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Simple Summary: This study presents novel insights on dysregulated B cell proliferation networks
in non-small cell lung cancer (NSCLC). Within this network, a nine-gene signature demonstrated
prognostic and predictive indications in more than 1400 NSCLC patients using their gene and protein
expression profiles in bulk tumors. Furthermore, novel therapeutic candidates are identified to
improve NSCLC treatment outcomes.

Abstract: In NSCLC, there is a pressing need for immunotherapy predictive biomarkers. The
processes underlying B-cell dysfunction, as well as their prognostic importance in NSCLC, are
unknown. Tumor-specific B-cell gene co-expression networks were constructed by comparing the
Boolean implication modeling of single-cell RNA sequencing of NSCLC tumor B cells and normal
B cells. Proliferation genes were selected from the networks using in vitro CRISPR-Cas9/RNA
interfering (RNAi) screening data in more than 92 human NSCLC epithelial cell lines. The prognostic
and predictive evaluation was performed using public NSCLC transcriptome and proteome profiles.
A B cell proliferation and prognostic gene co-expression network was present only in normal lung
B cells and missing in NSCLC tumor B cells. A nine-gene signature was identified from this B cell
network that provided accurate prognostic stratification using bulk NSCLC tumor transcriptome
(n = 1313) and proteome profiles (n = 103). Multiple genes (HLA-DRA, HLA-DRB1, OAS1, and CD74)
differentially expressed in NSCLC B cells, peripheral blood lymphocytes, and tumor T cells had
concordant prognostic indications at the mRNA and protein expression levels. The selected genes
were associated with drug sensitivity/resistance to 10 commonly used NSCLC therapeutic regimens.
Lestaurtinib was discovered as a potential repositioning drug for treating NSCLC.

Keywords: B cells; T cells; single-cell RNA sequencing; CRISPR-Cas9/RNAi screening; prognostic
and predictive biomarkers; non-small cell lung cancer

1. Introduction

Non-small cell lung cancer (NSCLC), accounting for 84% of lung cancer cases [1], is
the leading cause of cancer-related mortality. The major histological subtypes that consti-
tute NSCLC are lung adenocarcinoma (40% of NSCLC cases), squamous cell carcinoma
(25–30%), and large cell carcinoma (5–10%), and each subtype represents a distinct prog-
nosis for the patients as does the treatment option [2,3]. Adjuvant chemotherapy of stage
II/III NSCLC has resulted in 10–15% increased overall survival [4]. However, the overall
5-year survival rate for NSCLC is less than 15% due to the limited therapeutic response
and the resulted tumor recurrence/metastasis [5]. Immunotherapy has shown promising
results in NSCLC [6,7]. The neoadjuvant PD-1 inhibitor nivolumab induced a pathological
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response in 9 of 20 (45%) resected NSCLC tumors in stages I, II, and IIIA, including both
PD-1-positive and -negative tumors, with few side effects [6]. In an open-label phase I
clinical trial of chemotherapy-naive NSCLC patients with stage IIIB or stage IV, nivolumab
with anti-CTLA4 ipilimumab in first-line therapy had an acceptable safety profile and
demonstrated promising clinical performance, with a high response rate and long-term
response [7]. Patients with stage IIIB who received anti-PD-L1 durvalumab after chemora-
diation had a significant overall survival benefit (median OS not reached in the durvalumab
arm compared to 29.1 months in the placebo arm (HR 0.69 [95% CI 0.55–0.86])) in a phase
III randomized trial [8,9]. The overall survival benefit of pembrolizumab monotherapy was
demonstrated in untreated stage IV NSCLC patients compared to chemotherapy in patients
with tumors expressing a PD-L1 tumor proportion score (TPS) ≥ 50%, TPS ≥ 20%, and TPS
≥ 1% in randomized phase III clinical trials [10–12]. Atezolizumab received FDA approval
for stage II and IIIA NSCLC following chemotherapy in patients with PD-L1 > 1% [13,14].
Nevertheless, only a subset of NSCLC patients responded to immunotherapy due to pri-
mary, adaptive, or acquired immune resistance [15,16]; mutations; and the varying amounts
and properties of tumor-infiltrating lymphocytes (TILs) [17–19]. PD-L1 and tumor muta-
tional burdens have not been demonstrated to be reliable predictive biomarkers [20]. There
are currently no well-established predictive biomarkers for immunotherapy response. In
addition, there are no clinically applied biomarkers to identify early-stage NSCLC patients
with all histological subtypes who are at high risk for tumor recurrence and metastasis for
adjuvant therapies.

The tumor immune microenvironment is complex, dynamic, and heterogeneous,
comprising interweaving signaling pathways and networks of genes and proteins within
the immune system, stromal cells, and the host factors [21]. When tertiary lymphoid
structures (TLSs) are present in the tumor microenvironment, cancer patients typically
have favorable clinical outcomes [22]. TLSs in NSCLC tumors contain follicular B cells
and adjacent clusters of dendritic cells and T cells [23]. TLSs and tumor-infiltrating B cells
increase immune checkpoint inhibitors’ (ICIs) responses in cancer immunotherapy, which
has prognostic implications [24–27]. Profiling of the immune cell composition showed
that only B cells had a significantly higher presence in tumors compared to the distal
lung in an NSCLC patient cohort [28]. A high density of B cells within a TLS is positively
correlated with tumor antigen-specific antibody responses and increased intratumor CD4+

T cell clonality as well as early differentiated, activated, and non-regulatory CD4+ T cells,
suggesting a central role of B cells in determining protective T cell responses in NSCLC
patients [29,30]. T cell dysfunction and therapy have been established for cancer treatment,
including NSCLC [31–37]. However, the biology, prognostic significance, and potential
benefit of B-cell-based immunotherapy in lung cancer have yet to be deciphered [38–40].

Given this intricacy and heterogeneity, a gene signature integrating various features
should be created to identify the right patient for a specific immunotherapy [21], in con-
cert with chemotherapy and/or radiotherapy. Novel computational network modeling is
necessary to reveal essential molecular interactions with implications in prognosis, pro-
liferation, and response to therapies for improving NSCLC treatment. Rigorous pathway
and network approaches are crucial for the discovery of innovative targeted therapies and
repurposing drugs to prolong NSCLC survival [41]. This study utilized Boolean impli-
cation networks [42–44] to identify tumor-specific B cell gene co-expression networks in
NSCLC using public single-cell RNA sequencing data. Within the identified B cell net-
works, proliferation genes were identified from CRISPR-Case9/RNA interference (RNAi)
screening assays in human NSCLC cell lines. Differentially expressed genes in B cells and
T cells with prognostic implications were selected using bulk NSCLC tumor transcriptome
(n = 1313) and proteome profiles (n = 103). Chemopredictive genes were filtered using
public in vitro drug screening data in human NSCLC epithelial cell lines (n = 135). Finally,
functional pathways, targeted therapies, and repositioning drugs were discovered based on
the genes identified using the artificial intelligence (AI) network approach for improving
NSCLC outcomes.
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2. Materials and Methods
2.1. Public Patient Cohorts
2.1.1. Single-Cell RNA Sequencing of B Cells

A previous study [45] generated single-cell RNA sequencing data of 192 B cell samples
from one NSCLC patient, including 96 tumor B cell samples and 96 normal B cell samples
from adjacent normal lung tissues. Live CD45+ CD19+ cells were directly sorted in 2 µL
of Qiagen TCL buffer in 96-well plates. The modified Smart-seq2 protocol [46,47] was
used to prepare the libraries. The RNA samples were analyzed with Illumina HiSeq 2000.
Gene features were counted with the featureCounts (version 1.4.0-p1, RRID:SCR_012919,
Oxford University Press, Oxford, UK) method [48] based on the Gencode v19 transcriptome
annotation. The data containing feature counts were available in the NCBI GEO database
with the accession number GSE84789. Feature counts of 20,092 genes in all 192 samples
were included to construct single-cell gene co-expression networks and perform differential
expression analysis.

