from the Human Autophagy Database (HADb, http://www.autophagy.lu/index.html) and the
GO_AUTOPHAGY gene set in the Molecular Signatures Database v6.2 (MSigDB, http://software.broadinstitute.org/
gsea/msigdb) for this study. By removing duplicate data, we combined these two gene sets and finally integrated them
into an ARG set containing 531 genes.

Samples and Data Source
A total of 1738 glioma samples with mRNA expression sequencing data and clinicopathological information were
downloaded from four databases. The Cancer Genome Atlas (TCGA) dataset, including 562 primary glioma samples,
was extracted from TCGA dataset (https://portal.gdc.cancer.gov/), and two additional mRNA sequence profiles termed
CGGAseq1 (n = 307) and CGGAseq2 (n = 619) were downloaded from the Chinese Glioma Genome Atlas (CGGA)
database (http://www.cgga.org.cn), along with the data of 250 glioma samples in the GSE16011 dataset obtained from the
Gene Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo). The mRNA-seq data processing is based on the
downloaded fragments per kilobase million (FPKM) data format with log2 transformation after adding a one pseudo
count in TCGA, CGGAseq1, and CGGAseq2 datasets. The robust multi-array average algorithm was used in the
GSE16011 dataset preprocessing. The RNA-seq data of normal brain samples were downloaded from the Genotype-
Tissue Expression (GTEx) Project (https://gtexportal.org/home/), and transformed the primary data to Transcripts Per
Kilobase Million (TPM) format for analysis. In addition, the levels of the identified ARGs can be assessed by detecting
the mRNA expression profiles using tissue samples from patients with glioma after surgery. IHC staining results of the
identified ARGs were obtained from the website of The Human Protein Atlas database (https://www.proteinatlas.org/).

Gene Scanning and Construction of a Gene Risk Signature Associated with the
Survival of Patients with Glioma
Univariate Cox regression models were performed in four datasets with 478 shared ARGs. P < 0.0001 denoted statistical
significance. According to hazard ratio (HR) values, the statistically significant genes were divided into potential
protective (HR <1) and hazardous (HR >1) ARG groups. Finally, 66 overlapping ARGs were extracted via the webtool
“Draw Venn Diagram” (http://bioinformatics.psb.ugent.be/webtools/Venn/).

The LASSO regression model was performed to select an optimal gene combination, and subsequently construct
a risk signature for predicting the prognosis of patients with glioma using the R package “glmnet”.19 TCGA dataset
was used as a training cohort and an autophagy-related risk signature associated with the OS of patients was
established based on a linear combination of the regression coefficients generated from the LASSO regression
model and expression levels of the genes. The risk score was calculated using the following formula:
Riskscore ¼ Exprgene1 � Coefgene1 þ Exprgene2 � Coefgene2 þ � � � � � � þ Exprgenen � Coefgenen. “Expr” represented the
expression levels of a gene and “Coef ” meant the regression coefficient of each gene.

Patients with glioma were divided into the high- or low-risk groups using the median risk score as a classification
cutoff value. The differences in OS time of patients with glioma were compared using the Kaplan–Meier method, and we
constructed time-dependent receiver operating characteristic (ROC) curves to evaluate the predictive value of the risk
signature. The CGGAseq1, CGGAseq2, and GSE16011 datasets were used as validation cohorts.

Functional Enrichment Analysis
To further investigate the potential molecular mechanisms of the differences in prognosis between the high- and low-risk
groups divided by the autophagy-related risk signature, we subsequently conducted the Gene Set Variation Analysis
(GSVA) in TCGA cohort. The gene sets of “c5.bp.v7.1.symbols.gmt” and “c2.cp.kegg.v7.1.symbols.gmt” were down-
loaded from the Gene Set Enrichment Analysis (GSEA) website (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp)
for performing GSVA, using the R packages “GSVA”20 and “GSEABase”. Then, we obtained the enrichment score (ES)
matrix for pathways including biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
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of each sample. Differential expression analysis was conducted between low- and high-risk subgroups using the
“limma”21 package to screen out differentially expressed pathways. | log (fold change) | >0.2 and adjusted P < 0.05
denoted statistically significant differences. The results of rich pathways were visualized with heatmaps.

Construction and Validation of a Prognostic Nomogram Model
Univariate and multivariate Cox proportional regression analyses were performed to screen out the independent
prognostic parameters. Then we constructed a prognostic nomogram model using the screened independent prognostic
factors with clinicopathological information for predicting the 1-, 3-, and 5-year survival rates of patients with glioma in
TCGA cohort. Development of the nomogram was implemented via the R package “rms”. The Schoenfeld residuals for
each covariate which screened out were observed and plotted against time using R package “survival” and “survminer”.
Schoenfeld’s global and individual test were used to estimate time-varying covariance for the assumption of the Cox
proportional hazard regression analysis. P>0.05 refers to no violation of assumption.22 Cohorts, including the
CGGAseq1, CGGAseq2, and GSE16011 datasets, were used as external validation sets. Concordance-index (C-index),
area under the curve (AUC), and calibration plot were utilized to evaluate the efficiency of the nomogram.

