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Abstract

Intrinsically disordered proteins (IDPs) contribute to a multitude of functions. De novo design of

IDPs should open the door to modulating functions and phenotypes controlled by these systems.

Recent design efforts have focused on compositional biases and specific sequence patterns as the

design features. Analysis of the impact of these designs on sequence-function relationships indi-

cates that individual sequence/compositional parameters are insufficient for describing sequence-

function relationships in IDPs. To remedy this problem, we have developed information theoretic

measures for sequence–ensemble relationships (SERs) of IDPs. These measures rely on prior

availability of statistically robust conformational ensembles derived from all atom simulations. We

show that the measures we have developed are useful for comparing sequence-ensemble rela-

tionships even when sequence is poorly conserved. Based on our results, we propose that de
novo designs of IDPs, guided by knowledge of their SERs, should provide improved insights into

their sequence–ensemble–function relationships.
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Introduction

Advances in de novo design (Baker, 2019) have given rise to proteins
with new folds (Pessi et al., 1993; Smith and Hecht, 2011; ElGamacy
et al., 2018), novel functions (Khare and Fleishman, 2013), control-
lable dynamics (Johansson and Lindorff-Larsen, 2018; Kundert and
Kortemme, 2019) and unnaturally high stabilities (Geiger-Schuller
et al., 2018; Marcos et al., 2018). Historically, protein design was
cast as an inverse protein-folding problem (Ponder and Richards,
1987; Bowie et al., 1991; Yue and Dill, 1992; Kuhlman and Baker,
2004), whereby one prescribes a structure or a fold and uses design
principles to uncover the family of sequences that are compatible with
the fold. In this approach, one seeks the set of sequences for which
the free energy of folding, defined as the difference between standard
state free energies of the folded and unfolded states, is negative. In
addition to being able to design sequences that are compatible with a

prescribed fold, modern tools in protein design are yielding novel
folds with bespoke functions leading to a revolution in synthetic biol-
ogy (Pleiss, 2011; Gainza-Cirauqui and Correia, 2018).

Advances in protein design may be traced to improvements in
our understanding of sequence–structure–function relationships of
proteins (Shakhnovich et al., 2003; Qi and Grishin, 2005; Fischer
et al., 2011; Marchler-Bauer et al., 2011). These improvements are
manifest in being able to codify relationships between sequence and
structure. Improvements in de novo structure prediction, which
essentially represent the ability to relate sequence to structure, have
also gone a long way toward enabling rapid advances in protein
design (Heinke et al., 2013). When fluctuations around well-ordered
structures have to be incorporated into the designs, one can enhance
computational design strategies using novel Monte Carlo sampling
(Mignon and Simonson, 2016; Kundert and Kortemme, 2019).
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The preceding narrative summarizes the state-of-the-art for the
design of proteins that spontaneously adopt well-defined folds under
typical folding conditions. We refer to these proteins as intrinsically
ordered proteins (IOPs). However, over a third of eukaryotic pro-
teomes feature proteins or regions that are defined by significant
conformational heterogeneity and are referred to as intrinsically dis-
ordered proteins/regions (IDPs/IDRs) (Wright and Dyson, 1999,
2015; Dunker et al., 2002; Forman-Kay and Mittag, 2013; van der
Lee et al., 2014). It is becoming increasingly clear that IDPs/IDRs
have important functional roles, especially in the context of control-
ling the outcomes of decision-making and influencing circuits in
cells. Therefore, it stands to reason that IDPs/IDRs provide a prime
target for protein design. However, it is often the case that sequences
of IDPs/IDRs are poorly conserved, even when they belong to the
same functional family across orthologs (Brown et al., 2011; Moesa
et al., 2012; Lange et al., 2016). This stands in direct contrast to
IOPs, where proteins that contribute to similar functions often have
similar sequences (Pirovano and Heringa, 2008) and hence similar
structures, although numerous exceptions to this rule do exist
(Bryan and Orban, 2010; Wasserman and Saphire, 2016). Despite
these exceptions, multiple sequence alignments (MSAs) are highly
informative for inferring sequence-structure relationships of IOPs,
but they are not very useful in classifying IDPs/IDRs unless consider-
able prior knowledge is brought to bear on designing substitution
matrices that are used in sequence alignments (Lange et al., 2016).

It has been observed, however, that IDPs/IDRs retain similarities
in terms of amino acid compositions, even when sequence similar-
ities are minimal (Brown et al., 2011; Moesa et al., 2012). This has
lead to the development and deployment of various tools that enable
the computation of compositional parameters for IDPs/IDRs
(Holehouse et al., 2017). These include parameters such as average
hydropathy, the fraction of charged residues (FCR), the net charge

per residue (NCPR) (Das et al., 2015), the patterning of oppositely
charged residues along the linear sequence (Das and Pappu, 2013;
Sawle and Ghosh, 2015; Firman and Ghosh, 2018), and the pattern-
ing of proline and charged residues vis-à-vis other residues (Martin
et al., 2016).

