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Abstract: Previously, we reported a close relationship between type II IL4Rα and IL13Rα1 complex
and poor outcomes in renal cell carcinoma (RCC). In this study, we investigated the clinicopathologi-
cally significant oncogenic role of IL13Rα2, a kind of the independent receptor for IL13, in 229 RCC
patients. The high expression of IL13Rα2 was closely related to relapse-free survival in specific
cancers in univariate and multivariate analysis. Then, the oncogenic role of IL13Rα2 was evaluated
by performing in vitro assays for cell proliferation, cell cycle arrest, and apoptosis in A498, ACHN,
Caki1, and Caki2, four kinds of RCC cells after transfection of siRNA against IL13Rα2. Cell pro-
liferation was suppressed, and apoptosis was induced in A498, ACHN, Caki1, and Caki2 cells by
knockdown of IL13Rα2. Interestingly, the knockdown of IL13Rα2 decreased the phosphorylation of
JAK2 and increased the expression of FOXO3. Furthermore, the knockdown of IL13Rα2 reduced the
protein interaction among IL13Rα2, phosphorylated JAK2, and FOXO3. Since phosphorylation of
JAK2 was regulated by IL13Rα2, we tried to screen a novel JAK2 inhibitor from the FDA-approved
drug library and selected telmisartan, a clinically used medicine against hypertension, as one of
the strongest candidates. Telmisartan treatment decreased the cell proliferation rate and increased
apoptosis in A498, ACHN, Caki1, and Caki2 cells. Mechanistically, telmisartan treatment decreased
the phosphorylation of JAK2 and increased the expression of FOXO3. Taken together, these results
suggest that IL13Rα2 regulates the progression of RCC via the JAK2/FOXO3-signaling path pathway,
which might be targeted as the novel therapeutic option for RCC patients.

Keywords: IL13Rα2; renal cell carcinoma; JAK2; FOXO3; telmisartan

1. Introduction

Every year, there are more than 300,000 new renal cell carcinoma cases (RCC) diag-
nosis globally [1]. Among them, about 30% of patients were diagnosed with metastatic
RCC [2]. Moreover, the 5-year survival rate of patients with metastatic RCC is lower than
10% [3]. The prognosis of RCC patients is divided into several categories, such as favorable,
intermediate, and poor-risk disease according to well-characterized clinical and labora-
tory risk factors [4]. Approximately 75% of patients with RCC have a poor-risk disease,
and their prognosis is worse than that with a favorable-risk disease [5,6]. Over the past
decade, there have been marked advances in the treatment of metastatic RCC. Sorafenib,
sunitinib, bevacizumab, and axitinib are effective inhibitors of vascular endothelial growth
factor (VEGF) and its receptor (VEGFR) [7]. Everolimus and temsirolimus inhibited the
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mechanistic target of rapamycin complex 1 (mTORC1) [8]. However, the mortality rate
of metastatic RCC is still high because of resistance to conventional chemotherapy and
the side effect of radiation therapy [9]. Therefore, we still need to consider the efficient
treatment option for RCC.

IL13Rα2 is a membrane-bound protein encoded by the IL13Rα2 gene [10]. IL13Rα2
is closely associated with IL13Rα1, a subunit of type II IL4Rα and IL13Rα1 complex [10].
IL13 binds IL13Rα2 with high-affinity [10]. Recently, IL13Rα2 has been considered an
important target for cancer treatment in various clinical studies [11]. A recent study in-
dicated that IL13Rα2 is a potential marker and therapeutic target for human melanoma
treatment [12]. It was reported that IL13Rα2 was overexpressed in metastatic colorectal can-
cer and inhibition of IL13 binding to IL13Rα2 showed the therapeutic activity in colorectal
cancer by reducing metastatic spread [13]. Furthermore, it was demonstrated that targeting
IL13Rα2 depletion suppressed breast tumor growth and IL13Rα2 activated IL13-mediated
STAT6-signaling pathway, and knockdown of IL13Rα2 suppressed breast cancer metastasis
into the lung [14]. Therefore, IL13Rα2 could be a potential biomarker to diagnose various
cancers. However, there is not enough study for the clinical analysis, biological function,
and molecular mechanisms of IL13Rα2 in RCC development.

Drug repositioning means the application of the drugs that have been clinically used
to other diseases by elucidating the novel activities and target proteins [15]. Since the
clinically used drugs were approved by the US Food and Drug Administration (FDA),
drug repositioning has many advantages, such as no need to test toxicity and to evaluate
pharmacokinetics. Furthermore, there are many previous reports and patents for studying
the metabolism and interactions of the old drug, which could help researchers to examine
the possible working mechanism of the old drug in the new application. Thus, drug reposi-
tioning could considerably save the cost and time for researchers to develop efficient drugs
leading to improve the success rate [16]. For the proof-of-concept trial, we successfully
selected telmisartan, a clinically used medicine against hypertension, as the strongest JAK2
inhibitor. Telmisartan is known as an agonist of angiotensin II receptor, but not reported
on the possible involvement of-signaling pathway, including the regulation of JAK2 [17].

In this study, we investigated the clinical implication and oncogenic role of IL13Rα2
in RCC progression. Interestingly, IL13Rα2 seemed to increase the phosphorylation of
JAK2 and decrease the expression of FOXO3. These results suggest that IL13Rα2 regulates
RCC progression through JAK2/FOXO3-signaling pathway. Since JAK2 was regulated by
IL13Rα2 and type II IL4Rα and IL13Rα1 complex, we tried to screen an FDA-approved
drug library with a JAK2 kinase assay kit to identify the novel candidates that were
possibly inhibiting JAK2 in RCC cells. Here, we show that telmisartan has the potential
for antiproliferative activity in RCC cells, which could broaden the therapeutic options for
RCC patients.