Cell Line and Cell Culture
Normal human astrocytes (NHA) HA1800 and human GBM cell lines (U251, U118, U87, LN229 and T98G) were
purchased from the Cell Bank of Chinese academy of science (Shanghai, China). Human low-grade glioma (LGG) cell
lines (SW1088 and SW1783) were purchased from the American Type Culture Collection (Maryland, USA). Cells
SW1088 and SW1783 were maintained in Leibovitz’s L-15 Medium (Gibco, USA) and other cells were all cultured in
Dulbecco’s modified Eagle Medium (DMEM) (Gibco, USA) containing 10% fetal bovine serum (FBS; Gibco, USA),
100 units/mL penicillin and 100 μg/mL streptomycin. All cells were maintained at 37°C in a humidified incubator
containing 5% CO2.

Western Blot Analysis
Cultured cells were rinsed with phosphate buffered saline (PBS) three times and then lysed using ice-cold radio-
immunoprecipitation assay (RIPA) buffer (Beyotime Biotechnology, Shanghai, China). Protein concentration of each
samples was measured by bicinchoninic acid assay (BCA) kit (KeyGEN Biotech, China). Equivalent proteins were
separated on 10–12% sodium dodecyl sulfate (SDS)-polyacrylamide gels and then transferred to polyvinylidene
difluoride (PVDF) membranes. After being blocked in 5% non-fat dry milk dissolved with Tris-buffered saline with
Tween-20 (TBST) for 1 hour at room temperature, the membranes were incubated overnight at 4°C with appropriate
dilutions of primary antibodies including anti-NAMPT antibody, anti-cathepsin B (CTSB) antibody, anti-GAPDH anti-
body (Abcam, USA). The membranes were washed with TBST and incubated with horseradish peroxidase (HRP)-
conjugated secondary antibody (Abcam, USA) for 2 hours at room temperature. The enhanced chemiluminescence
(ECL) kit (Thermo Fisher Scientific, USA) was utilized for the visualization of bands, and the bands’ gray values were
quantified using the Image J software (National Institutes of Health, Bethesda, MD, USA).

Statistical Analysis
The R programming language (version 3.6.3) was used as the main data analysis and visualizing tool to carry out
statistical analyses, including univariate and multivariate Cox regression models, LASSO regression model, Kaplan–
Meier survival analysis, ROC curves, heatmap drawing, etc. The R packages used in this study mainly included
“glmnet,” “survival,” “pheatmap,” “survivalROC,” “timeROC,” “ggplot2,” “GSVA,” and “GSEABase”. These were
used to obtain data and figures, such as forest plots, heatmaps, box plots, and calibration plots. The results of
experimental were analyzed with one-way ANOVA by GraphPad Prism version 8.0.2 software (GraphPad Software,
Inc., La Jolla, CA, USA). P<0.05 denoted statistically significant differences.
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Results
ARG Screening
We designed a flow chart to systematically and intuitively demonstrate the design of our study (Figure 1). The
clinicopathological characteristics of patients with glioma from four datasets were organized and shown in Table 1.
An ARG set containing 531 genes was integrated from the HADb and GO_AUTOPHAGY gene set. To preliminarily
screen out OS-related ARGs in glioma, univariate Cox regression models were performed in the four datasets using the
shared 478 ARGs. P < 0.0001 denoted statistical significance. We divided these statistically significant ARGs into two
groups based on the HR values. Subsequently, a total of 66 overlapping ARGs were extracted from potential protective
(HR <1) and hazardous (HR >1) ARGs groups using the webtool “Draw Venn Diagram.” LASSO regression analysis
was performed with the 66 overlapping genes in TCGA training cohort to select an optimal gene combination. Finally, 15
ARGs were identified on the basis of the optimal lambda value to construct a risk signature.

Establishment and Validation of a Risk Signature with 15 ARGs
A total of 562 patients with glioma in TCGA dataset were used to establish an autophagy-related risk signature. The
regression coefficients of 15 ARGs (CHAF1B, CTSB, LGALS8, CASP4, ANXA5, DIRAS3, ERBB2, ATG9B, NAMPT,
VEGFA, TREM1, KCNK3, BID, GRID1, NRG3) were obtained from the results of the LASSO regression (Figure 2A and
B). An OS-related risk signature was established based on a linear combination of the regression coefficients generated
from LASSO regression model coefficients and expression levels of the genes (Figure 2C). The algorithm was as follows:
Riskscore ¼ ExprCHAF1B � 0:401þ ExprCTSB � 0:253þ ExprLGALS8 � 0:215þ ExprCASP4 � 0:195þ
ExprANXA5 � 0:083þ ExprDIRAS3 � 0:064þ ExprERBB2 � 0:061þ ExprATG9B � 0:021þ ExprNAMPT�
0:012þ ExprVEGFA � 0:010þ ExprTREM1 � 0:008þ ExprKCNK3 � ð� 0:057Þ þ ExprBID � ð� 0:099Þþ
ExprGRID1 � ð� 0:130Þ þ ExprNRG3 � ð� 0:215Þ:

Each patient was granted a risk score based on the above formula and assigned to the high- or low-risk group
according to the median risk score as a classification cutoff value. The number of alive patients was markedly decreased

Figure 1 Study flowchart.
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with the increasing risk score (Figure 2D). ROC curves were applied to evaluate the prognostic ability of the signature,
and the AUC of 1-, 3-, 5-year survival was 0.89, 0.923, and 0.889, respectively (Figure 2E). The OS of patients in the
low-risk group was significantly longer than that of patients in the high-risk group (P < 0.0001) (Figure 2F). Moreover,
we also demonstrated that the risk signature remained a powerful marker for predicting the OS of patients with grade II,
III, and IV tumors (Figure 2G–I). Thus, we believe that this risk signature, constructed using the above 15 ARGs, has
good prognostic value.

Next, we calculated the risk score for each patient in the CGGAseq1, CGGAseq2, and GSE16011 datasets using the
formula and regression coefficients derived from TCGA dataset, and established the validation cohorts. Similar to the
results obtained in the training set, Kaplan–Meier survival curves also showed that the OS of patients in the high-risk
group was significantly shorter than that recorded in the low-risk group (P < 0.0001) (Supplementary Figure 1A–C). The

Table 1 Summary of Demographics and Clinicopathological Information of Patients with Glioma in This Study

Variable Training Cohort Validation Cohorts

TCGA CGGAseq1 CGGAseq2 GSE16011

(n=562) (n=307) (n=619) (n=250)

Age

Median (years) 47.5 42 43 51

≤median 281 (50.0%) 157 (51.1%) 319 (51.5%) 130 (52.0%)

>median 281 (50.0%) 150 (48.9%) 299 (48.3%) 119 (47.6%)

NA 1 (0.2%) 1 (0.4%)

Gender

Female 236 (42.0%) 117 (38.1%) 263 (42.5%) 84 (33.6%)

Male 326 (58.0%) 190 (61.9%) 356 (57.5%) 166 (66.4%)

WHO grade

II 196 (34.9%) 98 (31.9%) 173 (27.9%) 22 (8.8%)

III 212 (37.7%) 74 (24.1%) 232 (37.5%) 81 (32.4%)

IV 154 (27.4%) 135 (44.0%) 214 (34.6%) 147 (58.8%)

IDH mutation status

Mutation 342 (60.9%) 167 (54.4%) 316 (51.0%) 75 (30.0%)

Wild type 212 (37.7%) 139 (45.3%) 258 (41.7%) 124 (49.6%)

NA 8 (1.4%) 1 (0.3%) 45 (7.3%) 51 (20.4%)

1p/19q codeletion status

Codel 138 (24.5%) 63 (20.5%) 128 (20.7%) 47 (18.8%)

Non-codel 418 (74.4%) 239 (77.9%) 427 (69.0%) 100 (40.0%)

NA 6 (1.1%) 5 (1.6%) 64 (10.3%) 103 (41.2%)

Primary or recurrent

Primary 562 (100%) 220 (71.7%) 400 (64.6%) 250 (100%)

Recurrent 87 (28.3%) 219 (35.4%)

Abbreviation: NA, not available.
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time-dependent ROC curve analyses of the autophagy-related risk signature indicated a promising prognostic ability for
OS in the CGGAseq1 (AUC of 1-, 3-, 5-year was 0.769, 0.845, and 0.865, respectively; Supplementary Figure 1D),
CGGAseq2 (AUC of 1-, 3-, 5-year was 0.729, 0.793, and 0.788, respectively; Supplementary Figure 1E), and GSE16011
(AUC of 1-, 3-, 5-year was 0.799, 0.885, and 0.826, respectively; Supplementary Figure 1F) cohorts. These results
obtained from the three validation cohorts further illustrated that this ARG-related risk signature had excellent prognostic
value in predicting the survival of patients with glioma.

In addition, considering the inclusion of primary and recurrent gliomas in the CGGAseq1 and CGGAseq2 validation
cohorts, we further validated the prognostic value of this risk signature in primary gliomas in order to exclude the effect
of TMZ treatment on OS of patients. Surprisingly, we found that in both cohorts, the OS of the high-risk group was

Figure 2 Establishment of the risk signature with fifteen ARGs in the TCGA dataset. (A). Log (Lambda) value of the 66 ARGs in LASSO regression model. (B). The most
proper log (Lambda) value in LASSO regression model. (C). The coefficients of selected genes. (D). The risk scores trend and patients’ survival distribution in TCGA dataset.
(E). Receiver operating characteristic curves (ROC) for predicting 1-, 3-, 5-year survival of glioma patients.(F–I). The prognostic value of the ARG-related risk signature
showed by Kaplan-Meier survival curves between low-risk group (n = 281) and high-risk group (n = 281) both in all grades and each grade.
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significantly lower than that of the low-risk group, and ROC curves suggested that this signature had very good
prognostic performance. The results showed that the ARG-related risk signature retained its prognostic value in primary
patients (Supplementary Figure 2A–D).