2.1.2. Single-Cell RNA Sequencing of T Cells from Peripheral Blood Lymphocytes (PBLs)

Single-cell RNA sequencing data of T cells from PBLs were generated by Chiou et al. [49]
at the Stanford FACS Facility. A total of 92 T cell samples were collected from three NSCLC
patients, and 531 T cell samples were collected from four healthy donors. The samples were
sequenced using Illumina HiSeq 4000. The reads were mapped with the STAR aligner [50]
based on human genome reference GRCh38. SAMtools (version 1.4, RRID: SCR_002105,
Oxford University Press, Oxford, UK) [51] was used to sort and index the mapped reads. The
sorted PBL counts data were available in the NCBI GEO database (GSE151531). PBL counts of
17,004 genes were used in differential expression analysis in this study.

2.1.3. Single-Cell RNA Sequencing of NSCLC Tumor T Cells

Tumor-infiltrating T cell data were also provided in Chiou et al. [49]. A total of 2950 T
cell samples were collected from 10 NSCLC patients. The data were sequenced, mapped,
sorted, and indexed with the same process as for the PBL T cell data described above.
Chiou et al. [49] performed dimension reduction using Uniform Manifold Approximation
and Projection (UMAP) on these NSCLC tumor T cell data and identified 14 cell clusters
(C1-C14). The counts of 20,719 genes and the cell cluster identification were available in the
NCBI GEO database (GSE151537).

2.1.4. RNA Sequencing of Bulk NSCLC Tumors

RNA sequencing data from 199 NSCLC patient tumor samples were collected pre-
viously [52,53]. Sequencing was performed with Illumina HiSeq 2500. The reads were
mapped using TopHat (version 2.0.8b, RRID:SCR_013035, Oxford University Press, Oxford,
UK) [54] based on human genome reference GRCh37. The raw read count was estimated
using featureCounts (version 1.4.0-p1, RRID:SCR_012919, Oxford University Press, Oxford,
UK) [48]. Fragments per kilobase million (FPKM) data were generated with the Cufflinks
tool (version 2.1.1, RRID: SCR_014597, Springer Nature, London, UK) [55]. FPKM and read
counts data were available in the NCBI GEO database (GSE81089). A total of 197 samples
with sufficient survival information were included for prognostic evaluation.

2.1.5. Affymetrix Microarray of NSCLC Bulk Tumors

Affymetrix data of 100 NSCLC tumor samples were reported previously [56,57].
These data included samples from 53 short-term (<20 months) survivors and 47 long-
term (>58 months) survivors. Transcriptional expression profiles were generated with
Affymetrix Human Genome U133 Plus 2.0 Array. Raw microarray data (GSE28571) were
normalized using the robust multi-array average (RMA) method. These data were used to
select prognostic genes in this study.



Cancers 2022, 14, 3123 4 of 23

2.1.6. RNA Sequencing Data of The Cancer Genome Atlas (TCGA)

Two NSCLC cohorts from TCGA were obtained from LinkedOmics [58] (http://
linkedomics.org/, accessed on 28 April 2021). These cohorts included 515 lung adeno-
carcinoma (LUAD) samples and 501 lung squamous cell carcinoma (LUSC) samples with
matched normalized RNA sequencing data and clinical follow-up information. The TCGA
datasets were used for prognostic and radiotherapy response evaluation.

2.1.7. Proteomics of LUAD Tumors

Proteomic quantification of 11,056 unique genes was measured in 103 LUAD tumors
using LC-MS/MS [59]. Log10-transformed proteomic data were used in the prognostic
evaluation in this study.

2.2. Boolean Implication Networks

The Boolean implication network algorithm used in this study was developed by
Guo et al. [42,60,61]. A detailed description of the algorithm and its applications in multi-
omics network modeling was provided in our previous publications [43,44]. This algorithm
was used to construct single-cell gene co-expression networks in the present study. All
implication rules representing gene co-expression relations are evaluated with scope and
precision determined by the algorithm. Thresholds for scope and precision were computed
by a one-tailed z-score test with a defined significance level and sample size. In this study,
we used z = 3.891 (α = 0.0001, one-tailed z-tests) for the calculation of thresholds. If an
implication rule had both scope and precision values passing the threshold, that rule was
kept. Among all rules that were kept for the same pair of genes, we further kept only the
one with the maximum precision.

The normal and NSCLC tumor-associated B cell data were used to construct single-
cell gene co-expression networks separately. In the data pre-processing for the Boolean
implication network modeling, a sample with a feature count number greater than zero
was denoted as “expressed”, and a sample with a feature count of zero was denoted as
“not expressed” for the corresponding gene.

2.3. Single-Cell Differential Expression (DE) Analysis

The DE analysis of single-cell RNA sequencing data was performed with DEsin-
gle [62] in Bioconductor. Genes with a p-value < 0.05, an absolute log2 fold change
(FC) value > 1, and a false discovery rate (FDR) < 0.25 were considered as significantly
differentially expressed.

2.4. Cancer Cell Line Encyclopedia (CCLE)

The CCLE provides public access to comprehensive genetic characterizations for hu-
man cancer cell lines. Data of available NSCLC epithelial cell lines were used in this
study. The datasets included RNA sequencing data quantified with the GTEx pipelines [63]
(n = 135, data obtained from https://portals.broadinstitute.org/ccle/data, accessed on 7 De-
cember 2021) and proteomic data quantified with reverse phase protein arrays [64] (n = 63,
data obtained from https://gygi.hms.harvard.edu/publications/ccle.html, accessed on 1
October 2021).

2.5. CRISPR-Cas9 Knockout Assays

Whole-genome CRISPR-Cas9 knockout screening results in CCLE cell lines were
generated in Project Achilles [63]. The genome-wide dependency scores in 94 NSCLC
cell lines were obtained from the DepMap portal version 21Q4 data release [65] (https://
depmap.org/portal/download/, accessed on 7 December 2021). A normalized dependency
score less than −0.5 indicates a significant effect of CRISPR-Cas9 knockout.

http://linkedomics.org/
http://linkedomics.org/
https://portals.broadinstitute.org/ccle/data
https://gygi.hms.harvard.edu/publications/ccle.html
https://depmap.org/portal/download/
https://depmap.org/portal/download/
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2.6. RNAi Knockdown Assays

Whole-genome RNAi screening data for CCLE cell lines were also generated in Project
Achilles [63] (https://depmap.org/R2-D2/, accessed on 1 April 2021). The genome-wide
dependency scores in 92 NSCLC cell lines were used for analysis in this study. RNAi
knockdown was considered to have a significant effect if the normalized dependency score
was smaller than −0.5.

2.7. PRISM Drug Response in CCLE

The PRISM dataset [66] was obtained from the DepMap portal (https://depmap.org/
portal/download/, PRISM repurposing 19Q4, accessed on 1 April 2021). Carboplatin,
cisplatin, docetaxel, erlotinib, etoposide, gefitinib, gemcitabine, paclitaxel (Taxol), peme-
trexed, and vinorelbine are commonly used chemotherapeutic drugs in NSCLC treatment,
so our analysis in this study was focused on these ten regiments. Drug activity measure-
ments, including IC50, ln(IC50), EC50, and ln(EC50), were used in the analysis. The available
CCLE NSCLC cell lines were divided into three groups according to the drug activity
measurements: sensitive, resistant, and intermediate, as described previously.