2. Materials and Methods
2.1. RCC Patients and Tissue Samples

RCC patients who operated between July 1998 and August 2011 at Jeonbuk National
University Hospital were analyzed in this study. Medical records, histologic and tissue
samples were available in 229 cases and included in this study. The clinicopathologic
information for patients with RCC was obtained by analyzing medical records and original
histologic slides. Tumor stage and histopathologic factors were re-evaluated according to
the World Health Organization classification of the renal tumor [18] and the 8th edition of
the staging system of the American Joint Committee on Cancer [19]. Histological subtypes
of RCCs included in this study were 201 cases of clear cell RCC (CCRCC), 16 cases of
chromophobe RCC, and twelve cases of papillary RCC. This study obtained institutional
review board approval from Jeonbuk National University Hospital (IRB No., CUH 2019–11–
039) and was performed according to the Declaration of Helsinki. The approval contained
a waiver for written informed consent based on the retrospective and anonymous character
of this study.
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2.2. Immunohistochemical Staining and Scoring

Immunohistochemical staining in RCC tissue was performed using tissue microarray
sections. One 3.0 mm core per case was arrayed in tissue microarray. The tissue microarray
core was obtained from the area of the original paraffin-embedded tissue block, mainly
composed of tumor cells with the highest histologic grade. The histologic sections were
deparaffinized and boiled with the microwave oven for 20 min in pH 6.0 antigen retrieval
solution (DAKO, Glostrup, Denmark) to induce antigen retrieval. Thereafter, the tissue
sections are incubated with anti-IL13Rα2 primary antibody (1:100 dilution, Santa Cruz
Biotechnology, Santa Cruz, CA, USA) and visualized using the enzyme-substrate 3-amino-9-
ethylcarbazole. Immunohistochemical staining scoring was performed by two pathologists
(HSP and KYJ) with consensus by observing in a multi-viewing microscope. The scoring
was performed without clinicopathologic information. The score obtained by adding
staining intensity point (point 0; no staining, point 1; weak, point 2; intermediate, point 3;
strong) and staining area point (point 0; no staining, point 1; 1%, point 2; 2–10%, point 3:11–
33%, point 4; 34–66%, point 5; 67–100%) [20–22]. Therefore, the immunohistochemical
staining score ranged from zero to eight.

2.3. Chemical Reagents, Antibodies, and Plasmid DNAs

The FDA-approved drug library (SCREEN-WELL FDA-approved drug library V2,
821 drugs) was purchased from Enzo Life Sciences (Farmingdale, NY, USA). Mouse anti-
β-actin antibody, mouse anti-Myc antibody, mouse anti-HA antibody, protease inhibitors,
phosphatase inhibitors, AZD1480, telmisartan, the following chemicals, and solvents
(non-fat dry milk powder, dimethyl sulfoxide (DMSO), ethylenediaminetetraacetic acid
(EDTA), glycerol, glycine, sodium chloride, Trizma base, Triton X-100, sodium dodecyl
sulfate (SDS), crystal violet, 4% paraformaldehyde solution, 4′,6-diamidino-2-phenylindole
(DAPI), propidium iodide (PI), and Tween-20) were from Sigma (St. Louis, MO, USA).
Control siRNA, siRNA against IL13Rα2, protein A or G-agarose beads, rabbit anti-IL13Rα2,
and rabbit anti-FOXO3 antibodies were purchased from Santa Cruz Biotechnology (Santa
Cruz, CA, USA). Rabbit anti-JAK2, rabbit anti-phospho-JAK2 (pJAK2), rabbit anti-cleaved
PARP1, rabbit anti-cleaved caspase3, and rabbit anti-p27 antibodies were purchased from
Cell Signaling Technology (Danvers, MA, USA). Goat anti-rabbit and goat anti-mouse
horseradish peroxidase (HRP)-conjugated IgG (heavy/light or light chain-specific) were
from Jackson ImmunoResearch (West Grove, PA, USA). Enhanced chemiluminescence
(ECL) reagent was from GE Healthcare (Little Chalfont, United Kingdom). pCMV3-C-HA
and pCMV3-JAK2-C-HA plasmid DNA were from Sino Biological (Wayne, PA, USA).
pCMV6-C-Myc-Flag and pCMV6-IL13Rα2-C-Myc-Flag plasmid DNA were from OriGene
(Rockville, MD, USA).

2.4. Cell Culture

A498, ACHN, Caki1, Caki2, and 293T cells were purchased from ATCC (Manassas,
VA, USA) and were grown in Dulbecco’s modified Eagle’s media (DMEM, Invitrogen,
Carlsbad, CA, USA) media containing 10% fetal bovine serum (FBS, Invitrogen) and
1% streptomycin/penicillin. The cells were cultured in a humidified incubator (5% CO2,
37 ◦C). We performed all experiments with early passages cells (passages 4–10).

2.5. Transfection of siRNA and Plasmid DNA

Cells were plated (5.0 × 105 cells/well) in 60 mm cell culture dishes and incubated
for 18 h in an incubator. After 18 h of incubation, cells were transfected with siRNAs
(siRNA against IL13Rα2: sc-63339, control siRNA: sc-37007 from Santa Cruz, 1 µL) or
plasmid DNAs (pCMV3-C-HA empty/HA-JAK2 plasmid DNA, 1 µg). siRNAs or plasmid
DNAs were mixed with 3 µL of lipofectamine 2000 (Invitrogen), respectively, in 600 µL of
serum-free media for 20 min. After PBS washing twice, the cells were incubated with the
media containing siRNAs or DNAs for 6 h in a humidified incubator. After 6 h, cell culture
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media was removed, and fresh media containing 10% FBS was added. After then, the cells
were incubated for 18 h.

2.6. WST-1 Assay

Cells were plated (1 × 103 cells/well) in 96-well plates and incubated for 18 h in
a humidified incubator. After incubation, cells were transfected with control/IL13Rα2
siRNA or treated with DMSO (0.1%) control/the indicated treatment for 24, 48, or 72 h.
After incubation, 20 µL of EZ-Cytox (DoGenBio, Republic of Korea) was added to the
medium. After 4 h, absorbance was measured at 460 nm wavelength by a microplate reader
(Bio-Rad Laboratories, Hercules, CA, USA).

2.7. Cell Counting Assay

Cells were plated (2 × 104 cells/well) in 60 mm culture dishes and incubated for 18 h
in an incubator. After incubation, cells were transfected with control/IL13Rα2 siRNA or
treated with DMSO (0.1%) control/the indicated treatment for 14 days. The number of
cells was counted by a hemocytometer.

2.8. Colony Formation Assay

Cells were plated (5 × 102 cells/well) in 60 mm culture dishes and incubated for 18 h
in a humidified incubator. After incubation, cells were transfected with control/IL13Rα2
siRNA or treated with DMSO (0.1%) control/the indicated treatment for 2 weeks. Cells were
transfected with IL13Rα2 or control siRNA every other day, changing cell culture media.
Similarly, Cells were treated with telmisartan or the same volume of DMSO vehicle every
other day, changing cell culture media. The cells were fixed with 4% formaldehyde (Sigma)
and stained using 1% crystal violet (Sigma). The number of colonies was counted.