Sequences of IDPs/IDRs can be compared to one another in
terms of coarse-grained compositional parameters or by comparing
compositional profiles written out along sliding windows
(Holehouse et al., 2017). Recent efforts have focused on de novo
redesigns of specific IDRs by altering compositional biases and pat-
terning parameters to influence overall dimensions, specific molecu-
lar functions, phase behavior, and cellular phenotypes (Beh et al.,
2012; Nott et al., 2015; Das et al., 2016; Martin et al., 2016; Pak
et al., 2016; Sherry et al., 2017; Franzmann et al., 2018; Staller
et al., 2018; Wang et al., 2018; Beveridge et al., 2019). Analysis of
changes to specific sequence parameters on sequence-function/
sequence-phenotype relationships have revealed the fact that no sin-
gle compositional parameter can serve as an adequate design feature
that connects IDP/IDR sequences to their functions (Das et al.,
2016; Sherry et al., 2017; Staller et al., 2018). What we require are
quantitative measures that account for the totality of ensemble fea-
tures encoded by IDP sequences (Lyle et al., 2013).

An analogy to the design of communication channels (Fig. 1)
helps in making our point about the importance sequence-ensemble
relationships for IDPs/IDRs (Csizmok et al., 2016). In a traditional
communication channel (Shannon, 1948), the information source
produces the message, which is then decoded, and converted into a
signal for transmission over the channel. The actual transmission is
a convolution of the intrinsic signal and extrinsic modifications
introduced in the form of encryption, noise, or ancillary signals.
The transmission is processed by a receiver and relayed to its
intended destination. In our conceptualization of the analogy to
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Fig. 1 Adaptation of a communication channel to describe protein design, focusing on IDP design. In a traditional communication channel, the information

source produces the message, which is then decoded and converted into a signal for transmission over the channel by the decoder. The actual signal that is

transmitted is a convolution of the intrinsic signal and extrinsic modifications introduced in the form encryption, noise, or ancillary signals. The transmission is

processed by a receiver and relayed to its intended destination. We propose that the model of a communication channel can be adapted to describe proteins,

such that the amino acid sequence (information source) encodes protein function (receiver) and resulting cellular phenotype (destination). IDPs exhibit conform-

ational heterogeneity. Therefore, analysis of all-atom simulations that considers the entire ensemble of conformations needs to be used to decode the informa-

tion contained in the IDP sequence.
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communication channels the information source is the protein
sequence (Fig. 1). The key decoding unit that facilitates protein
design and formalizes analogies between communication channels
and sequence-structure-function channels are the sequence-encoded
and decodable sequence-structure relationships. For IOPs, these can
be gleaned by combining MSAs (Pirovano and Heringa, 2008) and
structural comparisons (Marks et al., 2011; Reynolds et al., 2013;
Hopf et al., 2014). The situation is quite different for IDPs/IDRs
because no singular structure provides a suitable representation or
abstraction for the types of conformations that these sequences can
adopt. Efforts over the past decade have uncovered a series of rules
and heuristics that connect the sequences of IDPs/IDRs to conform-
ational ensembles that they adopt (Mittag and Forman-Kay, 2007;
Marsh and Forman-Kay, 2010; Kragelj et al., 2013; Brucale et al.,
2014; Jensen and Blackledge, 2014; Liu et al., 2014; Das, Ruff and
Pappu, 2015; Csizmok et al., 2016; Gibbs et al., 2017). SERs should
serve as quantitative proxies for sequence-structure relationships
and pave the way to understanding and modulating how the infor-
mation encoded in IDP/IDR sequences contributes to protein func-
tion and cellular phenotypes.

How are SERs quantified? Recent advances have enabled all
atom simulations with sufficient throughput for a variety of IDPs/
IDRs (Vitalis et al., 2007; Turjanski et al., 2008; Mao et al., 2010;
Vitalis and Caflisch, 2010, 2012; Das et al., 2012, 2015; De Sancho
and Best, 2012; Ganguly et al., 2012; Radhakrishnan et al., 2012;
Best et al., 2014; Wuttke et al., 2014; Metskas and Rhoades, 2015;
Piana et al., 2015; Ruff et al., 2015, 2018; Zerze et al., 2015, 2019;
Gibbs and Showalter, 2016; Fuertes et al., 2017; Harmon et al.,
2017; Warner et al., 2017; Dignon et al., 2018; Mittal et al., 2018;
Newcombe et al., 2018; Robustelli et al., 2018; Zheng et al., 2019).
The use of implicit solvation models combined with advances in
Monte Carlo sampling enables the efficiency required for being able
to simulate large number of sequences derived from similar func-
tional families (Vitalis and Pappu, 2009a, b, 2014; Radhakrishnan
et al., 2012; Das et al., 2015; Mittal et al., 2015; Ruff et al., 2019).
Comparisons to experiments suggest that the conformational ensem-
bles that result from the use of efficient simulations based on implicit
solvation models have the accuracy that should enable the construc-
tion of quantitative SERs (Das et al., 2012; Fuertes et al., 2017;
Gibbs et al., 2017; Warner et al., 2017; Munshi et al., 2018;
Newcombe et al., 2018). Further, these simulations can be combined
with genetic algorithms to design IDPs/IDRs that fit specified criteria
for SERs (Harmon et al., 2016). What we require is a formal set of
measures to quantify SERs for IDPs/IDRs. This, we propose, will
allow us to uncover the design principles that connect information
encoded in IDPs/IDRs to their functions and the cellular phenotypes
they influence.