2.8. Genomics of Drug Sensitivity in Cancer (GDSC)

Drug activity measurements were generated in the GDSC Project [67] (https://www.
cancerrxgene.org/downloads/bulk_download, accessed on 15 April 2021). IC50 and
ln(IC50) were the main metrics used in this analysis. The available CCLE NSCLC cell lines
were divided into three groups based on the drug activity measurements in the GDSC1/2
datasets, namely sensitive, resistant, and intermediate, as described previously [43,44].

2.9. Drug Repurposing Using Connectivity Map (CMap)

CMap (RRID:SCR_016204, Cell Press, Cambridge, MA, USA) [68,69] provides a tool to
identify genes, drugs, and disease states connected with gene expression signatures. By
matching input gene expression signatures, candidate functional pathways and reposition-
ing drugs can be generated with CMap. The results with a p-value < 0.05 and a connectivity
score > 0.9 can be used as hypotheses for further investigation. The upregulated and
downregulated gene lists discovered in this study were used as database queries to find
the connected functional pathways and reposition drugs.

2.10. Pathway Enrichment Analysis Using ToppGene

The ToppGene [70] Suite (RRID:SCR_005726, https://toppgene.cchmc.org, accessed
on 8 March 2022) provides several tools for interpreting gene functional classification
and enrichment analysis. The ToppFun tool of the ToppGene suite was used to find the
statistical enrichment of pathways in this study.

2.11. Statistical Methods

RStudio (version 1.4.1106) [71], an integrated development environment for R, was
used as the main tool for performing the statistical analyses. A two-tailed, unpaired
Student’s t-test was used to evaluate the significance of differential expression between two
groups. Survival analysis and curves were generated using the Kaplan–Meier method, and
log-rank tests were used to assess the difference in survival probability between different
groups. Univariate and multivariate Cox regression analyses were used in the prognostic
evaluation and curve generation with R packages “survival (version 3.3.1, Springer, New
York City, NY, USA)”, “survminer (version 0.4.9, https://cran.r-project.org/package=
survminer)”, and “ggplot2 (version 3.3.6, Springer-Verlag, New York City, NY, USA)”.
The strength of the linear relationship between two sample groups was measured with
Pearson’s correlation test. Results in statistical tests were considered significant with a
p-value < 0.05.

https://depmap.org/R2-D2/
https://depmap.org/portal/download/
https://depmap.org/portal/download/
https://www.cancerrxgene.org/downloads/bulk_download
https://www.cancerrxgene.org/downloads/bulk_download
https://toppgene.cchmc.org
https://cran.r-project.org/package=survminer
https://cran.r-project.org/package=survminer
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3. Results
3.1. Tumor-Specific Gene Co-Expression Networks in NSCLC B Cells

Using the Boolean implication network algorithm, whole-genome mRNA co-expression
networks were generated with single-cell RNA sequencing data of normal and NSCLC
tumor B cells. The constructed tumor and normal B cell gene co-expression networks were
compared to identify tumor-specific B cell co-expression networks, i.e., gene co-expression
relations that existed only in tumor B cells and not in normal B cells, and vice versa. To
obtain a manageable amount of network edges, we selected the significant (p < 0.00005,
one-tailed z-tests) gene associations (i.e., implication rules) for further analysis. A total of
232 significant gene co-expression relations (network edges) existed only in the NSCLC
tumor B cell network and not in the normal B cell network, and 615,332 significant co-
expression relations existed only in the normal B cell network and not in the NSCLC tumor
B cell network. These identified tumor-specific B cell gene co-expression networks were
included in further analysis.

3.2. DE Genes in NSCLC B Cells and T Cells with Prognostic Implications

We included the significant DE genes (p < 0.05, |log2FC| > 1, and FDR < 0.25) in
tumor vs. normal B cells in the next analysis. A total of 1086 unique genes were selected,
including 1082 genes from the network only present in normal B cells and 35 genes from
the network only present in NSCLC tumor B cells.

Proliferation and prognostic genes were further selected from these 1086 DE genes
(Supplementary File S1, Tables S1 and S2). The proliferation genes that had a significant
effect in both CRISPR-Cas9 and RNAi screening assays in more than 50% of the tested
human NSCLC epithelial cell lines were selected (Figure 1A, Supplementary File S2). The
prognostic genes that had a significant hazard ratio (HR, p < 0.05, univariate Cox model) in
the survival analysis of an NSCLC cohort (GSE81089) and significant differential expression
(p < 0.05, two-sample t-tests) between short- and long-term NSCLC survivors were selected
(GSE28571). The selected prognostic genes had a concordant association with patient
survival in both cohorts. Detailed information on the selected prognostic genes is provided
in Table S1.

The identified proliferation and prognostic gene co-expression network (Figure 1A)
was only present in the normal B cells and was missing in the NSCLC tumor B cells.
Some genes were not directly connected with the network but were connected through
one of the intermediate genes differentially expressed in NSCLC tumor B cells. ADCY2
and FGF5 were not connected with the network directly or through any intermediate
genes. Detailed information on the network edges is provided in Table S2. The B cell
proliferation and prognostic network pathway analyses were conducted with ToppGene.
The top 10 significantly enriched pathways are shown in Figure 1B. Detailed information
of all significantly (p < 0.05, FDR B&H and FDR B&Y < 0.25) enriched pathways of the
B cell proliferation and prognostic network (Figure 1A) is provided in Table S3. The
principal component analysis (PCA) using all the genes shown in Figure 1A generated a
clear separation of normal and NSCLC tumor B cells in single-cell RNA sequencing data
(Figure 1C).

From the B cell proliferation and prognostic gene co-expression network (Figure 1A),
a nine-gene prognostic signature was identified in the multivariate Cox model from the
training set (GSE81089) and was validated in the combined TCGA-LUAD and TCGA-LUSC
data of NSCLC patients with stage I, II, or IIIA (details provided in Supplementary File S3).
In the multivariate Cox model analysis, a stepwise gene selection method was used to
construct the model in the training set. In each iteration, the least statistically significant
gene variable in the multivariate Cox model was dropped. This iteration was repeated until
the model with the optimal prognostication in the training set was achieved. This model
was then validated on the test set (TCGA data) with all the training parameters fixed. Nine
marker genes were selected in this process: ANAPC5, CCT3, EWSR1, EXOC4, HRH1, MAP4,
PPP2R1A, TUBA1B, and VCP. The Kaplan–Meier analysis results showed that the patients
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with a risk score lower than 0.525 survived significantly longer than the patients with a risk
score higher than 0.525 in both the training (p = 0.00056; HR: 3.345 [1.616, 6.925]; Figure 1D)
and validation cohorts (p = 0.0010; HR: 1.435 [1.155, 1.783]; Figure 1E). The detailed TCGA
data used in the validation are provided in Supplementary File S3.
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Figure 1. The identified proliferation and prognostic gene co-expression network in NSCLC B cells.
(A) The shown gene co-expression network was present in normal B cells and missing in NSCLC
tumor B cells. None of the co-expression relations were present in tumor B cells. All genes were
significantly differentially expressed in NSCLC tumor-associated B cells vs. B cells in adjacent
normal lung tissues. The intermediate genes are in the ellipse circles. These genes were not in
the selected proliferation or prognostic gene list, but the selected genes were connected through
these intermediate genes. The solid lines indicate direct connections between the selected genes,
and the dashed lines indicate connections through intermediate genes. (B) The −log10 (p-value)
of the top 10 significantly enriched pathways in the ToppGene functional enrichment analysis of
the proliferation and prognostic network. (C) Principal component analysis (PCA) using all the
genes shown in (A) in single-cell RNA sequencing data separates normal and NSCLC tumor B
cells. Kaplan–Meier analysis of the 9-gene signature using RNA sequencing data in the training set
GSE81089 (D) and the TCGA-LUAD and TCGA-LUSC validation set (E). (F) Kaplan–Meier analysis
of the 9-gene signature using proteomic data of MAP4 and VCP in LUAD patients.
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The protein expression of the nine-gene marker panel also provided significant patient
stratification in a LUAD patient cohort [59]. Only MAP4 and VCP were included in the
proteomic multivariate Cox model due to data availability and the univariate significance.
The Kaplan–Meier analysis results showed that the patient group with a risk score lower
than −6.56 survived significantly longer than the patient group with a risk score higher
than −6.56 (p = 0.0048; HR: 3.807 [1.403, 10.33]; Figure 1F).