Functional Enrichment Analysis Between the High- and Low-Risk Groups
We performed biological processes and KEGG pathway enrichment analyses using GSVA in the TCGA dataset to
investigate the differences in prognosis between the high- and low-risk groups. Biological processes, including DNA
replication and damage repair, immune response, inflammatory response to wounding, and cell adhesion mediated by
integrin, were found to be significantly enriched in the high-risk group. The GO terms of inhibitory postsynaptic
potential, cell differentiation in hindbrain, and neurotransmitter gated on channel clustering were enriched in the low-
risk group (Figure 3A). In the KEGG pathway enrichment analysis, the pathways of cell cycle, DNA replication,

Figure 3 Biological processes and KEGG pathway enrichment analyses performed by GSVA in TCGA dataset. (A). GSVA for biological processes analysis; (B). GSVA for
KEGG pathways analysis. (|log2 (fold change) | >0.2 and adjusted P < 0.05).
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mismatch repair, glycan biosynthesis and metabolism, glutathione metabolism, and ECM-receptor interaction were
mainly enriched in the high-risk group (Figure 3B).

Associations Between the Autophagy-Related Risk Signature and Clinicopathologic
Features
To assess the roles of each of the 15 ARGs in gliomas, we developed a heatmap to visualize the associations between the
autophagy-related risk signature and common clinicopathologic characteristics in patients with glioma, as shown in
Figure 4A. It showed that with the increase of risk score, the expression levels of NRG3, GRID1, BID and KCNK3 genes
decreased significantly, while the expression levels of the CHAF1B, CTSB, LGALS8, CASP4, ANXA5, DIRAS3,
ERBB2, ATG9B, NAMPT, VEGFA, and TREM1 genes increased significantly. In addition, we further analyzed the
mRNA expression levels of revealed ARGs in the high- and low-risk cohorts visualizing by box plot. The expression
levels of NRG3, GRID1, BID and KCNK3 in the low-risk group were significantly higher than those in the high-risk
group, whereas the expression levels of the other 11 ARGs were higher in the high-risk group (Supplementary Figure 3).
Then we found that the clinical characteristics including age, WHO grade, histological classification, IDH mutation, and
1p/19q codeletion status were significantly correlated with the autophagy-related risk signature that we constructed (P <
0.0001), whereas there was no significant difference between the high and low risk scores for gender. The expressions of
ARGs (including CHAF1B, CTSB, LGALS8, CASP4, ANXA5, DIRAS3, ERBB2, ATG9B, NAMPT, VEGFA, and
TREM1) increased distinctly in the elderly, high-grade and IDH mutant, and 1p/19q non-codeletion groups. On the
contrary, the expression of ARGs containing NRG3, GRID1, BID, and KCNK3 was significantly decreased
(Figure 4B–E).

Subsequently, we constructed box plots and further compared the risk scores for each cohort in different clinical
groups. The risk scores in patients with high-grade glioma were significantly higher than that calculated in those with
low-grade glioma (Figure 5A). Compared with patients in the elderly group, those in the young age group had markedly
lower risk scores (Figure 5B). The risk scores of patients with glioblastoma were significantly higher than those of
patients with astrocytoma, oligoastrocytoma, and oligodendroglioma (Figure 5D). For the IDH mutation and 1p/19q
codeletion status, the risk scores of IDH wild type and 1p/19q non-codeletion were higher (Figure 5E and F). However,
there were no significant differences in the risk scores between male and female patients (Figure 5C).

Validation of the Expression Levels of ARGs
To study the role of ARGs in the development of human glioma, the relative expression levels of identified ARGs
between normal brain samples and gliomas were assessed. The results showed that the mRNA expression levels of genes
including ANXA5, BID, CASP4, CHAF1B, CTSB, DIRAS3, ERBB2, GRID1, NAMPT, NRG3, TREM1 and VEGFA in
tumor samples were higher than those in normal brain samples. In contrast, ATG9B and LGALS8 showed higher mRNA
expression levels in normal brain samples (Figure 6A). To further validate the believability of the ARGs, we performed
Western blotting analysis to investigate the protein expression levels of two selected ARGs (NAMPT and CTSB) in NHA
and human glioma cell lines. We found that the protein expression levels of NAMPT and CTSB were up-regulated in
glioma cell lines relative to NHA (Figure 6B–D). Immunohistochemical images of representative ARGs from the website
of the HPA were used to further evaluating the functional status of these ARGs in glioma. Interestingly, in protein
expression levels, most investigated ARGs (including CHAF1B, CTSB, ANXA5, DIRAS3, ERBB2, NAMPT, VEGFA,
TREM1 and BID) in high- and low-grade glioma differed significantly, and have similar expression tendency with the
previous results in our analysis (Supplementary Figure 4A–I).