Given our analogy between protein design and the design of
communication channels, we use methods from information theory
to develop measures quantify SERs. We show that these measures
enable large-scale comparisons of SERs across designed and natur-
ally occurring sequence families. These measures reveal the inad-
equacies of using compositional parameters as the only parameters
to be modulated for tuning sequence-encoded information in IDPs/
IDRs. We find that sequences with similar compositional biases can
have different SERs. We also find that highly dissimilar sequences
can have similar SERs leading to disparate sequences being part of
similar functional families across orthologs. This finding highlights
one of the reasons for the large sequence dissimilarities that have
been observed for IDPs/IDRs that belong to similar functional fam-
ilies across orthologs.

Methods

Simulations of sequences of FtsZ-CTTs

All-atom Monte Carlo simulations were performed using the
ABSINTH implicit solvent model and forcefield paradigm as made
available in version 2.0 CAMPARI simulation package (http://
campari.sourceforge.net) (Vitalis and Pappu, 2009a, b;
Radhakrishnan et al., 2012). Simulations were based on the
abs_3.2_opls.prm parameter set in conjunction with optimized para-
meters for neutralizing and excess Na+ and Cl– ions (Mao and
Pappu, 2012). Simulations were performed using a spherical droplet
with a diameter of 285Å with explicit ions to mimic a concentration
of 10mM NaCl. Temperature replica exchange Monte Carlo
(T-REMC) (Sugita and Okamoto, 1999) was utilized to enhance
conformational sampling. The temperature schedule ranged from
280 K to 400 K. Ensembles corresponding to a temperature of
310 K were used in the analysis reported in this work. Three inde-
pendent sets of T-REX simulations were performed for each CTT
sequence. In all, the ensembles for each CTT sequence were
extracted from simulations, where each simulation deploys 4.6 × 107

Monte Carlo steps. In each simulation, the first 106 steps were dis-
carded as equilibration. Simulation results were analyzed using the
MDTraj and CTraj routines that are available at http://pappulab.
wustl.edu/CTraj.html. The results for the RAM regions of the WT
and designed variants of NICD were those of Sherry et al. and also
use the ABSINTH model and were obtained using the CAMPARI
engine.

Results

All atom simulations of disordered systems may be performed in
one of two modes: IDRs tethered to ordered domains can be simu-
lated in their full protein contexts; alternatively, IDRs can be treated
as an autonomous units and sequence-intrinsic conformational pre-
ferences of IDRs are then extracted from simulations. The latter
mode is the more pervasive approach, although recent developments
in enhanced sampling (Mittal et al., 2014) have enabled the simula-
tions of IDRs tethered as disordered tails to ordered domains or as
linkers between ordered domains. A typical simulation will yield an
ensemble of conformations that can be analyzed using a series of
global and local parameters. We focus here on global parameters
that are central to polymeric descriptions of heterogeneous systems
namely, radii of gyration (Rg), asphericity (δ), and end-to-end dis-
tance (Re) – see Fig. 2A. Each of the three parameters can be gleaned
from small angle x-ray scattering (SAXS) measurements
(Steinhauser, 2005), although the reliability of the estimate will
depend on the parameter itself.

Rg quantifies the average distance, for a given conformation, of
all of the atoms with respect to its centroid; accordingly, it is a meas-
ure of the overall size, primarily in terms of the density of the poly-
mer in question. Analysis of a SAXS profile in the Guinier regime
enables direct estimates of 〈Rg〉 values averaged over the thermo-
dynamically relevant ensemble of the system. For a given conform-
ation, δ quantifies the shape of the polymer and it is calculated using
the eigenvalues of the gyration tensor (Steinhauser, 2005).
Ensemble-averaged values of δ, denoted as 〈δ〉, can be extracted by
inferring parameters for the average inertial ellipsoid that describes
all of the SAXS data for a given system (Fuertes et al., 2017). Values
of 〈δ〉 can also be extracted from measurements of rotational diffu-
sion, although care must be taken when connecting quantities
derived from hydrodynamic measurements to parameters that are
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derived from the inertial ellipsoid. Similar concerns apply to conver-
sions of hydrodynamic radii (〈Rh〉) from translational diffusion mea-
surements to estimates of 〈Rg〉 (Mao et al., 2010). Finally, ensemble
averaged values of Re, which refer to the ensemble averaged distance
between the ends of a chain, can be inferred from SAXS measure-
ments, but are more readily obtained from single molecule Förster
resonance transfer (smFRET) measurements. For homopolymers in
the ideal solvent limit, 〈Rg〉 and 〈Rg〉 differ from one another by a
multiplicative factor. However, away from the ideal solvent limit
and specifically for heteropolymers such as IDPs/IDRs, the
conformation-specific and ensemble averaged values of Rg and Re

can be decoupled from one another.
For a given sequence, the values of Rg, δ and Re are

conformation-specific, and for a heterogeneous ensemble of confor-
mations converged, statistically robust simulations will yield a dis-
tribution of values for these parameters. Accordingly, to first-order,
a complete description of conformational ensembles in terms of glo-
bal features can be cast as a three-parameter probability density
function viz., p(Rg,δ,Re). Features of this three-parameter distribu-
tion can be gleaned from three different marginal one-parameter dis-
tributions, p(Rg), p(δ), and p(Re)—see Fig. 2B—or three different
marginal two-parameter distributions, p(Rg,δ), p(Rg,Re) and p(δ,Re)
—see Fig. 2C. For a given sequence, the one- and two-parameter
marginal distributions shown in Fig. 2B and C provide a visual and

quantitative description of conformational heterogeneity. We use
these distributions to compute quantitative SERs as described next.