2.9. Cell Cycle Analysis

Cells were plated (5 × 105 cells/well) in 60 mm cell culture dishes and incubated for
18 h in a humidified incubator. After incubation, cells were transfected with control/IL13Rα2
siRNA or treated with DMSO (0.1%) control/the indicated treatment for 48 h. Then,
the cells were trypsinized and fixed in 70% ice-cold absolute ethanol overnight at −20 ◦C.
After then, centrifugation was carried out (1000 rpm, 5 min), and the cells were suspended
with propidium iodide (PI) solution for 30 min at 37 ◦C. After staining, cell cycle distribution
was analyzed by a FACSCalibur (BD Biosciences, San Jose, CA, USA), and the data were
analyzed using the FlowJo program (De Novo Software, Glendale, CA, USA).

2.10. TUNEL Assay

Cells were plated (5 × 105 cells/well) in 60 mm cell culture dishes and incubated for
18 h in a humidified incubator. After incubation, cells were transfected with control/IL13Rα2
siRNA or treated with DMSO (0.1%) control/the indicated treatment for 48 h. After trans-
fection, the cells were fixed in 4% formaldehyde solution at 4 ◦C for 20 min. After fixation,
the cells were permeabilized with 0.2% Triton X100 (Sigma). DNA strand breaks labeling
was performed using a TUNEL assay kit (Promega, Madison, WI, USA). Nuclei were dyed
with DAPI.

2.11. Annexin V Staining Analysis

Cells were plated (5 × 105 cells/well) in 60 mm culture dishes and incubated for 18 h
in a humidified incubator. After incubation, cells were transfected with control/IL13Rα2
siRNA or treated with DMSO (0.1%) control/the indicated treatment for 48 h. The cells
were trypsinized and resuspended in annexin V-binding buffer. The percentage of apoptotic
cells was evaluated by a FITC annexin V apoptosis detection kit I (BD Biosciences) with
PI according to the manufacturer’s protocol. 1 × 104 events were collected for each run.
Cells were analyzed by a FACSCalibur (BD Biosciences), and FlowJo software (De Novo
Software) was used to analyze the data.
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2.12. Western Blotting Analysis

Cells were lysed in lysis buffer (RIPA buffer, Cell Signaling Technology, USA) contain-
ing protease and phosphatase inhibitors. Centrifugation (10,000× g, 4 ◦C, 10 min) was car-
ried out, and protein lysates were separated on 10% NuPAGE pre-casting gels (Invitrogen)
and transferred to nitrocellulose membranes (Bio-Rad Laboratories). The membranes were
blocked with 3% defatted dry milk powder at room temperature for 1 h, and immunoblot-
ting was performed with specific primary antibodies (overnight, 4 ◦C). Membranes were
incubated with HRP-conjugated anti-mouse or anti-rabbit IgG in 3% defatted dry milk
powder at room temperature for 1 h. Finally, the bands were detected using ECL solution
(GE Healthcare, Chicago, IL, USA) and ChemiDoc system (Bio-Rad Laboratories).

2.13. Immunoprecipitation Analysis

Cells were lysed in lysis buffer (RIPA buffer, Cell Signaling Technology) containing
protease and phosphatase inhibitors. Centrifugation (10,000× g, 4 ◦C, 10 min) was carried
out, and protein lysates were separated. The protein lysates were incubated with a specific
primary antibody by rotating at 4 ◦C overnight. After then, 20 µL of 50% protein A or
G-agarose slurry (Santa Cruz) was added to the lysates and rotating for 2 h at 4 ◦C. Protein
A or G-agaroses containing antigen–antibody complexes were collected and rinsed with
PBS. Immunoprecipitants were analyzed by Western blotting.

2.14. JAK2 Kinase Inhibition Assay

Inhibitory activity of AZD1480 and telmisartan against JAK2 was evaluated by JAK2
kinase assay kit (BPS Bioscience, San Diego, CA, USA) and Glo-Max kinase assay kit
(Promega). Briefly, according to the manufacturer’s instructions, recombinant JAK2 protein
was incubated with the indicated concentration of AZD1480 or telmisartan, peptide sub-
strate, and ATP for 30 min at 37 ◦C. After incubation, the reaction mixture was incubated
with Glo-Max solution for 30 min at room temperature to stop the reaction. Then, the re-
maining ATP level in each reaction was measured by a microplate reader for luminescence
(Bio-Rad Laboratories).

2.15. Statistical Analysis

The immunohistochemical staining score for IL13Rα2 in the RCC tissue sample was
grouped into negative and positive cases with receiver operating characteristic curve anal-
ysis [22–24]. The cutoff point for IL13Rα2 immunostaining score to discriminate negative
or positive cases was determined at the point that significantly estimates patients’ death
from RCC. The cutoff point has the highest area under the curve in the receiver operating
characteristic curve analysis. The survival analysis was conducted for cancer-specific sur-
vival (CSS) and relapse-free survival (RFS) through December 2013. The duration for CSS
was calculated from the date of diagnosis to the date of the patient’s last contact or death.
The event in CSS analysis was the death of patients from RCC. The death of patients from
other causes or alive of patients finally contact was censored in CSS analysis. The duration
for RFS was calculated from the date of diagnosis to the date of the last contact without
relapse, the date of the first relapse, or patients’ death. The event in RFS analysis was a
relapse of RCC or death of patients from RCC. Patients’ death from other causes or alive
of patients finally contact without relapse were censored in RFS analysis. The survival
analysis was performed with univariate and multivariate Cox proportional hazards regres-
sion analyses and Kaplan–Meier survival analysis using SPSS software (version 20.0, IBM,
CA, USA). The association between clinicopathological factors was analyzed by Pearson’s
chi-squared test using SPSS software, and all statistical tests were two-sided. The values of
P lower than 0.05 were considered statistically significant.
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3. Results
3.1. Immunohistochemical Expression of IL13Rα2 Is Associated with Poor Prognosis of
RCC Patients