Interactions and coordination between B cells and T cells are crucial in antibody
generation and immune protection [72]. To gain a better understanding of genes important
in NSCLC immunogenetics, we next examined DE genes in T cells in NSCLC PBL and
tumors. Firstly, significant DE genes (p < 0.05, |log2FC| > 1, and FDR < 0.25) between
normal and NSCLC PBL T cells (GSE151531) were identified. Secondly, this list of DE
genes was compared with two T cell DE gene lists from published studies [49,73]. One
published gene list [73] contained DE genes (p < 0.05, two-sided moderated t-tests) between
suppressive tumor Tregs of CD4-C9-CTLA4 cells (n = 868) vs. other tumor-infiltrating Tregs
of CD4-C8-FOXP3 cells (n = 122) as well as DE genes (p < 0.05, two-sided moderated t-tests)
between activated tumor Tregs of CD4-C9-CTLA4 (TNFRSF9+, n = 519) vs. non-activated
tumor Tregs of CD4-C9-CTLA4 (TNFRSF9−, n = 420). The other published gene list [49]
consisted of the DE genes in each of the 14 T cell clusters. Eleven genes, including CCND2,
CD74, DUSP2, GBP4, HLA-DRA, HLA-DRB1, IL2RA, LMNA, OAS1, TIGIT, and TNIP3, were
common DE genes in all three lists. Two genes, HSD17B13 and TSC22D3, had concordant
significant DE (p < 0.05, |log2FC| > 1, and FDR < 0.25) between NSCLC vs. normal PBL
T cells (GSE151531) and B cells in the lung tissues (GSE84789). These selected 22 genes,
including 13 DE genes and the nine-gene prognostic marker panel identified from the
B-cell network (Figure 1A), and 4 ICIs (CD27, CTLA4, PD1, and PDL1) were visualized in
heatmaps (Figure 2). CTLA4, PD1, and PD-L1 are well-established immunotherapy targets
in NSCLC [74]. CD27 is a new ICI [75] that is being investigated in phase I/II clinical
studies for a variety of cancer types, with encouraging results [76,77]. CD27 was also
included in a seven-gene prognostic and chemopredictive assay we identified previously,
showing concordant prognostic indications at the mRNA and protein expression levels
in NSCLC tumors [44,78]. Here, we sought to examine the expression of these ICIs in
NSCLC tumor B cells, T cells, and PBL T cells in single-cell RNA sequencing profiles. The
average expression of these genes in the 14 NSCLC T cell clusters [49] is shown in Figure 2A,
and their DE patterns in NSCLC T cells and B cells are shown in Figure 2B. HRH1 and
HSD17B13 were not available in the NSCLC tumor T cell dataset [49] and are therefore not
included in Figure 2A.

The 14 T cell clusters presented in Figure 2A were published by Chiou et al. [49]. In
this analysis of the Stanford cohort, 14 major distinct T cell states of activation/exhaustion
were identified [49], of which 13 (C1 to C13) could be linked to the cell states reported by
Guo et al. [73] using a different patient cohort. Cluster C14 from Chiou et al. [49] repre-
sented CD4+ and CD8+ T cells in the cell cycle, which was not reported by Guo et al. [73].
Clusters C5, C6, and C12 were CD8+ T cells with effector phenotypes. Clusters C7 and
C10 were CD8+ T cells with a resident memory phenotype. C11 [49]/CD8-C6-LAYN [73]
(CD8+ exhausted T cells) and C4 [49]/CD4-C9-CTLA4 [73] (CD4+ Tregs) consisted almost
entirely of cells originated from tumors. Clusters C5, C6, C7, and C12 were inferred to
exhibit virus-specific T cell states [49].

Among the selected genes (Figure 2), HLA-DRA, HLA-DRB1, OAS1, and CD74 had
concordant prognostic indications at the mRNA and protein expression levels in bulk
NSCLC tumors with stage I, II, or IIIA (Figure 3). Figure 3A presents their mRNA expression
in 2950 single NSCLC T cells across 14 clusters (GSE151537) illustrated in the UMAP
layout. HLA-DRA and HLA-DRB1 were both DE genes in C11 [49]/CD8-C6-LAYN [73]
(CD8+ exhausted T cells) and the C14 cluster of CD4+ and CD8+ cells in the cell cycle [49]
(Figure 2A). OAS1 was a DE gene in C13 [49]/C4-GZMK and C4-CD69 [73] CD4+ cells.
CD74 was a DE gene in C4 [49]/C9-CTLA4 [73] CD4+ cells and the C5 and C6 clusters of
CD8+ effector T cells. The results showed that the patients with a higher expression of
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HLA-DRA, HLA-DRB1, and CD74 survived significantly longer (p < 0.05, Kaplan–Meier
analysis) than those with a lower expression of these genes at both the mRNA (Figure 3B)
and protein levels [59] (Figure 3C). When OAS1 was expressed more highly at both the
mRNA and protein levels, patients survived for a significantly shorter duration (p < 0.05,
Kaplan–Meier analysis) in both TCGA-LUAD and TCGA-LUSC cohorts (Figure 3B) and
the proteomic LUAD cohort from Xu et al. [59] (Figure 3C). Detailed expression cut-off
values are provided in Table S4. Although different patient cohorts were used in the single-
cell and prognostic analysis, these results indicate the potential utility of the identified
genes in single B cell and T cell analysis of NSCLC patient tumors and PBLs for diagnosis
and prognosis.
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Figure 2. Differential expression patterns of the selected genes in NSCLC T cells and B cells.
(A) Heatmap of the average expression of the selected genes in 14 NSCLC tumor T cell clusters [49].
The asterisk (*) indicates that the gene was significantly differentially expressed in the corresponding
T cell cluster [49]. (B) Heatmap of the log2FC patterns of the selected genes in this study. I: NSCLC
tumor B cells (n = 96) vs. normal B cells (n = 96) [45]. II: Peripheral blood lymphocyte T cells from
NSCLC patients (n = 531) vs. healthy donors (n = 92) [49]. III: NSCLC suppressive tumor Tregs of
CD4-C9-CTLA4 cells (n = 868) vs. other tumor-infiltrating Tregs of CD4-C8-FOXP3 cells (n = 122) [73].
IV: NSCLC activated tumor Tregs of CD4-C9-CTLA4 (TNFRSF9+, n = 519) vs. non-activated tumor
Tregs of CD4-C9-CTLA4 (TNFRSF9−, n = 420) [73]. NS: not significant.
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Figure 3. Differentially expressed genes in NSCLC T cells with prognostic indications. (A) Expression
of HLA-DRA, HLA-DRB1, OAS1, and CD74 in 2950 single T cells across 14 clusters illustrated in
the UMAP layout. (B) Kaplan–Meier analysis of TCGA-LUAD and TCGA-LUSC patients stratified
based on mRNA expression of HLA-DRA, HLA-DRB1, OAS1, and CD74 in the RNA-sequencing data.
(C) Kaplan–Meier analysis of patients in the Xu cohort [59] stratified based on the protein expression
of HLA-DRA, HLA-DRB1, OAS1, and CD74.