The ensemble entropy matrix

Figure 3 summarizes the overall approach that we follow to arrive
at a concise, quantitative, information theoretic description of the
conformational ensemble for a given IDP sequence that is based on
analysis of simulation results for one- and two-parameter marginal
distributions. Consider the case of a two-parameter distribution p
(Rg,δ) shown in panel A of Fig. 4. The two-parameter space is tiled
into a n × n grid and the integral of p(Rg,δ) is computed for each of
the grids, leading to a grid of probabilities as shown in panel B of
Fig. 4 where, n = 4. In general, if (X,Y) are the parameters of inter-
est, shown for (X,Y) ≡ (Rg,δ) in panel B of Fig. 4, then the informa-
tion theoretic entropy s(X,Y) using the grid of probabilities is
computed as:

s X Y p X Y p X Y, , ln , ; 1
i

n

j

n

i j i j

1 1

∑ ∑( ) = − ( ) ( ) ( )
= =

For a one-parameter distribution tiled into n bins, the corre-
sponding information theoretic entropy is computed as:

Fig. 2 Illustration of conformational features of IDPs/IDRs extracted from all-atom simulations. (A) Two distinct conformations are shown from the disordered C-

terminal tail of B. subtilis FtsZ. Each conformation within the ensemble has a set of properties. Here, we focus on three distinct properties: Rg, Re and δ (see

text). (B) One-parameter marginal distributions of p(Rg), p(Re) and p(δ) for the conformational ensemble of the disordered C-terminal tail of B. subtilis FtsZ (C)

Contour plots of the resulting two-parameter marginal distributions of p(Rg,δ), p(Rg,Re) and p(δ,Re) shown with distribution-specific color bars.
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The information theoretic entropies computed using a total of
three one-parameter and three two-parameter marginal distributions
become elements of symmetric square matrix that we refer to as the
ensemble entropy matrix, denoted as Sens, and computed as:
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The ensemble entropy matrix provides a concise description of
the SERs for a specific sequence. For an idealized maximally hetero-
geneous system with a flat distribution, setting n = 4 equal sized
intervals will lead to upper limits of 1.386 for the diagonal elements
and 2.773 for the off-diagonal elements of Sens. Fig. 5 shows the
ensemble entropy matrix that we compute from all atom simulations
for an archetypal polyampholytic IDP viz., the 67-residue disordered
C-terminal tail (CTT) from the bacterial cell division protein FtsZ of
B. subtilis.

Comparative assessments of SERs

The ensemble entropy matrix can be calculated using simulation
results for a sequence of interest. If we have a family of sequences,
then the simulated ensembles for each sequence can be reduced to a
sequence-specific ensemble entropy matrix. For a pair of sequences
A and B, we shall denote the corresponding ensemble entropy matri-
ces as Sens,A and Sens,B, respectively. For this pair of sequences, we
define a difference ensemble entropy matrix as: ΔAB = (Sens,A – Sens,
B). The dissimilarity between SERs for sequences A and B is calcu-
lated as the Frobenius norm of the difference ensemble entropy
matrix according to:

D ; 4
i j i

ijAB AB F

1

3 3
AB 2∑ ∑Δ Δ= ‖ ‖ = ( ) ( )

= =

( )

In Equation (4), AB FΔ‖ ‖ denotes the Frobenius norm of ΔAB and

ij
ABΔ ( ) are the elements of ΔAB. If the SERs, described quantitatively

in terms of Sens matrices, are essentially identical for a pair of
sequences A and B, then the DAB → 0; conversely, for a pair of
sequences whose SERs are maximally dissimilar, DAB = 5.369. In
reality, the constraints imposed by chain connectivity and excluded
volume considerations imply that the upper bound will be consider-
ably lower than the theoretical maximum that is set by assuming an
ensemble defined by flat one- and two-parameter marginal distribu-
tions. However, the theoretical lower and upper bounds provide a
natural rubric for comparing SERs across pairs of sequences. This is
first illustrated for a set of sequences of identical length and amino
acid composition. We then follow this up by using the Sens matrix
derived dissimilarity measures to compare SERs for sequences
derived from the same functional family across orthologs.

Comparative assessments of SERs across a set of

sequences of identical lengths and amino acid

compositions

A significant majority of IDP sequences are classified as strong poly-
ampholytes. In these systems, the FCR values are greater than 0.3
whereas the NCPR values are close to zero. The calculated and mea-
sured values for ensemble averaged radii of gyration (〈Rg〉) of strong
polyampholytic IDPs are governed by the mixing vs. segregation of
oppositely charged residues within the linear sequence (Das and
Pappu, 2013). This feature, referred to as charge patterning, can be
quantified by a parameter known as κ or other variants of this par-
ameter (Sawle and Ghosh, 2015). For a fixed amino acid

Fig. 3 Summary of workflow used to generate the ensemble entropy matrix

for a sequence of interest, designated as A.