The immunohistochemical staining for IL13Rα2 was seen in tumor cells of all histo-
logic subtypes of RCC (Figure 1A). The cut-off point for IL13Rα2 immunostaining was
seven in receiver operating characteristic curve analysis (Figure 1B). The cases have im-
munohistochemical staining scores equal to, or greater than, seven were grouped as positive
for IL13Rα2 staining. In this cut-off value, IL13Rα2-positivity was significantly associated
with tumor size (P = 0.004), tumor stage (P = 0.002), histologic nuclear grade of tumor
cells (P < 0.001), and histologic subtype of RCC (P = 0.005) in 229 cases of RCCs (Table 1).
CCRCC is the major histologic subtype of RCC, and there were 201 cases of CCRCC in this
study. Therefore, we also evaluated in CCRCC subgroup of RCCs. In CCRCC subgroup,
IL13Rα2-positivity was significantly associated with tumor size (P = 0.005), tumor stage
(P = 0.003), and histologic nuclear grade of tumor cells (P < 0.001) (Table 1). In 229 overall
RCCs, the factors significantly associated with CCS or RFS in univariate analysis were age
(CSS, P < 0.001; RFS, P = 0.005), tumor size (CSS, P < 0.001; RFS, P < 0.001), tumor stage
(CSS, P < 0.001; RFS, P < 0.001), lymph node metastasis (CSS, P = 0.615; RFS, P < 0.001),
histologic nuclear grade (CSS, overall P = 0.032; RFS, overall P = 0.008), tumor necrosis
(CSS, P < 0.001; RFS, P = 0.004), and IL13Rα2-positivity (CSS, P = 0.002; RFS, P < 0.001)
(Table 2). The IL13Rα2-positivity showed a 3.726-fold (95% confidence interval [95% CI];
1.636–8.489, P = 0.002) greater risk of death and a 3.625-fold (95% CI; 1.806–7.278, P < 0.001)
greater risk of relapse or death of RCC patients (Table 2). The Kaplan–Meier survival curves
for CSS and RFS according to IL13Rα2-positivity in overall RCC are presented in Figure 1C.
In 201 CCRCCs, the factors significantly associated with CCS or RFS in univariate analysis
were age (CSS, P = 0.004; RFS, P = 0.012), tumor size (CSS, P < 0.001; RFS, P < 0.001),
tumor stage (CSS, P < 0.001; RFS, P < 0.001), lymph node metastasis (CSS, P = 0.721;
RFS, P = 0.011), histologic nuclear grade (CSS, overall P = 0.170; RFS, overall P = 0.028),
tumor necrosis (CSS, P = 0.005; RFS, P = 0.063), and IL13Rα2-positivity (CSS, P = 0.003;
RFS, P < 0.001) (Table 2). The IL13Rα2-positivity had a 3.591-fold (95% CI; 1.546–8.342,
P = 0.003) greater risk of death from CCRCC and a 3.518-fold (95% CI; 1.724–7.181, P < 0.001)
greater risk of relapse or death from CCRCC (Table 2). The Kaplan–Meier survival analysis
also showed significant prognostic significance of IL13Rα2 expression for CSS and RFS
in CCRCC subgroups (Figure 2A). However, in chromophobe RCC and papillary RCC,
despite relatively shorter survival of IL13Rα2-positive subgroups compared with IL13Rα2-
negative subgroups, there was no significant difference in survival of patients (Figure 2B,C).
Multivariate analysis was performed with the factors significantly associated with CSS
or RFS in univariate analysis. The factors included in multivariate analysis were age,
tumor size, tumor stage, lymph node metastasis, histologic nuclear grade, tumor necrosis,
and immunohistochemical expression of IL13Rα2. In 272 overall RCCs, age (CSS, P = 0.018),
tumor stage (CSS, P = 0.005; RFS, P < 0.001), tumor necrosis (CSS, P = 0.005; RFS, P = 0.015),
and IL13Rα2 expression (CSS, P = 0.025; RFS, P = 0.004) were significantly associated
with CSS or RFS (Table 3). The IL13Rα2-positivity had a 2.627-fold (95% CI; 1.132–6.097)
greater risk of death and a 2.801-fold (95% CI; 1.3795.688) greater risk of relapse or death of
RCC patients (Table 3). In 201 CCRCCs, age (CSS, P = 0.042), tumor stage (CSS, P = 0.010;
RFS, P < 0.001), tumor necrosis (CSS, P = 0.006; RFS, P = 0.054), and IL13Rα2 expression
(CSS, P = 0.019; RFS, P = 0.005) were significantly associated with CSS or RFS (Table 3).
The IL13Rα2-positivity showed a 2.792-fold (95% CI; 1.182–6.595) greater risk of death and
a 2.838-fold (95% CI; 1.372–5.870, P < 0.001) greater risk of relapse or death of CCRCC
patients (Table 3). Taken together, we investigated the clinicopathologically significant
oncogenic role of IL13Rα2 in 229 RCC patients and the high expression of IL13Rα2 was
significantly associated with cancer-specific survival and relapse-free survival in univariate
and multivariate analysis.
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Table 1. Clinicopathologic variables and the expression status of IL13Rα2 in renal cell carcinomas.

Characteristics Overall Renal Cell Carcinoma (n = 229) Clear Cell Renal Cell Carcinoma (n = 201)

No. IL13Rα2
Positive P No. IL13Rα2

Positive P

Sex Male 156 86 (55%) 0.411 140 71 (51%) 0.530
Female 73 36 (49%) 61 28 (46%)

Age, y ≤55 95 46 (48%) 0.215 82 35 (43%) 0.122
>55 134 76 (57%) 119 64 (54%)

Tumor size, cm ≤7 193 95 (49%) 0.004 169 76 (45%) 0.005
>7 36 27 (75%) 32 23 (72%)

TNM stage I 183 88 (48%) 0.002 163 72 (44%) 0.003
II-IV 46 34 (74%) 38 27 (71%)

LN metastasis Absence 226 119 (53%) 0.103 199 97 (49%) 0.149
Presence 3 3 (100%) 2 2 (100%)

Nuclear grade 1 45 17 (38%) <0.001 36 10 (28%) <0.001
2 134 67 (50%) 123 59 (48%)

3 and 4 50 38 (76%) 42 30 (71%)
Necrosis Absence 196 102 (52%) 0.362 174 85 (49%) 0.772

Presence 33 20 (61%) 27 14 (52%)
Histologic type Clear cell 201 99 (49%) 0.005

Chromophobe 16 13 (81%)
Papillary 12 10 (83%)

Table 2. Univariate Cox regression analysis of cancer-specific survival and relapse-free survival in renal cell carcinoma patients.