3.3. Genes Associated with Response to Radiotherapy and Chemotherapy

To assess the association with radiotherapy response, the mRNA expression of the
selected genes (Figure 2) was evaluated in the TCGA-LUAD and TCGA-LUSC cohorts.
The cohorts only included the stage III and stage IV patients who received radiotherapy
(n = 56). VCP had a significantly higher mRNA expression level (p < 0.05, two-sample
Student’s t-tests) in the short-survival (<20 months) patient group than in the long-survival
(>58 months) patient group (Figure 4). The averaged log2-transformed RPKM of VCP
was 12.52 in the long-survival patient group and 13.22 in the short-survival patient group.
The average original RPKM of VCP was 5975.11 in the long-survival patient group and
12367.55 in the short-survival patient group. The fold change of VCP was 2.07 in the short-
survival vs. the long-survival patient group who received radiotherapy using the original
gene expression measurements.

We next examined the association of the 22 selected DE genes (Figure 2) with the drug
sensitivity profiles of selected NSCLC chemotherapeutic drugs in 135 NSCLC cell lines.
Lists of the genes that were significantly differentially expressed (p < 0.05; two-sample
t-tests) in sensitive NSCLC cell lines vs. resistant NSCLC cell lines at the mRNA level
(Table 1) and protein level (Table 2) are provided.
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Figure 4. The mRNA expression of VCP was associated with resistance to radiotherapy. The studied
patient cohort was TCGA-LUSC and TCGA-LUAD stage III and stage IV patients who had been
treated with radiotherapy. VCP showed a significantly higher expression level (p = 0.0085, two-
sample student t-tests) in the short-survival patient group (<20 months; n = 186) compared with
the long-survival patient group (>58 months; n = 144). The dots were outliers that were out of the
interval [Q1 − 1.5 × IQR; Q3 + 1.5 × IQR] (Q1: quartile 1, refers to 25th percentile; Q3: quartile 3,
refers to 75th percentile; IQR = interquartile range from Q1 to Q3).

Table 1. Genes with significant differential expression (p < 0.05; two-sample t-tests) in mRNA in
sensitive vs. resistant NSCLC cell lines (n = 135) to the selected regiments. The genes in blue font
are drug-sensitive genes which expressed higher in sensitive cell lines; the genes in red font are
drug-resistant genes that expressed higher in resistant cell lines.

GDSC1 GDSC2 PRISM

Carboplatin DUSP2, HLA-DRB1, TIGIT, TNIP3

Cisplatin DUSP2 ANAPC5, OAS1, VCP, IL2RA

Docetaxel LMNA, PPP2R1A, TNIP3 LMNA IL2RA, CCND2, PPP2R1A

Erlotinib DUSP2, TSC22D3 HRH1, LMNA HRH1, LMNA

Etoposide CCT3, EWSR1, TUBA1B CCT3, VCP, HSD17B13

Gefitinib VCP, HSD17B13 LMNA, MAP4, TUBA1B CCND2, CCT3, HRH1, HSD17B13

Gemcitabine CCT3 CD74, DUSP2, HLA-DRA, TIGIT

Paclitaxel DUSP2, VCP OAS1, PPP2R1A, TNIP3, HSD17B13

Pemetrexed CCT3, DUSP2

Vinorelbine EXOC4 CCT3, DUSP2, LMNA, VCP CCND2, DUSP2, HRH1, LMNA
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Table 2. Genes with significant differential expression (p < 0.05; two-sample t-tests) in protein
in sensitive vs. resistant NSCLC cell lines (n = 63) to the selected regiments. The genes in blue
font are drug-sensitive genes that expressed higher in sensitive cell lines; the genes in red font are
drug-resistant genes that expressed higher in resistant cell lines.

GDSC1 GDSC2 PRISM

Carboplatin

Cisplatin LMNA CCT3, OAS1, VCP, PPP2R1A

Docetaxel PPP2R1A, TUBA1B GBP4

Erlotinib CCT3 VCP

Etoposide LMNA

Gefitinib CCT3, HLA-DRA, TSC22D3 CCT3 CCT3, OAS1

Gemcitabine EXOC4 CD74, LMNA, VCP

Paclitaxel CD74, HLA-DRA, TUBA1B

Pemetrexed ANAPC5, HRH1 ANAPC5, HRH1

Vinorelbine

3.4. Discovery of Targeted Therapies and Repositioning Drugs

We previously developed a seven-gene prognostic and predictive assay for early-stage
NSCLC (including ABCC4, CCL19, SLC39A8, CD27, FUT7, DAG1, and ZNF71) [44,78].
ZNF71 protein and its KRAB isoform gene expression are associated with epithelial to
mesenchymal transition (EMT) [44,79]. We also reported a 14-gene classifier characterizing
NSCLC tumor EMT states that were associated with distinct patient survival outcomes [79].
To improve NSCLC treatment outcomes, targeted therapies and repositioning drugs were
searched in the CMap database [68,69] to prolong survival, enhance drug response, inhibit
NSCLC proliferation, and reverse EMT. The CMap input gene list included the nine-gene
prognostic marker panel identified from the B cell network (Figure 1A), drug-sensitive and
-resistant genes (Table 1), six proliferation genes with a significant effect in both CRISPR-
Cas9 and RNAi assays of all the tested human NSCLC cell lines, and EMT genes used in
our previous CMap analysis [44]. Drug-sensitive/resistant genes with conflicting results
between mRNA (Table 1) and protein expression (Table 2) were removed. One additional
gene, CDK7, was added to the CMap input gene list. CDK7 was associated with DAG1 in
our previously developed seven-gene NSCLC prognostic and predictive marker panel [78]
in the NSCLC B cell networks. Specifically, a co-upregulation of CDK7 and DAG1 was
observed in normal lung B cells, but not in the tumor B cells (p < 0.05, one-tailed z-tests).
CDK7 was significantly overexpressed (log2FC = 2.92, p < 0.05, and FDR < 0.25) in NSCLC
tumor B cells vs. normal B cells. CDK7 was a survival hazard gene with an HR greater than
one (p < 0.05, univariate Cox model) in GSE81089 and a fold change (short-survival/long-
survival) greater than one (p < 0.05, two-sample t-tests) in GSE28571. CDK7 had a significant
knockout effect in CRISPR-Cas9 assays in all 94 tested human NSCLC cell lines. The mRNA
expression of CDK7 was associated with drug resistance to cisplatin and erlotinib in human
NSCLC cell lines (n = 135).

The following mechanisms were applied to identify functional pathways, targeted
therapies, and repositioning drugs for improving NSCLC treatment: (1) upregulation
of survival-protective genes; (2) downregulation of survival hazard genes; (3) upregu-
lation of drug-sensitive genes; (4) downregulation of drug-resistant genes; (5) downreg-
ulation of proliferation genes; (6) upregulation of the epithelial markers selected from
our previous work [44,79]; (7) downregulation of mesenchymal markers that we previ-
ously reported [44,79]. The input upregulated and downregulated gene lists (Figure 5A,
Supplementary Table S5) for CMap analysis were created based on these mechanisms, and
genes present in both up- and downregulated lists were removed.
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Figure 5. Discovery of repositioning drugs and functional pathways based on the selected genes.
(A) Selection of significant functional pathways and repositioning of drugs based on the identified B
cell proliferation and prognostic network with CMap. (B) The Pearson correlation of CD27 mRNA
expression and danusertib EC50 in NSCLC cell lines (n = 79). (C) CMap selected compounds that
had a low average concentration of drug response (IC50 and EC50) in the CCLE NSCLC cell lines
(nlestaurtinib = 67, nTW-37 = 81, ndanusertib = 80).