Fig. 4 Example of a two-dimensional probability distribution of conformational properties used to quantify the information theoretic entropy (A) The two-

parameter space is tiled into n×n grids. (B) Grid of probabilities derived from the 2-parameter distribution shown in (A).
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composition, one can design a series of sequence variants character-
ized by κ values that range from 0 to 1, where 0 implies sequences
where the oppositely charged residues are evenly distributed along
the linear sequence and 1 implies that the oppositely charged resi-
dues are segregated into distinct blocks along the sequence.

Recent investigations have quantified the impact of changes to κ
on the global dimensions of different IDPs and the functions con-
trolled by these IDPs (Das et al., 2016; Sherry et al., 2017). One
such example is of the Notch intracellular domain (NICD), which
controls the transcription of Notch genes that contribute to the
determination of cell fate in metazoans (Johnson et al., 2010;
Kopan, 2012). NICD has a bipartite RAM-ANK architecture com-
prising of an IDR in the form of a 120-residue RAM region that is
fused to an Ankyrin (ANK) repeat domain. Sherry et al. (2017)
recently designed a set of NICD variants that have identical ANK
domains but differ in the charge patterning of their RAM regions.
The amino acid compositions of the RAM regions and the sequence
of the motif that binds to the transcription factor CSL were also
identical across the designed variants. In all, thirteen distinct NICD
variants were designed, and the κ values of the RAM regions of
these sequences are shown in Table I. Sherry et al. found that the

computed 〈Rg〉 values and measured hydrodynamic radii of RAM
variants show an inverse correlation with κ (Sherry et al., 2017).
The Pearson r-values quantifying the inverse correlations were
0.895 and 0.858, respectively. Interestingly, the average asphericity
values showed considerably weaker inverse correlation with κ with
a Pearson r-value of 0.55.

We computed ensemble entropy matrices using results from all
atom simulations (Sherry et al., 2017) for each of the 13 RAM var-
iants as well as the WT sequence. These matrices were used to com-
pute pairwise dissimilarities (DAB) between SERs and the results are
shown in the form of a checkerboard plot in panel A of Fig. 6. The
RAM variants whose SERs are most similar to those of the WT
sequence are PT8s (κ = 0.44), PT9 (κ = 0.45), PT3 (κ = 0.22), PT5s
(κ = 0.32), and PT7s (κ = 0.40). The pairwise dissimilarity measures
derived from ensemble entropy matrices were used to construct a
dendrogram that arranges sequences in terms of extent of similarity
of their SERs. This is shown in panel B of Fig. 6 for the RAM var-
iants. This dendrogram provides a visual summary of the detailed
information presented in the checkerboard plot of panel A. It high-
lights the fact that statistically robust conformational distributions
generated from all atom simulations can be used to quantify similar-
ities/dissimilarities between pairs of IDPs.

The results for the designed RAM variants help us illustrate the
importance of using multi-parameter conformational distributions
for quantifying and comparing SERs. To do so, we consider pair-
wise comparisons of the WT RAM with RAM variants of PT5s and
PT8s, respectively. The dissimilarity measures DAB are smallest for
the PT8s-WT pair even though PT5s has a κ-value that is identical
to WT RAM. Comparison of the difference ensemble entropy matri-
ces ΔAB for the PT8s-WT and PT5s-WT pairs, shown in Fig. 7,
reveals the following: Despite having identical κ-values, identical
ensemble-averaged Rg values, and very similar ensemble-averaged
asphericity values, the two-parameter marginal distributions p(Rg,Re)
and p(δ,Re) are considerably different across the WT and PT5s
sequences. This is underscored by the magnitudes of the differences
between s(Rg,Re) and s(δ,Re) for WT RAM vs. the RAM region from
PT5s. These differences arise because of the sequence-specificity in
size and shape fluctuations as well as sequence-specificity in the
decoupling of Rg and Re distributions. We also computed difference
ensemble entropy matrices for the RAM regions of WT (κ = 0.32)
and PT8s (κ = 0.44). Interestingly, while the ensemble-averaged
Rg, Re, and δ values of PT8s are more different from those of WT
RAM when compared to PT5s vs. WT RAM (Table I), the overall
dissimilarity measure DAB is lowest for PT8s vis-à-vis the WT RAM.