Identification of the Autophagy-Related Risk Signature as an Independent Prognostic
Factor
Univariate and multivariate Cox regression analyses were performed to evaluate the independent prognostic significance
of the autophagy-related risk signature combined with various clinicopathologic parameters. In the TCGA training
cohort, our results of the univariate Cox regression analysis indicated that the age (HR = 1.073, 95% confidence interval
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Figure 4 Associations between the ARG-related risk signature and clinicopathologic features in glioma patients in TCGA dataset. (A). Associations between the increasing
risk score and clinicopathologic information (age, gender, WHO grade, histological classification, IDH mutation, and 1p/19q codeletion status) of 562 patients. (B–E). The
expression levels of approved 15 ARGs in different cohorts stratified by age, WHO grade, IDH mutation, and 1p/19q codeletion status subtypes. ***P < 0.001, ****P <
0.0001.
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[CI]=1.061–1.086, P < 0.001), grade of glioma (HR = 4.920, 95% CI = 3.842–6.299, P < 0.001), IDH mutation status
(HR = 0.093, 95% CI = 0.066–0.132, P < 0.001), 1p/19q codeletion status (HR = 0.199, 95% CI = 0.115–0.345, P <
0.001), and autophagy-related risk signature (HR = 10.040, 95% CI = 6.670–15.111, P < 0.001) were significantly
associated with the OS of patients with glioma (Figure 5G). Subsequently, these factors were included in a multivariate
Cox regression analysis, which showed that age (HR = 1.046, 95% CI = 1.031–1.061, P < 0.001), grade of glioma (HR =
1.763, 95% CI = 1.302–2.388, P < 0.001), and autophagy-related risk signature (HR = 3.592, 95% CI = 1.972–6.542, P <
0.001) were significantly associated with OS (Figure 5H). Hence, the autophagy-related risk signature was identified as
an independent prognostic factor for glioma. The CGGAseq1, CGGAseq2, and GSE16011 datasets were used as
independent external validation cohorts. Consistently, univariate and multivariate Cox regression analyses confirmed

Figure 5 Distribution of the risk scores in different clinical groups and analyses of independent prognostic significance of the risk signature.(A–F). Distribution of the risk
scores for different cohorts stratified by age, gender, WHO grade, histological classification, IDH mutation, and 1p/19q codeletion status subgroups showed by box plots. A,
astrocytoma; OA, oligoastrocytoma; OD, oligodendroglioma; GBM, glioblastoma multiforme.(G–H). Results of univariate and multivariate Cox regression analyses in the
TCGA training set.
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the independent prognostic ability of our signature. The autophagy-related signature was verified as an independent
indicator in three validation cohorts (HR = 1.925, 95% CI = 1.259–2.944, P = 0.003; HR = 1.803, 95% CI = 1.245–2.612,
P = 0.002; and HR = 1.825, 95% CI = 1.039–3.207, P = 0.036) (Table 2). Furthermore, univariate and multivariate Cox
regression analyses also validated the independent prognostic ability of our signature in primary glioma patients (HR =
2.302, 95% CI = 1.323–4.007, P = 0.003; HR = 2.317, 95% CI = 1.337–4.015, P = 0.003) (Supplementary Figure 2E–F).

Construction and Validation of a Nomogram for Predicting the 1-, 3-, and 5-Year
Survival Rates of Patients with Glioma
We established a prognostic nomogram model using TCGA training set with clinicopathological information for
predicting the 1-, 3-, and 5-year survival rates of patients with glioma to develop a better clinical application of
prognostic prediction in this setting. The external validation cohorts, including the CGGAseq1, CGGAseq2, and
GSE16011 datasets were used to evaluate the robustness and stability of the nomogram model. According to the
results of the above univariate and multivariate Cox regression analyses, three independent prognostic indicators
(age, grade, and autophagy-related risk signature) for patients with glioma were incorporated into the final prediction
model. The total points were calculated by adding up the score of each item using the nomogram depicted in
Figure 7A.

The Cox proportional hazard regression assumes that the hazards ratio of any individual variables (age, grade, risk
signature) is constant over time. We performed The Cox proportional hazard assumption test based on Schoenfeld
residuals and which evaluated by the Schoenfeld’s individual and global test. As shown in Figure 7B–D, the Schoenfeld

Figure 6 Validation of the expression levels of ARGs. (A). The relative mRNA expression levels of identified 15 ARGs between human brain and glioma samples.(B).
Representative Western blots of NAMPTand CTSB protein expression levels in normal human astrocytes (NHA) and human glioma cell lines.(C, D). Relative quantification
of Western blots shown in (g). One-way ANOVA for multi-group comparisons: NS, non-significant, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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residual plots indicated that the results of Schoenfeld’s individual and global test did not suggest a violation of the
proportional hazard assumption (P>0.05).