Several targeted therapeutic candidates were identified with CMap (Table S6). First,
compounds were selected as targeted therapies that had a significant negative correlation
(p < 0.05, Pearson’s correlation test) between drug response measurements (IC50, ln(IC50),
EC50, ln(EC50)) and gene expression of one of four ICIs (CD27, PD1, CTLA4, or PDL1) in
human NSCLC epithelial cell lines (n = 135). The EC50 of danusertib had a significant
negative correlation (p < 0.05, Pearson’s correlation test) with CD27 mRNA expression
(Figure 5B). Second, drugs were selected if they had a low average IC50 and EC50 in human
NSCLC epithelial cell lines (n = 135), indicating their efficacy in inhibiting NSCLC cell
growth. Three small molecules were selected, namely danusertib, lestaurtinib, and TW-37
(Figure 5C), which had low average IC50 and EC50 values (less than 1 µM) without any
outliers (IC50 or EC50 higher than 10 µM) in NSCLC cells.

Lestaurtinib is a tyrosine kinase inhibitor of fms-like tyrosine kinase 3 (FLT3) for treat-
ing AML [80,81]. The results from this study suggest that lestaurtinib could be repositioned
to improve NSCLC treatment when combined with existing therapies. Evidence supports
the use of the other selected small molecules for NSCLC treatment. Danusertib, an aurora
kinase inhibitor [82], was investigated in treating advanced solid tumors including NSCLC
in phase I [83] and phase II [84] clinical studies, in which single-agent danusertib was well
tolerated and showed marginal anti-tumor activity in common solid tumor types. TW-37, a
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small molecule inhibitor of B-cell lymphoma 2 (Bcl-2) family proteins [85], enhanced the
pro-apoptosis and anti-migration ability of gefitinib in NSCLC [86]. TG-101348, an inhibitor
of Janus kinase 2 (JAK2), reduced PD-L1 protein expression [87] and reversed erlotinib
resistance in NSCLC cells [88]. TG-101348 mediated radiosensitization and EMT blockade
in a xenograft mouse model of lung cancer [89]. These results in the literature support
the effectiveness of the presented artificial intelligence pipeline for identifying targeted
therapies and repositioning drugs.

Significant functional pathways (p < 0.05, connectivity score > 0.9) in overexpression
and shRNA knockdown assays of NSCLC cell lines were identified using CMap that
matched the input gene expression signature (Table 3). The identified significant functional
pathways included metabolism; VEGF; DNA synthesis and repair; protein regulation;
ribosomal subunit (40S), which is important in the scanning of mRNAs and initiation of
protein synthesis [90]; and hallmarks, including PI3K, STAT3, and BRAF, etc., in shRNA
knockdown assays. Overexpression of cell cycle inhibition was also identified as a sig-
nificant functional pathway (Table 3). It should be noted that although the results from
various functional assays were used to select these significant pathways via bioinformatics
matching, they can only be interpreted as hypotheses for future investigations.

Table 3. The significant (p < 0.05, connectivity score > 0.9) consensus signatures from overexpression
and shRNA knockdown targeted the same genes in NSCLC cell lines in CMap. OE: overexpression
assay. KD: knockdown. SH: shRNA assay.

Src_Set_Id Cell_Name Pert_Type Genes

OE_CELL_CYCLE_INHIBITION A549 TRT_OE CDKN1A, CDKN1B, CDKN2C

BIOCARTA_AHSP_PATHWAY A549 TRT_SH.CGS AHSP, ALAD, ALAS1, ALAS2, CPOX, FECH, GATA1,
HBA1, HBA2, HBB, HMBS, UROD, UROS

KD_AHSP_PATHWAY A549 TRT_SH.CGS ALAD, FECH, GATA1, UROD

KD_RIBOSOMAL_40S_SUBUNIT A549 TRT_SH.CGS FAU, RPS3, RPS3A, RPS5, RPS6, RPS7, RPS9, RPS10,
RPS13, RPS14, RPS15A, RPS16, RPS19, RPS27A

KEGG_TAURINE_AND_
HYPOTAURINE_METABOLISM A549 TRT_SH.CGS ADO, BAAT, CDO1, CSAD, GAD1, GAD2, GGT1, GGT5,

GGT6, GGT7

KEGG_TERPENOID_
BACKBONE_BIOSYNTHESIS A549 TRT_SH.CGS

ACAT1, ACAT2, DHDDS, FDPS, GGPS1, HMGCR,
HMGCS1, HMGCS2, IDI1, IDI2, MVD, MVK, PDSS1,
PDSS2, PMVK

OE_PHOSPHOLIPASES A549 TRT_SH.CGS PLCG2, PLA2G12B, PLCB1, PLD1

PID_VEGF_VEGFR_PATHWAY HCC515 TRT_SH.CGS FLT1, FLT4, KDR, NRP1, NRP2, PGF, VEGFA, VEGFB,
VEGFC, VEGFD

REACTOME_HOMOLOGOUS_
RECOMBINATION_
REPAIR_OF_REPLICATION_
INDEPENDENT_
DOUBLE_STRAND_BREAKS

A549 TRT_SH.CGS
ATM, BRCA1, BRCA2, BRIP1, H2AX, LIG1, MDC1,
MRE11, NBN, RAD50, RAD51, RAD52, RPA1, RPA2,
RPA3, TP53BP1

REACTOME_HYALURONAN_
METABOLISM A549 TRT_SH.CGS

ABCC5, CD44, CEMIP, CHP1, GUSB, HAS1, HAS2, HAS3,
HEXA, HEXB, HMMR, HYAL1, HYAL2, HYAL3, LYVE1,
SLC9A1, STAB2

REACTOME_HYALURONAN_
UPTAKE_AND_DEGRADATION A549 TRT_SH.CGS CD44, CHP1, GUSB, HEXA, HEXB, HMMR, HYAL1,

HYAL2, HYAL3, LYVE1, SLC9A1, STAB2

REACTOME_PROCESSIVE_
SYNTHESIS_ON_THE_
LAGGING_STRAND

A549 TRT_SH.CGS
DNA2, FEN1, LIG1, PCNA, POLA1, POLA2, POLD1,
POLD2, POLD3, POLD4, PRIM1, PRIM2, RPA1, RPA2,
RPA3

REACTOME_
REMOVAL_OF_THE_FLAP_
INTERMEDIATE_FROM_THE_C_STRAND

A549 TRT_SH.CGS DNA2, FEN1, PCNA, POLD1, POLD2, POLD3, POLD4,
RPA1, RPA2, RPA3, WRN

REACTOME_REPAIR_
SYNTHESIS_FOR_GAP_
FILLING_BY_DNA_POL_IN_TC_NER

A549 TRT_SH.CGS PCNA, POLD1, POLD2, POLD3, POLD4, POLE, POLE2,
RFC2, RFC3, RFC4, RFC5, RPA1, RPA2, RPA3

REACTOME_SIGNAL_
REGULATORY_
PROTEIN_SIRP_FAMILY_
INTERACTIONS

A549 TRT_SH.CGS CD47, FYB, GRB2, PTK2, PTK2B, PTPN6, SIRPA, SIRPB1,
SIRPG, SRC, TYROBP

ST_G_ALPHA_I_PATHWAY A549 TRT_SH.CGS

AKT1, AKT2, AKT3, ASAH1, BRAF, CFB, DAG1, DRD2,
EGFR, EPHB2, GRB2, ITPKA, ITPKB, ITPR1, ITPR2,
ITPR3, KCNJ3, KCNJ5, KCNJ9, MAPK1, PI3, PIK3CB,
PITX2, PLCB1, PLCB2, PLCB3, PLCB4, RAF1, RAP1GAP,
RGS20, SHC1, SOS1, SOS2, SRC, STAT3, TERF2IP
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4. Discussion