The comparisons illustrated above highlight two crucial features
of IDPs: similarities in the values of first moments of one-parameter
marginal distributions such as such as 〈Rg〉,〈Re〉, and 〈δ〉 can mask
significant dissimilarities in the details of conformational ensembles.
Secondly, dissimilarities in values for the first moments need not
necessarily mean that the overall conformational ensembles have
equivalent dissimilarities. Instead, conformational fluctuations can
give rise to similar distributions, thereby offsetting differences in first
moments. Conformational fluctuations are the defining hallmark of
systems such as IDPs/IDRs and it is important to account for con-
formational distributions to account for quantitative similarities/dis-
similarities between sequence specific ensembles. Our results
emphasize the need for computing SERs using entire distributions,
preferably computed in terms of multiple parameters, rather than
over-interpreting changes observed from the scaling of first moments
such as 〈Rg〉 or 〈Re〉 with chain length, κ, or proxies for these

Fig. 5 Using the one- and two-dimensional distributions to generate the ensem-

ble entropy matrix: From the grid of probabilities for parameters X and Y (see

Fig. 4) for Rg & δ, the information theoretic entropy s(X,Y) of the two-dimensional

distribution is computed as s X Y p X Y p X Y, , ln ,i
n

j
n

i j i j1 1( ) = −∑ ∑ ( ) ( )= = . These

values are shown as off diagonal elements of the ensemble entropy matrix

(Sens). Entropies extracted from the one-parameter distributions are shown along

the diagonal and are computed as: s X p X p Xlni
n

i i1( ) = −∑ ( ) ( )= .

Table I. Summary of κ values and parameters extracted from all

atom simulations for the RAM region extracted from the WT and

designed NICD variants. Data are from the work of Sherry et al.

Variant κ <Rg > Å <Re > Å <ð>

WT 0.32 26.93 42.00 0.33
PT1 0.16 29.80 58.77 0.35
PT2s 0.21 28.19 46.66 0.31
PT3s 0.22 27.55 52.53 0.32
PT4 0.22 32.43 64.24 0.42
PT5s 0.32 27.43 46.21 0.32
PT6 0.40 28.14 53.46 0.33
PT7s 0.40 25.48 40.43 0.30
PT8s 0.44 26.23 49.55 0.31
PT9 0.45 26.40 48.67 0.36
PT10 0.50 25.04 45.41 0.28
PT11 0.55 24.85 47.05 0.26
PT12 0.60 24.85 49.19 0.37
PT13 0.75 24.65 42.88 0.28
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parameters (Das and Pappu, 2013; Riback et al., 2017; Firman and
Ghosh, 2018).

Quantitative SERs for IDRs derived from the same

functional family across orthologs

Covariation in sequence helps unmask cryptic sequence–structure
relationships and this can be used to improve structure prediction,
uncover the determinants of protein function, and enable novelties
in protein design (Reynolds et al., 2013; Raman et al., 2016; Salinas
and Ranganathan, 2018). Although covariation analysis has been
adapted to predict the presence of specific structural motifs within
IDPs/IDRs, this type of analysis requires large-scale MSAs and a
high degree of sequence conservation as well. Most IDPs/IDRs are
characterized by very poor sequence conservation. Examples of this
include the RAM region of NICD (Bertagna et al., 2008) that was
discussed in the preceding section and the disordered C-terminal tail
of the bacterial protein FtsZ (Buske et al., 2015). Cell division in

rod-shaped bacteria involves the polymerization and assembly of
FtsZ into so-called Z-rings that form at the midsection of the divid-
ing cell (den Blaauwen et al., 2017; Wehrens et al., 2018). FtsZ,
which is a bacterial homolog of tubulin, is also a GTPase and it has a
sequence architecture that is modular (Fig. 8A). The GTPase, referred
to as the core, is an ordered domain that has a C-terminal tail (CTT)
attached to it. The CTT is essential for Z-ring formation in vivo in
bacteria where this has been studied (Buske and Levin, 2013).

A recent analysis quantified a variety of sequence features for
CTT sequences derived from 1208 different FtsZ proteins across
bacterial orthologs (Buske et al., 2015). A summary of this analysis
in Fig. 8B shows a scatter plot in a two-parameter space defined by
CTT length and CTT FCR. This analysis suggests a confounding
level of variation for the CTT sequences. The average CTT sequence
is 60–70 residues long with an average FCR value of 0.3. However,
there are significant deviations from the average values for CTT
length and FCR. In fact, the distribution of points in Fig. 8 have an
overall L-shape suggesting that longer CTTs tend to have lower

Fig. 6 Comparative assessments of SERs for the RAM regions of NICD variants: (A) Checkerboard plot of the similarity between ensemble entropy matrices of

the system of Notch-RAM variants. The dissimilarity between ensemble entropy matrices Sens,A and Sens,B is calculated as the Frobenius norm of the difference

ensemble entropy matrix according to Equation (4). (B) Dendrogram of sequences grouped based on the similarities of their Sens matrices.

Fig. 7 Comparison of the difference ensemble entropy matrices ΔAB for the PT8s-WT and PT5s-WT pairs.
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FCR values, whereas shorter sequences have higher FCR values. A
recent study showed that the relevant parameter for disordered lin-
kers and tails is the so-called thermodynamic or effective length
(Mittal et al., 2018) and not the number of number of residues
within an IDR sequence, which we refer to as the apparent length.
Instead, the effective length is governed by the thermodynamically
preferred end-to-end distance realized by the disordered linker or
tail that is encoded by at least two parameters namely, the apparent
length and the FCR, and is also influenced by extrinsic parameters
such as solution conditions.