Characteristics. No. CSS RFS

HR (95% CI) P HR (95% CI) P

Overall RCC (n = 229)
Sex, male (vs. female) 156/229 0.564 (0.258–1.234) 0.152 0.513 (0.255–1.030) 0.060
Age, y, >55 (vs. ≤55) 134/229 4.386 (1.828–10.524) <0.001 2.537 (1.319–4.880) 0.005

Tumor size, >7 cm (vs. ≤7 cm) 36/229 3.415 (1.736–6.715) <0.001 3.984 (2.218–7.155) <0.001
TNM stage, I (vs. II-IV) 46/229 4.231 (2.219–8.068) <0.001 5.166 (2.930–9.018) <0.001

LN metastasis, presence (vs. absence) 3/229 1.670 (0.226–12.308) 0.615 17.410 (3.874–78.249) <0.001
Nuclear grade, 1 45/229 1 0.032 1 0.008

2 134/229 0.943 (0.347–2.564) 0.909 1.172 (0.476–2.883) 0.730
3 and 4 50/229 2.327 (0.836–6.476) 0.106 2.846 (1.128–7.179) 0.027

Necrosis, presence (vs. absence) 33/229 3.620 (1.842–7.114) <0.001 2.542 (1.345–4.807) 0.004
Histologic type, clear cell 201/229 1 0.654 1 0.328

chromophobe 16/229 0.808 (0.193–3.382) 0.771 0.585 (0.141–2.421) 0.460
papillary 12/229 1.570 (0.553–4.462) 0.397 1.802 (0.711–4.565) 0.214

IL13Rα2, positive (vs. negative) 122/229 3.726 (1.636–8.489) 0.002 3.625 (1.806–7.278) <0.001
Clear cell RCC (n = 201)
Sex, male (vs. female) 140/201 0.541 (0.222–1.319) 0.177 0.523 (0.241–1.132) 0.100
Age, y, >55 (vs. ≤55) 119/201 4.152 (1.593–10.822) 0.004 2.491 (1.220–5.084) 0.012

Tumor size, >7 cm (vs. ≤7 cm) 32/201 3.977 (1.928–8.204) <0.001 4.773 (2.560–8.900) <0.001
TNM stage, I (vs. II-IV) 38/201 3.964 (1.953–8.049) <0.001 5.199 (2.814–9.604) <0.001

LN metastasis, presence (vs. absence) 2/201 0.049 (0.000–7.516 × 105) 0.721 14.681 (1.841–117.039) 0.011
Nuclear grade, 1 36/201 1 0.170 1 0.028

2 123/201 1.028 (0.344–3.075) 0.961 1.122 (0.423–2.978) 0.817
3 and 4 42/201 2.111 (0.661–6.739) 0.207 2.655 (0.955–7.380) 0.061

Necrosis, presence (vs. absence) 27/201 3.044 (1.401–6.617) 0.005 2.016 (0.962–4.225) 0.063
IL13Rα2, positive (vs. negative) 99/201 3.591 (1.546–8.342) 0.003 3.518 (1.724–7.181) <0.001

Abbreviations: CSS, cancer-specific survival; RFS, relapse-free survival; HR, hazard ratio; 95% CI, 95% confidence interval; RCC, renal cell
carcinoma; LN, lymph node.
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Table 3. Multivariate Cox regression analysis of cancer-specific survival and relapse-free survival in renal cell carcinoma patients.

Characteristics CSS RFS

HR (95% CI) P HR (95% CI) P

Overall RCC (n = 229) *
Age, y, >55 (vs. ≤55) 2.941 (1.200–7.209) 0.018

TNM stage, I (vs. II-IV) 2.600 (1.331–5.077) 0.005 4.036 (2.260–7.209) <0.001
Necrosis, presence (vs. absence) 2.686 (1.350–5.345) 0.005 2.240 (1.172–4.278) 0.015
IL13Rα2, positive (vs. negative) 2.627 (1.132–6.097) 0.025 2.801 (1.379–5.688) 0.004

Clear cell RCC (n = 201) **
Age, y, >55 (vs. ≤55) 2.779 (1.036–7.453) 0.042

TNM stage, I (vs. II-IV) 2.616 (1.255–5.451) 0.010 4.214 (2.257–7.867) <0.001
Necrosis, presence (vs. absence) 3.002 (1.361–6.618) 0.006 2.088 (0.988–4.414) 0.054
IL13Rα2, positive (vs. negative) 2.792 (1.182–6.595) 0.019 2.838 (1.372–5.870) 0.005

Abbreviations: CSS, cancer-specific survival; RFS, relapse-free survival; HR, hazard ratio; 95% CI, 95% confidence interval; RCC, renal cell
carcinoma. * The variables included in the multivariate analysis were age, tumor size, tumor stage, histologic nuclear grade, tumor necrosis,
and the expression of IL13Rα2. ** The variables included in the multivariate analysis were age, tumor size, tumor stage, histologic nuclear
grade, tumor necrosis, and the expression of IL13Rα2.

Figure 1. Immunohistochemical expression and survival analysis for the expression of IL13Rα2
in renal cell carcinomas. (A) Immunohistochemical expression of IL13Rα2 in clear cell renal cell
carcinoma, chromophobe renal cell carcinoma, and papillary renal cell carcinoma tissue. Original
magnification, ×400. (B) Receiver operator characteristic curve analysis to determine the cutoff
point of IL13Rα2 immunostaining. The cutoff point is determined to predict cancer-specific survival
of renal cell carcinoma patients. The cutoff point has the highest area under the curve (AUC).
Arrow indicates a cutoff point for the IL13Rα2 immunostaining. (C) Kaplan–Meier survival analysis
for cancer-specific survival and relapse-free survival according to the immunohistochemical positivity
for IL13Rα2 in 229 cell renal cell carcinomas.
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Figure 2. Kaplan–Meier survival analysis in histologic subtypes of renal cell carcinomas. Kaplan–
Meier survival curves for cancer-specific survival (CSS) and relapse-free survival (RFS) according to
the expression of IL13Rα2 in clear cell renal cell carcinoma (A), chromophobe renal cell carcinoma (B),
and papillary renal cell carcinoma (C).

3.2. Knockdown of IL13Rα2 Displays the AntiProliferative Activity in A498, ACHN, Caki1,
and Caki2 Cells

In 229 cases of human RCC, a significant association between the expression IL13Rα2
and poor prognosis was observed by tissue microarray. Hence, as the next step, we tried to
investigate the possible oncogenic role of IL13Rα2 by performing in vitro assays for cell
proliferation, cell cycle arrest, and apoptosis in RCC cells after transfection of siRNA against
IL13Rα2. WST-1 and cell counting assay were conducted to evaluate the antiproliferative
activity of the knockdown of IL13Rα2. Cells were transfected with control or siRNA against
IL13Rα2 and incubated for the indicated time. As shown in Figure 3A,B, compared to the
control, cells transfected with siRNA against IL13Rα2 showed a decreased proliferation rate,
which was confirmed by performing colony formation assay (Figure 3C). Cell cycle analysis
showed that knockdown of IL13Rα2 with siRNA increased G2/M population in A498,
ACHN, Caki1, and Caki2 cells compared to control siRNA (Figure 3D). TUNEL and annexin
V staining assay results showed that knockdown of IL13Rα2 with siRNA increased the
apoptosis in A498, ACHN Caki1, and Caki2 cells compared to control siRNA (Figure 3E,F).
Western blotting analysis indicated that knockdown of IL13Rα2 with siRNA increased
the expression of cleaved PARP1, cleaved caspase3, FOXO3, and p27 (Figure 3G). Overall,
these results indicate that knockdown of IL13Rα2 with siRNA transfection could regulate
proliferation, cell cycle arrest, and apoptosis in A498, ACHN, Cak1, and Caki2 RCC cells.
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Figure 3. Antiproliferative effect by transfection of siRNA against IL13Rα2 in A498, ACHN, Caki1,
and Caki2 cells. Cell viability and proliferation rate were determined by WST-1 (A), cell counting
assay (B) for 24, 48, and 72 h, and Colony formation assay for 14 days (C). This result is representative
data of at least three independent experiments, and the error bar indicates mean ± standard error
(STE). * stands for the P-value < 0.05. Cell cycle arrest for 48 h after transfection was determined
by cell cycle analysis (D). Apoptosis for 48 h after transfection was determined by Annexin V
staining analysis (E) and Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)
assay (F). This result represents at least three independent experiments (G) Western blotting analysis
of proteins related to cell cycle arrest and apoptosis for 48 h after transfection. β-actin was used for a
gel-loading control.