This study identified a gene co-expression network observed only in normal B cells
(Figure 1A) and missing in NSCLC tumor B cells. The transcriptomic and proteomic profiles
of the nine-gene prognosis marker panel identified from this B cell network accurately
stratified resectable NSCLC patients into different groups with distinct survival outcomes.
A similar approach was applied to dissect tumor-specific B cell proliferation networks
involving PD1 (PDCD1), PDL1 (CD274), and CTLA4 (Figure S1 and Tables S7 and S8). Each
gene associated with these three established ICIs (Figure S1) was significantly differentially
expressed in NSCLC tumor B cells vs. normal B cells and had a significant impact on
proliferation in CRISPR-Cas9 and/or RNAi assays in more than 50% of the tested human
NSCLC cell lines. VCP, also present in Figure 1A, was co-upregulated with PDL1 (p < 0.05,
one-tailed z-test). VCP was overexpressed in NSCLC tumor B cells, NSCLC PBLs, and
tumor T cells (Figure 2), as well as a C4 [49]/C9-CTLA [73] CD4 T cell cluster. VCP was in
the nine-gene prognostic marker panel as a survival hazard gene and was associated with
radiotherapy resistance (Figure 4) in NSCLC patients. Consistently, VCP protein expression
was correlated with metastasis and poor prognosis in NSCLC patients [91]. VCP mRNA
and/or protein expression was associated with drug sensitivity to cisplatin, etoposide,
paclitaxel, vinorelbine, and gemcitabine and resistance to gefitinib (Tables 1 and 2).

Evidence supports the therapeutic significance of the other genes in the nine-gene
prognostic marker panel identified from the B cell network (Figure 1A). ANAPC5 was
overexpressed in NSCLC tumor B cells and PBL T cells (Figure 2) and was associated with
resistance to cisplatin in NSCLC epithelial cells (Table 1). ANAPC5 protein expression was
associated with drug sensitivity to pemetrexed (Table 2). Depletion of ANAPC5 exhibited a
synthetic lethal interaction with paclitaxel in NSCLC cells, suggesting enhanced sensitivity
to APC/C inhibition in the tumor cells [92]. CCT3, a survival hazard gene identified in
this study, was overexpressed in NSCLC tumor B cells and suppressive tumor Tregs of
CD4-C9-CTLA cells vs. other tumor infiltrating Tregs of CD4-C8-FOXP3 cells [73]. CCT3
was underexpressed in NSCLC PBL T cells (Figure 2). Suppression of CCT3 inhibited tumor
progression through the impairment of ATP production and cytoplasmic translation in
lung adenocarcinoma [93]. CCT3 mRNA/protein expression was associated with drug sen-
sitivity to erlotinib, etoposide, gefitinib, gemcitabine, pemetrexed, and vinorelbine (Tables 1
and 2). HRH1, an NSCLC survival hazard gene found in this study, was underexpressed
in NSCLC tumor B cells and was associated with resistance to erlotinib and vinorelbine
in human NSCLC epithelial cell lines. HRH1 protein expression was associated with sen-
sitivity to pemetrexed (Table 2). HRH1 was reported as an apatinib (VEGFR2 inhibitor)
upregulated gene and was also associated with neuroactive ligand in NSCLC cells [94].
HRH1 had different prognostic implications in various cancer types [95]. TUBA1B, an
identified survival hazard gene, was underexpressed in NSCLC tumor B cells. TUBA1B
was overexpressed in NSCLC PBL T cells, C14 CD4/CD8 T cell clusters [49], and activated
tumor Tregs of CD4-C9-CTLA4 (TNFRSF9+) vs. non-activated tumor Tregs of CD4-C9-
CTLA4 (TNFRSF9−) [73]. TUBA1B mRNA and/or protein expression was associated with
resistance to gefitinib, docetaxel, and paclitaxel and sensitivity to etoposide (Tables 1 and 2).
TUBA1B protein expression differed significantly between NSCLC patients and healthy
individuals and the difference was correlated with the lipid response [95]. These results
indicate that the identified network missing in NSCLC tumor B cells (Figure 1A) has im-
portant implications for proliferation, prognosis, and therapeutic responses. The pathway
enrichment analysis of this network (Figure 1B) showed over-representation in ribosomal
scanning, protein synthesis, and metabolism, consistent with the results from the functional
assays of NSCLC cell lines matching the gene expression signature associated with clinical
phenotypes (Table 3). These results shed light on dysregulated gene expression networks
in singular B cells with prognostic and therapeutic significance in NSCLC.

Among the identified DE genes in NSCLC PBL T cells and tumor T cell clusters [49,73],
HLA-DRA, HLA-DRB1, OAS1, and CD74 had concordant prognostic indications at the
mRNA and protein expression levels in bulk NSCLC tumors with resectable disease. HLA-
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DRA and HLA-DRB1 belong to HLA class II alpha and beta chain paralogs, respectively.
Both HLA-DRA and HLA-DRB1 were underexpressed in NSCLC PBL T cells and over-
expressed in NSCLC tumor C11 [49]/C6-LAYN [73] CD8 T cell clusters, C14 CD4/CD8
T-cell clusters [49], and suppressive tumor Tregs of CD4-C9-CTLA4 cells vs. other tumor-
infiltrating Tregs of CD4-C8-FOXP3 cells [73]. A higher mRNA and protein expression of
HLA-DRA and HLA-DRB1 in bulk NSCLC tumors was associated with prolonged patient
survival (Figure 3). HLA-DRA protein expression was associated with sensitivity to gefi-
tinib and resistance to paclitaxel (Table 2). HLA-DRB1 mRNA expression was associated
with resistance to carboplatin (Table 1). HLA-DR protein expression was decreased in
tumor-infiltrating immune cells and regional lymph nodes of NSCLC [96]. OAS1 was
overexpressed in C13 CD4 T cell clusters [49]/C4-GZMK/C4-CD69 CD8/CD4 T cell clus-
ters [73] and suppressive tumor Tregs of CD4-C9CTLA cells vs. other tumor-infiltrating
Tregs of CD4-C8-FOXP3 cells [73]. OAS1 was underexpressed in NSCLC tumor B cells
and PBL T cells (Figure 2). OAS1 mRNA and protein expression was associated with poor
prognosis in NSCLC patients (Figure 3). OAS1 mRNA/protein expression was associated
with resistance to cisplatin and gefitinib and sensitivity to paclitaxel (Tables 1 and 2). In-
creased OAS1 expression in cancer cells promotes their ability to survive DNA damage
by attenuating Poly(ADP-ribose) synthesis and thus preventing cell death [97]. CD74
was overexpressed in C4 [49]/C9-CTLA4 [73] CD4 T cell clusters, C5 and C6 [49]/C4-
GZMK [73] CD8 T cell clusters, NSCLC tumor B cells, and suppressive tumor Tregs of
CD4-C9-CTLA4 cells vs. other tumor-infiltrating Tregs of CD4-C8-FOXP3 cells [73]. CD74
was underexpressed in NSCLC PBL T cells (Figure 2). Higher CD74 mRNA and protein
expression was associated with a good prognosis in NSCLC patients (Figure 3). CD74
protein expression was associated with sensitivity to gemcitabine (Table 2). CD74-NRG1
fusions, originally found in non-smoking lung adenocarcinoma patients, provide the ligand
for ERBB2-ERBB3 receptor complexes through the extracellular expression of the EGF-like
domain of NRG1 III-β3 [98]. CD74-NTRK1 fusions are oncogenic and lead to constitutive
TRKA kinase activity in lung cancer [99].