C-index, ROC curve, and calibration plot were carried out to evaluate the performance of the nomogram. In TCGA
training cohort, the C-index was 0.861±0.024 and the AUC of ROC curves for predicting the 1-, 3-, and 5-year survival
rates of patients with glioma were 0.885, 0.942, and 0.912, respectively (Figure 7E). The calibration plots at 1, 3, or 5
years also showed high consistency between the nomogram-predicted probability of OS and actual survival proportion in
TCGA cohort (Figure 7F–G). Furthermore, the proposed nomogram was verified in the independent validation cohorts.
The C-index was 0.728±0.031, 0.737±0.026, and 0.742±0.030 in the CGGAseq1, CGGAseq2, and GSE16011 datasets,
respectively. The AUC values of ROC curves showed excellent predictive ability for the 1-, 3-, and 5-year survival rates

Table 2 Univariate Cox Regression Analysis and Multivariate Cox Regression Analysis Outcome Based on the Risk Score and Other
Clinical Factors in Validation Cohorts

CGGAseq1 dataset Univariate Cox Regression Multivariate Cox Regression

HR 95% CI P value HR 95% CI P value

Age (old vs young) 1.031 1.030–1.052 <0.001 1.013 1.000–1.026 0.055

Gender (male vs female) 0.913 0.692–1.204 0.519 0.941 0.703–1.260 0.683

Grade (V vs Ill vs Il) 2.743 2.280–3.300 <0.001 2.033 1.637–2.525 <0.001

IDH (mutation vs wild type) 0.389 0.294–0.516 <0.001 1.573 1.066–2.321 0.023

1p/19q (conde vs non-condel) 0.168 0.101–0.277 <0.001 0.299 0.172–0.520 <0.001

Risk (high vs low) 4.490 3.325–6.065 <0.001 1.925 1.259–2.944 0.003

CGGAseq2 dataset Univariate Cox regression Multivariate Cox regression

HR 95% CI P value HR 95% CI P value

Age (old vs young) 1.028 1.019–1.038 <0.001 1.005 0.996–1.014 0.302

Gender (male vs female) 1.024 0.821–1.278 0.831 1.028 0.806–1.313 0.822

Grade (V vs Ill vs Il) 2.912 2.468–3.434 <0.001 2.084 1.708–2.543 <0.001

IDH (mutation vs wild type) 0.288 0.228–0.363 <0.001 0.697 0.512–0.949 0.022

1p/19q (conde vs non-condel) 0.271 0.187–0.392 <0.001 0.644 0.414–1.001 0.051

Risk (high vs low) 3.860 3.036–4.907 <0.001 1.803 1.245–2.612 0.002

GSE16011 dataset Univariate Cox regression Multivariate Cox regression

HR 95% CI P value HR 95% CI P value

Age (old vs young) 1.041 1.030–1.052 <0.001 1.035 1.019–1.052 <0.001

Gender (male vs female) 1.028 0.779–1.357 0.845 1.188 0.767–1.839 0.441

Grade (V vs Ill vs Il) 2.470 1.932–3.158 <0.001 1.312 0.886–1.943 0.176

IDH (mutation vs wild type) 0.491 0.358–0.672 <0.001 0.708 0.437–1.145 0.159

1p/19q (conde vs non-condel) 0.349 0.236–0.518 <0.001 0.609 0.366–1.015 0.057

Risk (high vs low) 3.897 2.926–5.190 <0.001 1.825 1.039–3.207 0.036

Abbreviations: ARG, autophagy-related genes; OS, overall survival; WHO, the World Health Organization; IDH, isocitrate dehydrogenase; TMZ, Temozolomide; LASSO,
least absolute shrinkage and selection operator; IHC, immunohistochemical; HADb, the Human Autophagy Database; MSigDb, the Molecular Signatures Database; TCGA,
The Cancer Genome Atlas; CGGA, the Chinese Glioma Genome Atlas; FPKM, fragments per kilobase million; TPM, Transcripts Per Kilobase Million; HR, hazard ratio; ROC,
receiver operating characteristic; GSVA, The Gene Set Variation Analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, the Gene Set Enrichment Analysis;
C-index, Concordance-index; AUC, area under the curve; NHA, Normal human astrocytes; LGG, low-grade glioma; NA, not available.
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Figure 7 Construction and validation of a prognostic nomogram model. (A). A nomogram for predicting the 1-, 3-, and 5- year survival rates of patients with glioma. (B–D).
Schoenfeld’s individual and global test for estimating time-varying covariance. (B) Age; (C) Grade; (D) Risk score.(E). ROC curves were used for evaluating the efficiency of
the nomogram in the TCGA dataset.(F–H). The calibration plots for predicting patients’ survival at 1- (F), 3- (G), or 5- (H) year in the TCGA dataset.
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(Supplementary Figure 5A–C). As expected, the calibration plots for the three validation cohorts also showed excellent
agreement between the nomogram prediction actual survival proportion (Supplementary Figure 5D–L). Therefore, all the
evidence above indicated that the proposed nomogram was sufficiently accurate for predicting the 1-, 3-, and 5-year
survival rates of patients with glioma.