3.3. Knockdown of IL13Rα2 Attenuates the Protein Interaction Among IL13Rα2, pJAK2,
and FOXO3 in A498, ACHN, Caki1, and Caki2 Cells

In the previous report, we found that pJAK2 interacts with FOXO3, which was reg-
ulated by type II IL4R and IL13Rα1 heterodimeric receptor complex [21]. Since IL13Rα2
can accept IL13 as the same ligand with type II IL4R and IL13Rα1 complex, we examined
whether the phosphorylation level of JAK2 was regulated by knockdown of siRNA against
IL13Rα2 in RCC cells. When A498, ACHN, Caki1, Caki2, and 293T cell lysates were
analyzed by Western blotting for IL13Rα2, pJAK2, JAK2, and FOXO3, there seemed the
correlation pattern between IL13Rα2 and pJAK2 except for Caki2 cell lysates (Supplemen-
tary Figure S1A). In contrast, the expression of pJAK2 and FOXO3 was reversely correlated.
In addition, as shown in Figure 3G, the expression of pJAK2 was significantly downreg-
ulated by transfection of IL13Rα2 with siRNA in A498, ACHN Caki1, and Caki2 cells
compared to control siRNA. Then, to investigate the protein interaction among IL13Rα2,
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pJAK2, and FOXO3, we performed co-immunoprecipitation experiments with an antibody
against IL13Rα2, JAK2, and FOXO3 followed by immunoblot analysis with an antibody
against IL13Rα2, pJAK2, JAK2, and FOXO3 in A498, ACHN Caki1, and Caki2 cells trans-
fected with siRNA against IL13Rα2. As shown in Figure 4A–C, the protein interaction
among IL13Rα2, pJAK2 and FOXO3 was weakened in RCC cells transfected with siRNA
against IL13Rα2 compared to the control siRNA. Furthermore, we could observe that
the level of protein interaction between IL13Rα2 and JAK2 was increased in 293T cells
co-transfected with overexpression plasmid DNA for IL13Rα2 or JAK2 (Figure 3D). Collec-
tively, these results implicate that IL13Rα2 interacts with JAK2, which may regulate the
protein expression level of FOXO3.

Figure 4. Protein interaction between IL13Rα2 and JAK2. Knock-down of IL4Rα2 in A498, ACHN,
Caki1, and Caki2 cells reduced the interaction between IL13Rα2 and JAK2. Cells were transfected
with siRNA against IL4Rα2 or control siRNA. Then cell lysates were immunoprecipitated with
antibodies against IL4Rα2 (A), JAK2 (B), or FOXO3 (C). The immunoprecipitated proteins were
immunoblotted by IL4Rα2, pJAK2, JAK2, and FOXO3 antibodies. Light chain of IgG was used for
the loading control. (D) 293T cells were co-transfected with Myc-IL4Rα2 and HA-JAK2 (O.E.) or a
control plasmid DNA (pCMV6-C-Myc-Flag and pCMV3-C-HA, Con.) as indicated. Then cell lysates
were immunoprecipitated with antibodies against Myc or HA. The immunoprecipitated proteins
were immunoblotted by Myc, HA, IL4Rα2, JAK2 antibodies. Light chain of IgG and Coomassie Blue
staining of SDS–PAGE were used for the loading control.

3.4. Telmisartan Suppresses Cell Proliferation and Induces Apoptosis and Cell Cycle Arrest in
A498, ACHN, Caki1, and Caki2 Cells Via Inhibition of JAK2

Previously, we reported that type II IL4Rα and IL13Rα1 complex are involved in
RCC progress through regulation JAK2/FOXO3 pathway [21]. In addition, in this study,
we showed that JAK2 was regulated by IL13Rα2. Thus, we thought that JAK2 was the
common downstream-signaling kinase under the type II IL4Rα and IL13Rα1 complex
and IL13Rα2. Hence, we tried to find the novel chemical inhibitor against JAK2 as the
therapeutic way to treat RCC by screening an FDA-approved drug library (821 drugs)
with a JAK2 kinase assay kit. After narrowing down the possible candidates, telmisartan,
a clinically used medicine against hypertension, could be selected as one of the strongest
JAK2 inhibitors from 821 drugs. As shown in Supplementary Figure S1B, telmisartan
reduced ATP consumption in a dose-dependent manner in vitro. In fact, telmisartan treat-
ment decreased the phosphorylation level of JAK2 in A498, ACHN, and 293T transfected
with JAK2 overexpression plasmid DNA (Supplementary Figure S1C). To determine the
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anti-carcinogenic effect of telmisartan, we conducted in vitro assays for cell proliferation,
cell cycle arrest, and apoptosis in RCC cells after telmisartan treatment. Cells were treated
with 0, 20, and 40 µM of telmisartan and incubated for the indicated time. As shown in
Figure 5A–C, telmisartan treatment decreased cell proliferation rate in a dose and time-
dependent manner. We found that telmisartan treatment increased the G2/M population in
A498, ACHN, Caki1, and Caki2 cells compared to DMSO control (Figure 5D). TUNEL and
annexin V staining assay results showed that telmisartan treatment increased the apoptosis
in A498, ACHN Caki1, and Caki2 cells compared to DMSO control (Figure 5E,F). Western
blotting analysis indicated that telmisartan increased the expression of cleaved PARP1,
cleaved caspase3, FOXO3, and p27, whereas decreased the expression of IL13Rα2 and
pJAK2 (Figure 5G). Overall, these results indicate that telmisartan treatment could regulate
proliferation, cell cycle arrest, and apoptosis in A498, ACHN, Cak1, and Caki2 RCC cells
via inhibition of JAK2.