Covariation in the values of apparent lengths and FCR suggests
that there are likely to be preferred conformational distributions
encoded by functional CTTs. To quantify and compare these con-
formational distributions, we performed all atom simulations for 58
distinct CTTs. The sequences of these CTTs span a range of length
and FCR values and they are drawn from the bounded region within
Fig. 8B. For our analysis, we first computed the distances between
pairs of sequences for FtsZ cores that were derived from MSAs of
the cores alone. As expected, the sequences of the core GTPase
domains of FtsZ proteins show minimal variation across orthologs

(Fig. 9A). In contrast, a similar analysis, performed on the CTT
sequences, we find that the pairwise sequence similarities have an
apparent bimodality (Fig. 9B); pairs of CTT sequences are either
highly similar or highly dissimilar. While the former is expected, the
latter is surprising because the CTTs are essential for FtsZ function,
and yet there appear to be a range of very different sequences that
can contribute as functional CTTs.

We used simulation results for 58 different CTTs and computed
pairwise dissimilarity measures (DAB) using the SERs that we
obtained for each of the CTTs. The results are shown as a checker-
board plot in Fig. 9C. Since the IDR lengths differ for this analysis,
we normalized the length-dependent parameters (Rg and Re) by the
square root of the length prior to computing the one- and two-
parameter marginal distributions that are required to construct the
ensemble entropy matrices. The bimodality that is apparent in the
comparison of CTT sequences is not manifest in the DAB that are
used to quantify similarities/dissimilarities in SERs.

Next, we computed the Frobenius norms of pairwise difference
ensemble entropy matrices and normalized these values by the max-
imal norms. We also computed normalized pairwise distances

Fig. 8 Details regarding FtsZ. (A) The protein comprises of an ordered GTPase core domain and a hyper-variable C-terminal tail (CTT). (B) Scatter plot of CTT

sequence parameters summarized in terms of CTT-length and the Fraction of Charged Residues (FCR). To compare the conformational distributions of CTTs,

we performed all-atom simulations for 58 distinct CTTs drawn from the yellow region (sequences are listed in Table S1 of the Supplementary Material).

Fig. 9 The conservation of the FtsZ core is in stark contrast to the hyper-variability of the FtsZ CTT sequences and resulting SERs. (A) Checkerboard plot of the

pairwise distances extracted from a MSA shows minimal variation between pairs of cores. (B) Data from MSAs of CTT sequences exhibit a bimodality whereby

the sequences are either very similar or very different from one another. The colorbar used to annotate panels (A) and (B) are the same. (C) Checkerboard plot

of pairwise differences between ensemble entropy matrices for FTsZ CTTs.
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between CTT sequences, where the normalization was performed
using the maximal difference between sequences. Figure 10 shows a
two-dimensional histogram of the two normalized values computed
for all 58 FtsZ-CTT sequences. If the normalized Frobenius norms
of pairwise difference ensemble entropy matrices and normalized
pairwise sequence differences are less than 0.5, the implication is
that similar sequences will have similar SERs. This region, which
corresponds to the lower left corner of the two-dimensional histo-
gram, encompasses 40% of the CTTs studied here. If normalized
Frobenius norms of pairwise difference ensemble entropy matrices
and normalized pairwise sequence distance differences are both
above 0.5, then the differences in CTT sequences translate to differ-
ences in SERs—corresponds to 7% of CTTs studied here.
Interestingly, 46% of the CTTs studied here fall into the top left
region of the 2-dimensional histogram. In this region, the normal-
ized Frobenius norms of pairwise difference ensemble entropy matri-
ces are below 0.5, whereas the normalized differences between
sequences exceed 0.5. These CTT sequences have very similar SERs
despite having very different sequences. Overall, the results highlight
the value of analyzing SERs across sequences derived from

orthologs. The overall implication is that for over 86% of the FtsZ
CTTs the SERs, quantified in terms of multi-parameter conform-
ational distributions, are largely preserved even though in 46% of
these sequences the pairwise sequence comparisons show consider-
able divergence.

Conclusions

IDPs/IDRs feature prominently in eukaryotic proteomes (Liu et al.,
2006). As semantic descriptions for systems exhibiting different
degrees of conformational heterogeneity were being developed,
terms such as intrinsically unstructured proteins were introduced
(Wright and Dyson, 1999) and even used in the literature (Harauz
et al., 2004; Takahashi et al., 2009; Huhn et al., 2014; Bencivenga
et al., 2017). This phraseology can erroneously be taken to imply
that IDPs are unstructured. However, being disordered and being
unstructured are not the same (Smyth et al., 2001) and this has
become clear with intense efforts yielding formal and heuristic
descriptions of sequence–ensemble relationships for IDPs/IDRs.
Indeed, these sequences come in distinct flavors (Hofmann et al.,
2012; Das et al., 2015; Holehouse et al., 2017); and the types of
ensembles that are accessible to IDPs/IDRs are governed by the
information encoded within their sequence and influenced by a var-
iety of extrinsic factors including solution conditions, concentrations
of ligands and epigenetic modifications. Importantly, disorder refers
to measures that quantify the multi-parameter, sequence-specific
conformational distributions that reflect the interplay of chain-
solvent and intra-chain interactions (Lyle et al., 2013). In this con-
text, it is worth noting that numerous bioinformatics servers predict
disordered regions within protein sequences. These predictors are
valuable because they identify, with reasonable accuracy, the regions
that are likely to be IDPs/IDRs as opposed IOPs or intrinsically
ordered domains. These types of disorder predictions serve as the
starting point for quantitative studies of SERs. Having identified a
disordered region, one can perform suitable all atom simulations of
the requisite throughput to generate thermodynamically accurate
and statistically robust descriptions of conformational ensembles.
Unlike an IOP that can often be described in terms of one or a small
set of structures, with atomic coordinates in models for the struc-
tures, one needs statistical descriptions of SERs. Here, we have

Fig. 10 Histogram of SERs and sequence similarities. Two-dimensional histo-

gram of the normalized pairwise CTT DAB values and normalized pairwise

distances between aligned CTT sequences. Both distributions are normalized

by their maximum values.