Discussion
Glioma is a progressive disease with various malignancy grades (I–IV) and histological subtypes, and characterized by
significant morbidity and mortality. Based on the traditional classification and grading systems, in addition to diagnosis
challenges, the survival time of patients with the same diagnosis may vary from a few weeks or months to several
years.23 Tumor heterogeneity remains a major challenge in patient prognosis assessment and precise treatment, leading to
wide variations in patient prognosis, treatment response, and drug resistance. In recent years, the exploration of
molecular characteristics of glioma has brought new progress in risk stratification and prognosis assessment of patients
with glioma.

Increasing evidence revealed that autophagy plays an important role in tumorigenesis, invasiveness, metastasis, and
therapeutic resistance of various types of cancer, especially glioma.24,25 Regulation of the disordered ARGs or pathways
can inhibit tumor growth and migration and further improve the sensitivity of the tumor to various treatments. Previous
studies have shown that miR-519a enhances cell apoptosis by promoting autophagy and targeting the STAT3/Bcl-2/
Beclin-1 pathway, rendering glioblastoma sensitive to chemotherapy with temozolomide.26 Inhibition of autophagy using
the autophagy inhibitor 3-methyladenine or knockdown of ATG5 or ATG7 in combination with treatment with
flavokawain B induced apoptosis in glioma cells and significantly inhibited glioma growth.27 Collectively, this evidence
suggests that the investigation of autophagy or ARGs in glioma is of vital importance for risk stratification, prognosis
prediction, and the subsequent development of individualized treatment strategies for patients with glioma. ATGs may be
promising prognostic indicators and therapeutic targets. In our study, we analyzed the gene expression profiles and
clinicopathological data of 1738 glioma samples from four different cohorts and identified 15 optimal OS-related ARGs
(CHAF1B, CTSB, LGALS8, CASP4, ANXA5, DIRAS3, ERBB2, ATG9B, NAMPT, VEGFA, TREM1, KCNK3, BID,
GRID1, NRG3). Based on the expression of these 15 ARGs, we constructed a new a novel autophagy-related prognostic
risk signature, which could be used to classify all patients into high- and low-risk groups. This subgroup was significantly
associated with the prognosis of patients with glioma and had different clinical features. To explore the molecular
mechanism responsible for the differences in prognosis between the high- and low-risk groups associated with the
autophagy-related risk signature, enrichment analyses revealed that main themes including “DNA replication and damage
repair,” “cell cycle,” “immune and inflammatory response,” “cell adhesion mediated by integrin,” and “glycan biosynth-
esis and metabolism” were found to be significantly enriched in the high-risk group. Previous research has illustrated that
DNA double strand breaks and DNA replication stress are the most serious damage caused by various physical and
chemical substances in the environment and cells to DNA. These can induce a strong “DNA damage response,” as they
bear the high risk of cell death and genome instability leading to cancer.28 Proinflammatory cytokines and chemokines
secreted by activated immune cells in the tumor microenvironment promote the proliferation of tumor cells.29

Glioblastoma cells recruit innate immune cells and alter their phenotypes to create a microenvironment conducive to
tumor development and finally cooperate with normal cells to promote tumor proliferation, brain invasion, immune
suppression, and angiogenesis.30 In general, ARGs may exert certain influence on the development of glioma through
these biological processes or functional pathways, thus playing an important role in the prognosis of glioma.

Survival analysis showed that the OS of patients in the high-risk glioma subgroup was significantly shorter than that
in the low-risk glioma subgroup, and significant separation was still observed in the survival curves between the high-
and low-risk glioma subgroups at each level of grades. The risk score was verified successfully in the other three external
cohorts and showed good robustness and repeatability. Moreover, Time-dependent ROC showed that the 15 ARGs
signatures had relatively high accuracy in predicting patients’ prognosis such as OS at the 1, 3, 5 years (AUC = 0.89,
0.923, 0.889). Next, clinical correlation analysis showed that no significant difference between the high and low risk
scores for gender. The older the patient was, the higher the risk score was. With the median age of 47 years as the
boundary, the risk scores of patients with glioma older than 47 years were significantly higher than that younger than 47

International Journal of General Medicine 2022:15 https://doi.org/10.2147/IJGM.S335571

DovePress
1531

Dovepress Fu et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=335571.docx
https://www.dovepress.com/get_supplementary_file.php?f=335571.docx
https://www.dovepress.com
https://www.dovepress.com


years. Among them, the high-risk subgroup had high risk scores and enriched with malignant glioma subtypes, including
high pathological grade, high WHO grade, IDH wildtype and 1p/19q non-codeleted status, suggesting that ARGs may be
a potential biomarker for differentiating glioma prognosis.