Figure 5. Antiproliferative effect by telmisartan treatment in A498, ACHN, Caki1, and Caki2 cells. Cell viability and
proliferation rate were determined by WST-1 (A), cell counting assay (B) for 24, 48, and 72 h, and Colony formation assay for
14 days (C) after treatment of telmisartan (0, 20, and 40 µM). This result is representative data of at least three independent
experiments, and the error bar indicates mean ± standard error (STE). * stands for the P-value < 0.05. Cell cycle arrest for
48 h after treatment of telmisartan (40 µM) was determined by cell cycle analysis (D). Apoptosis for 48 h after treatment
of telmisartan (40 µM) was determined by Annexin V staining analysis (E) and Terminal deoxynucleotidyl transferase
dUTP nick end labeling (TUNEL) assay (F). This result is representative data of at least three independent experiments.
(G) Western blotting analysis of proteins related to cell cycle arrest and apoptosis for 48 h after treatment of telmisartan
(40 µM). β-actin was used for a gel-loading control.
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4. Discussion

It has been reported that IL13Rα2 was overexpressed in various cancers, such as
glioblastoma, metastatic colorectal cancer, and ovarian cancer, which suggests that IL13Rα2
can play crucial roles in the development of various cancer types [25,26]. A recent study
revealed that IL13Rα2 might be an important therapeutic target in a perineural invasion,
the invasion of cancer to nerves [27]. In another study, IL13Rα2 was closely related to
cancer cell migration, which indicated that IL13Rα2 might be a key factor in metastasis in
cancers [28]. It was reported that IL13Rα2 was a functional receptor-mediating-signaling
pathway in human pancreatic cancer cell lines [29]. They showed that IL13 induced the
activation of transforming growth factor-β (TGFβ) through the AP-1 pathway, which can
promote tumorigenesis caused by immunosuppression. In another study using the mouse
model, it was demonstrated that two kinds of humanized scFv based chimeric antigen
receptor (CAR) T cells targeting IL13Rα2 inhibited tumor growth in vitro and in vivo [30].
Sunitinib is an agent for treating metastatic or unresectable clear cell RCC, and IL13Rα2
can be a potential target to overcome sunitinib resistance [31]. However, the exact mech-
anism related to IL13Rα2 has not been investigated in RCC development. As shown in
Figures 1 and 2, immunohistochemical expression of IL13Rα2 was highly associated with
cancer-specific survival and relapse-free survival by univariate and multivariate analysis
in 229 RCC patients. In addition, the oncogenic role of IL13Rα2 was confirmed by the
in vitro cell assay. Knock-down of IL13Rα2 showed the antiproliferative activity in A498,
ACHN, Caki1, and Caki2 cells (Figure 3). As shown in Figure 3G, the expression of pJAK2
was significantly downregulated by transfection of IL13Rα2 with siRNA in RCC cells.
Mechanistically, IL13Rα2 seemed to interact with JAK2 in RCC cells to activate the phos-
phorylation of JAK2, which may downregulate FOXO3, a representative tumor-suppressive
transcriptional factor. To the best of our knowledge, this is the first research to demonstrate
the IL13Rα2/JAK2/FOXO3-signaling pathway in cancer development.

Atopic dermatitis (AD) has been the most common type of chronic inflammatory skin
disease [32]. JAK2 inhibitors have been identified as effective reagents for the treatment of
atopic dermatitis [33]. A recent study showed that JTE-052, which is a novel JAK inhibitor
suppressed skin inflammation and had therapeutic effects on chronic dermatitis in rodent
models [34]. Interestingly, the recent clinical report has shown that cream containing
ruxolitinib that is JAK1/JAK2 inhibitor alleviated AD symptoms and itch effectively in AD
patients [35]. These studies suggested that JAK2 inhibitor could be a promising reagent
for developing effective drugs for AD treatment. Furthermore, JAK2 inhibitor has been
considered a promising therapeutic reagent for arthritis treatment [36]. A recent study has
reported that ferulic acid showed anti-arthritic activity in rats induced arthritis through
inhibition of the JAK/STAT pathway [37]. It was also reported that the Ershiwuwei Lvxue
pill (ELP) that is Tibetan traditional medicine, reduced collagen-induced arthritis through
JAK2/STAT3-signaling pathway inhibition [38]. These studies indicated that JAK2 inhibitor
also could be considered an effective reagent for arthritis treatment.

IL-13 has been known as a crucial cytokine in chronic airway inflammation, and it
plays an important role in AD pathogenesis [39,40]. Because IL-13 is a pivotal cytokine
involved in allergic responses, it is important to find an effective way to alleviate immune
responses by inhibiting IL-13 [41]. A recent study demonstrated that inhibition of IL-13 for
AD is a new pathway, which suggested that IL-13 inhibitors could be an effective reagent
for AD treatment [42]. It was reported that lebrikizumab is an IL-13 inhibitor that has
the potential to treat moderate-to-severe AD with fewer side effects [43]. A clinical report
showed that tralokinumab is the other IL-13 inhibitor that shows promising results of
alleviating moderate-to-severe AD in adult patients. In short, these results supported that
IL-13 inhibitor appears to have the potential to be a promising reagent for the development
of new drugs for AD treatment.

Janus kinases, often referred as JAK, have been known as cytoplasmic tyrosine ki-
nase combined with intracellular domains of various cytokine receptors [44]. JAK family
member is divided into JAK1, JAK2, JAK3, and TYK2 [45]. According to recent studies,
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JAK2/STAT3 signaling pathway played critical roles in metastasis and progression of
cancers, which implied that JAK2 might be a crucial therapeutic target for treatment of can-
cer [46–49]. Recent study showed that salidroside had anti-cancer effects and suppressed
RCC proliferation through inhibition of JAK2/STAT3 signaling pathway [50]. The data
presented in this study indicated that salidroside decreased the levels of phosphorylated
STAT3 and JAK2 in A498 and 786-0 RCC cells. It was also reported that thymoquinone,
a natural compound extracted from black seed oil, possessed anti-cancer effects in RCC
cells [51]. According to them, inhibition of JAK2/STAT3 signaling pathway was observed
after treatment of thymoquinone in Caki2 cells. Furthermore, recent studies have re-
ported that the synthetic JAK2 inhibitor was considered as the therapeutic agent for other
cancer types [52–54]. It was reported that treatment of JAK inhibitors CEP-33779 and
NVP-BSK805 helped vincristine work effectively by sensitizing drug-resistant KBV20C oral
cancer cells [55]. AG490, JAK2 inhibitor, also inhibited the proliferation and invasion of
gallbladder cancer cells through inhibition of JAK2/STAT3 signaling pathway [54]. Thus,
our current study supported that JAK2 has a potential to be an important target for various
cancer treatment.