Fig. 11 Dendrogram that arranges FtsZ CTT sequences based on similarities of SERs. The sequence IDs are derived from Table S1 shown in the Supplementary

Material.
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introduced a three-parameter distribution function that we decom-
pose into three one-parameter and three two-parameter marginal
distributions to then construct an ensemble entropy matrix (Sens) for
a given IDP/IDR sequence. These Sens matrices serve to synthesize
the SERs by quantifying the information contained in distribution
functions. Construction of pairwise difference ensemble entropy
matrices and the calculation of Frobenius norms of these difference
matrices allow us to compare sequences to one another through the
lens of their SERs.

Our results reveal interesting insights regarding SERs of IDPs/
IDRs. Analysis of the RAM regions of NICD variants show that
while a single sequence encoded parameter such as κ is useful for
generating novel variants, it does not fully describe SERs.
Interestingly, considerable attention has focused on the calculation/
measurement of first moments of conformational distributions such
as ensemble-averaged values for Rg, Re and asphericity. These quan-
tities show coherent variations with parameters such as chain length
and sequence patterning for homopolymers and low complexity sys-
tems such as block copolymers. These simple systems are defined by
the homogeneity of interactions on all length scales. However, most
IDPs/IDRs are bona fide finite-sized heteropolymers wherein the
sidechains are of different sizes, feature different functional groups,
and encode very different balances between sidechain-solvent and
sidechain–sidechain interactions. These chemical details cannot be
readily captured using coarse-grained approximations for heteropo-
lymers (Ruff and Holehouse, 2017). Recent studies have highlighted
the importance of chemical heterogeneity on decoupling size and
shape fluctuations and also the fluctuations of Rg and Re (Fuertes
et al., 2017; Song et al., 2017; Peran et al., 2019). This type of
decoupling raises caution about inferring SERs purely from the scal-
ing of ensemble-averaged values of Rg, Re or asphericity. Instead, a
complete description of SERs requires measurements of sizes,
shapes, and conformational distributions and/or dynamics (Jensen
et al., 2013, 2014). Alternatively, one can pursue the all atom simu-
lations providing they are efficient enough to enable sufficient
throughput while also ensuring that they are accurate.

Of course, one cannot be certain of the accuracy of forcefields
that are used for simulations of IDPs/IDRs. Considerable efforts have
gone into the refinement of forcefields that are interoperable with
explicit representations of solvent molecules (Best et al., 2014). We
have largely focused on the development, testing, refinement, and
deployment of the ABSINTH implicit solvation model and forcefield
paradigm for the simulations of IDPs/IDRs. To date, this model,
aided by a variety of enhanced sampling methods, has been used to
make predictions of SERs for well over 3000 sequences of different
lengths and sequence complexities. Recent efforts have also focused
on simulations of IDRs as tails and linkers tethered to ordered
domains (Mittal et al., 2014, 2018). Where possible, these simulations
have been used to make testable predictions for scrutiny by experi-
ment or reanalyzed using reweighting approaches based on experi-
mental data. A new version of ABSINTH, known as ABSINTH-C
(Choi and Pappu, 2019), was developed to remedy inaccuracies in the
descriptions of local conformational equilibria. At the level of the con-
formational distributions studied here, it appears that the two ver-
sions generate roughly equivalent results. We propose that it should
be possible to deploy ABSINTH/ABSINTH-C based simulations in
high throughput investigations of SERs for IDPs/IDRs and combine
this with a modified version of a recently developed genetic algorithm
for designing sequences with bespoke SERs (Harmon et al., 2016).

Our results for FtsZ CTTs underscore the importance of using
SERs as a signal that can be modulated through sequence design.

For example, one could conceive of a design strategy that generates
a diverse library of CTTs that support bacterial cell division by
ensuring the preservation of SERs. These designs can be guided by
taxonomic inferences gleaned from a dendrogram that synthesizes
all of the data in the matrix of all pairwise dissimilarity values. This
dendrogram, shown in Fig. 11, is a similarity tree that groups CTT
sequences based on the similarities of their SERs. We propose that
to a first approximation, the CTTs with similar or identical SERs
are likely to be functionally interoperable with one another. We
anticipate that the use of SERs, fueled by advancements in computa-
tional efficiency and accuracy, will enable the emergence of new
design paradigms that target the sequences of IDRs/IDPs for impact-
ing cellular processes and circuits that are controlled by proteins
with disordered regions.

Supplementary Data

Supplementary data are available at Protein Engineering, Design and
Selection online.
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