In addition, univariate and multivariate analyses combined with other clinicopathological factors showed that this
ARG-related risk signature was a satisfactory independent prognostic factor, further confirming the prognostic power of
our signature for glioma patients. To improve the clinical application of the ARG-related risk signature, we established
a prognostic nomogram model with clinical features (age, WHO grade) for predicting the 1-, 3-, and 5-year survival rates
of patients with glioma. This nomogram was constructed and validated in large datasets with long-term follow-up.
C-indexes, AUC of ROC curves, and calibration plots verified the excellent performance of the nomogram. In clinical
practice, this simple visual scoring system can help both physicians and patients to carry out individualized survival
predictions, which will contribute to the choice of better treatment options.

Of these ARGs identified, most have been confirmed to be associated with the development or prognosis of glioma
and other cancers. CHAF1B, which is related to the invasiveness, migration, and colony-forming ability of cancer cells,
is highly expressed in various malignant tumors.31,32 CTSB plays a key role in the degradation of impaired organelles,
tumorigenesis, and malignant development. In a previous study, CTSB was recognized as a radio-responsive protein and
its knockdown led to radiosensitivity.33,34 CASP4 was involved in the modulation of focal adhesion, cell detachment, and
actin cytoskeleton polymerization, which ultimately controls cell migration and invasion.35 ANXA5, a Ca2+-regulated
phospholipid- and membrane-binding protein, is up-regulated in most tumors, including gliomas, and associated with
tumor progression, invasion, metastasis, drug resistance, and tumor treatments.36 Previous reports showed that DIRAS3
induced autophagy and inhibited proliferation in ovarian, breast, and gastric cancers.37–39 However, it was upregulated in
gliomas, promoting cell proliferation and invasion, which was positively correlated with poor prognosis.40 Inhibition of
ERBB2 can enhance radiation-induced inhibition of tumor growth, which is related to mitochondrial-dependent
apoptosis.41 Yun et al revealed that a high level of ATG9B expression was associated with glioblastoma multiforme
(GBM) compared to low-grade glioma. ATG9B expression was mainly regulated through the Wnt/β-catenin pathway,
and knockdown of ATG9B expression in GBM cells suppressed TMZ-induced autophagy as well as TMZ-resistance.42

NAMPT plays a crucial role in cancer cell metabolism, and regulation of NAPMT inhibitors increased the temozolo-
mide-induced apoptosis in glioblastoma cells.43 VEGF, especially VEGF-A, is a major angiogenic factor promoting
angiogenesis in multiple solid malignancies.44 The TREM-1 receptor and its signaling pathways contribute to the
pathological process of several non-infective acute and chronic inflammatory diseases, including cancer.45 BID plays
a key role in the process of apoptosis, and its dysfunction is the foundation of carcinogenesis.46 The nuclear expression of
NRG3 was statistically correlated with low tumor grade in breast cancer; however, its function in glioma remains
unexplored.47 The role of LGALS8, KCNK3, and GRID1 in tumors, including glioma, has not been specifically reported,
which may be a new research direction and worthy of further exploration.

Recently, some researchers have constructed some autophagy-related glioma prognostic models by analyzing gene
expression profiles and clinicopathological information. Wei et al constructed an autophagy-related 10-lncRNA-mRNA
signature using CGGA dataset. The signature could distinguish GBM from LGG and predict OS in glioma patients,
which also validated using TCGA dataset.48 Five-ATG signature identified by Guo et al using two datasets was validated
that it had good predictive performance.49 Xu et al used 15ARGs to construct a risk model that could predict the
prognosis of glioma patients.50 Most studies only used two datasets for model construction and validation, and the
sample size was not large enough. In addition, there are also some signatures composed of more than 20 genes or less
than 5 genes. We believed that too many genes may make the models unsuitable for clinical practice, while too few genes
may make the models lack certain accuracy. Many models were only developed for LGG subgroup or GBM subgroup, so
their application was limited.51–53 Compared with previous studies, our study increased the number of samples and
validation sets, and used TCGA dataset as the training set, and CGGAseq1/2 and GSE16011 datasets as validation set
(N = 1738). The expression levels of selected genes were verified by experiments, making the results more convincing. In
addition to some individual duplicated genes, it was selected again as signature to indicate its important role in glioma
prognosis. Besides, the discovery of new genes can further stratify patients, supplement current indicators, and provide
new directions or therapeutic targets for autophagy therapy. Nonetheless, the present study had some limitations. Firstly,
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in terms of data collection, the clinical information utilized in this study is not sufficiently comprehensive. Analysis of
additional information, such as neuroimaging information and extent of lesion resection, will be more conducive to
establishing an accurate model. This prediction model requires further validation in multi-center, large-scale clinical
trials, and prospective studies. In addition, the performance of such models (even well-validated clinical prediction
models) will decline over time due to changes in disease risk factors, unmeasured risk factors, treatment measures and
treatment background; this phenomenon is termed calibration drift. Therefore, the clinical prediction model requires
continuous evolution and dynamic updating.

Conclusion
In conclusion, our study constructed a novel and reliable ARG-related risk signature, which was verified as a satisfactory
prognostic marker. The nomogram model could provide a reference for individually predicting the prognosis for each
patient with glioma and promoting the selection of optimal treatment.
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