Telmisartan is angiotensin II receptor blocker and selectively inhibits the binding
of angiotensin II into AT1 receptor [56]. Telmisartan was approved by FDA in 1998 and
it has been used to treat high blood pressure and heart failure [57–59]. It also has been
reported that telmisartan has anti-cancer effect against several cancer cell lines [60–62].
Recent study showed that telmisartan has cytotoxic effect through generation of reac-
tive oxygen species (ROS) and upregulation of death receptor 5 (DR5) in human lung
cancer A549 cells [63]. It was reported that telmisartan inhibited cancer cell growth and
induced DNA damage in HHUA human endometrial cancer cells [64]. In another study,
telmisartan downregulated Bcl-2 and induced apoptosis in 786-0 RCC cells [65]. Also,
recent study has shown that telmisartan exhibited anti-cancer effect in MKN74 gastric
cancer cells in vitro and in vivo [66]. Interestingly, this study showed that telmisartan
inhibited tumor growth through cell cycle arrest in a mouse xenograft model of gastric
cancer. Furthermore, growth inhibitory effect of telmisartan was observed in esophageal
squamous cell carcinoma xenograft mouse model [67]. Similar with the previous studies,
we observed that telmisartan treatment suppressed cell proliferation and induced cell cycle
arrest and apoptosis via inhibition of JAK2 in human RCC cells. However, we still need
to perform in vivo experiments using RCC mouse model to prove the anti-cancer activity
of telmisartan. We selected telmisartan as one of the strongest JAK2 inhibitors from 821
FDA approved drugs. Since we adopted the screening way based on the assay to measure
ATP consumption by JAK2, we thought that telmisartan might compete with ATP to bind
the ATP binding site in JAK2. We are planning to conduct the competitive enzyme assay
and simulate in silico docking model to prove this hypothesis. As shown in Figure 5G,
interestingly, telmisartan treatment caused the downregulation of IL13Rα2. It seems that
inhibition of JAK2 by telmisartan might induce the transcriptional downregulation of
IL13Rα2 through inhibition of the phosphorylation of STAT3 transcriptional factor. So,
we plan to perform other experiments demonstrating that STAT3 bind to the promoter
region of IL13Rα2 and whether the binding affinity of STAT3 on the promoter region was
weakened by JAK2 inhibition or not.

Since telmisartan has been used to treat heart disease for 22 years, there are lots of
previous reports for researcher to examine the possible working mechanism of telmis-
artan in terms of anti-cancer activity. The relationship between JAK2 and angiotensin
II signaling pathway has been investigated in various studies [68–71]. It has been re-
ported that angiotensin II activates STAT3 through the IL6/gp130/JAK2 signaling pathway
in cardiomyocytes [72]. AG490, well-known JAK2 inhibitor, inhibited angiotensin II-
induced differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs) into
keratinocytes, which suggested that JAK2 is associated with angiotensin II signaling path-
way [73]. Recent study has shown that angiotensin II upregulated nitroxidative stress via
JAK2/STAT3 signaling pathway leading to the hyperproliferation of vascular smooth mus-
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cle cells (VSMCs) [74]. In another study, it is demonstrated that inhibition of angiotensin
II through JAK2/STAT3 signaling pathway suppressed tubular epithelial myofibroblast
trans-differentiation mediated by hepatocyte growth factor (HGF) [75]. Thus, we thought
that blocking of angiotensin II binding into AT1 receptor by telmisartan might cause the
inhibition of JAK2 through direct or indirect signaling pathway in RCC cells. We might
need to investigate the change of the phosphorylation status of JAK2 under knock-down
of AT1 receptor in RCC cells. Peroxisome proliferator-activated receptor γ (PPARγ) is
also well-known agonistic target of telmisartan. PPARγ is a member of nuclear receptor
family and it plays an important role in regulating lipid metabolism [76]. According to
a previous research, activation of JAK2/STAT3 signaling pathway was associated with
downregulation of PPARγ, which promoted fibrosis in rats [77]. Furthermore, PPARγ
decreased the protein expression of suppressor of cytokine signaling 3 (SOCS3) through
inhibition of JAK2/STAT3 signaling pathway leading to alleviation of hepatocyte steato-
sis [78]. Additionally, it was reported that pioglitazone, one of PPARγ agonists, inhibited
breast cancer growth by regulating JAK2/STAT signaling pathway in vitro and in vivo [79].
For the further study, we are trying to examine that rosiglitazone, FDA approved hypo-
glycemic agent as PPARγ agonists, has anti-cancer activity against RCC through inhibition
of JAK2 phosphorylation.

In this study, we demonstrated the clinicopathologically significance of IL13Rα2,
a kind of the independent receptor for IL13, in RCC progression. Mechanistically, down-
regulation of IL13Rα2 in RCC cells seemed to decrease the phosphorylation of JAK2 and
increase expression of FOXO3, suggesting that IL13Rα2 probably is involved in the pro-
gression of RCC through JAK2/FOXO3 pathway (Figure 6). In addition, we screened an
FDA approved drug library to identify the novel candidates inhibiting JAK2 in RCC cells
and selected telmisartan as the one of strongest JAK2 inhibitors. Telmisartan displayed the
anti-proliferative activity in RCC cells, which could be one of the therapeutic options for
RCC patients.

Figure 6. A diagram for the possible oncogenic role of IL13Rα2 in renal cell carcinoma (RCC) by
activation of JAK2 and inhibition of FOXO3.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jpm11040284/s1, Figure S1: (A). The correlation pattern between expression of IL13Rα2,
pJAK2, JAK2, and FOXO3 in A498, ACHN, Caki1, and Caki2 cells. Western blotting analysis of
IL13Rα2, pJAK2, JAK2, and FOXO3 in each cell line. β-actin was used for a gel-loading control;
(B) Reduction of ATP consumption by telmisartan in a dose-dependent manner in vitro. JAK2
protein was incubated with the indicated concentration of AZD1480 or telmisartan, peptide substrate,
and ATP for 30 min at 37 ◦C. After incubation, the reaction mixture was incubated with Glo-Max
solution for 30 min at room temperature to stop the reaction. Then, the remaining ATP level in each
reaction was measured by a microplate reader for luminescence; (C). Reduction of phosphorylation
of JAK2 by telmisartan. Western blotting analysis of pJAK2 and JAK2 after telmisartan treatment (0,
10, 20, and 40 µM). β-actin was used for a gel-loading control.

https://www.mdpi.com/article/10.3390/jpm11040284/s1
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