TIGIT was overexpressed in C4 [49]/C9-CTLA [73] CD4 T cell clusters, C5 and
C6 [49]/C4-GZMK [73] CD8 T cell clusters, NSCLC tumor B cells, and suppressive tu-
mor Tregs of CD4-C9CTLA cells vs. other tumor-infiltrating Tregs of CD4-C8-FOXP3
cells [73]. TIGIT was underexpressed in NSCLC PBL T cells (Figure 2). TIGIT gene ex-
pression was associated with sensitivity to carboplatin and gemcitabine (Table 1). The
immunomodulatory receptor TIGIT is an emerging ICI for cancer immunotherapy [100].
Tiragolumab (anti-TIGIT therapy) in combination with atezolizumab (Tecentriq) was ap-
proved by the FDA for metastatic NSCLC with high PD-L1 based on promising clinical
evidence [101]. TSC22D3 expression induction could lead to the modulation of T cell
activation and apoptosis [102]. TSC22D3 was overexpressed in NSCLC tumor B cells and
PBL T cells (Figure 2). TSC22D3 was associated with sensitivity to erlotinib and gefitinib
(Tables 1 and 2). TSC22D3 was associated with a good prognosis in NSCLC patients [103].
TSC22D3 was frequently present in the T cell state transitions from intermediate to the pre-
dysfunction and dysfunction states [103]. Overall, this study conducted a comprehensive
analysis of public single-cell RNA sequencing data and identified DE genes in NSCLC PBL
and tumor T cells with prognostic and therapeutic importance.

Targeted therapies and repositioning drugs were identified from the CMap database
using our novel AI pipeline [43,44] integrating Boolean implication modeling of tumor-
specific B cell co-expression networks, DE genes in NSCLC PBLs and tumor T cells, bulk
tumor transcriptome and proteome, and in vitro CRISPR-Cas9/RNAi and drug screening
in human NSCLC epithelial cell lines. The CMap input genes were differentially expressed
in the single-cell RNA sequencing of NSCLC tumor B cells, PBLs, and tumor T cells with
prognostic and predictive implications in a comprehensive evaluation of public patient
data. Their functional involvement in NSCLC cell proliferation was substantiated with
public genome-scale CRISPR-Cas9/RNAi screening data. Rigorous filtering criteria were
applied in defining the CMap gene expression signature. Three pro-survival genes in the
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nine-gene prognostic marker panel (ANAPC5, EWSR1, and EXOC4) were removed from the
input list due to their proliferative roles in NSCLC indicated by the CRISPR-Cas9/RNAi
screening results. Similarly, genes showing any conflicting results of drug sensitivity or
resistance to the 10 studied therapeutic regimens were removed from the CMap list. As
a result, the identified targeted therapies and repositioning drugs are highly relevant to
upregulating epithelial and drug-sensitive genes and downregulating mesenchymal, drug-
resistant, proliferative, and survival hazard genes in NSCLC patient samples. The selected
small molecules were further examined based on their public drug response measurements
in 135 human CCLE NSCLC epithelial cell lines. Lestaurtinib, TW-37, and danusertib
had small average IC50 and EC50 values without any outliers (IC50 or EC50 higher than
10 µM) in 135 cell lines, indicating their efficacy in inhibiting NSCLC cell growth with a
potentially safe dose. Danusertib showed an inhibitory association with the gene expression
of CD27, an emerging ICI for solid tumors [75]. TG-101348 had an inhibitory association
with PDL1 gene expression. Out of the four selected compounds, danusertib, TG-101348,
and TW-37 have been investigated in pre-clinical and clinical studies for improving NSCLC
treatment. Lestaurtinib, a tyrosine kinase inhibitor of FLT3 for treating AML [80,81], could
potentially be repositioned for treating NSCLC based on its ability to potently kill and
inhibit NSCLC cells and its high relevance in reversing EMT, enhancing drug response,
inhibiting proliferation in NSCLC cells, and downregulating survival hazard genes in
NSCLC patients. This AI pipeline can effectively determine the disease relevance of
targeted therapies before clinical trials, thereby expediting drug repositioning R&D for
pharmaceutical companies. It also provides an efficient tool for oncologists to choose a
targeted therapy for refractory NSCLC patients after the failure of initial treatments.

The current single-cell RNA sequencing techniques have not become routine assays
for cancer research or clinical testing. Similarly, although CRISPR-Cas9 has been explored
in editing immune cells [104–107], genome-scale CRISPR-Cas9/RNAi screening data are
lacking for broad research applications. This study leveraged public data consortia includ-
ing TCGA and CCLE. The public single-B-cell sequencing data [45] do not have matched
patient clinical follow-up information. This dataset [45] was used to identify the single
B-cell gene co-expression work (Figure 1) that was missing in tumor B cells. This network
consisted of proliferation genes identified from CRISPR-Cas9/RNAi genome-scale screen-
ing data of human epithelial NSCLC cell lines. The nine-gene signature was derived from
this network, showing prognostic capacity in RNA sequencing profiles of NSCLC bulk
tumors. An ideal study design would be using the same patient cohort for single-cell
sequencing, CRISPR-Cas9/RNAi screening, and prognostication. Nevertheless, it is not
technically feasible for our research group to conduct such studies currently. The presented
conceptual framework could be applied in future research when it is feasible to implement
this study design with technology advancement.

There was a remarkable difference in the proportion of low-risk patients in the train-
ing and validation sets, i.e., 19% vs. 68%. The training set (GSE81089) [52,53] utilized
snap-frozen tumor samples in RNA sequencing, whereas the validation set (TCGA) [58]
contained mostly formalin-fixed paraffin-embedded (FFPE) samples. The difference in the
sample preservation and RNA degradation since fixing is a possible factor contributing
to the different RNA expression quantification scales in both datasets. In RNA sequenc-
ing data analysis, housekeeping genes are not generally used for normalization as in
qRT-PCR. Therefore, the variation in gene expression measurements due to different sam-
ple preparation techniques is not accounted for in the RNA expression analysis. The
nine-gene prognostic model was unchanged when applied in the training and validation
sets. Therefore, the resulting patient stratification in the validation set containing FFPE
samples could be skewed because of the variation in the gene expression measurements
caused by the different sample preparation technique. This study showed the feasibil-
ity of using this nine-gene signature for patient stratification using RNA sequencing of
bulk tumors. In future clinical applications, the training model based on this nine-gene
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panel will need to be calibrated according to a specific manufacturing platform to ensure
optimal prognostication.

5. Conclusions

NSCLC remains the leading cause of cancer-related mortality, despite the promising
results from immunotherapy. There are currently no biomarkers to identify early-stage
NSCLC patients of all histology who are at risk for tumor recurrence/metastasis and
benefit from adjuvant therapies. There is a pressing demand for predictive biomarkers
of immunotherapy in NSCLC. The mechanisms underlying B cell dysfunction and their
prognostic significance in NSCLC are not well understood. To meet these critical needs,
this study identified a tumor-specific B cell proliferation and prognostic gene co-expression
network in NSCLC using Boolean implication modeling of single-cell RNA sequencing data.
A nine-gene marker panel within this network provided accurate prognostic stratification
for early-stage NSCLC patients using RNA sequencing and proteomic profiles. DE genes in
NSCLC tumor B cells, PBLs, and tumor T cells with prognostic implications were garnered.
Numerous selected genes had a significant association with radiotherapy response and drug
sensitivity/resistance to 10 commonly used NSCLC therapeutic regimens. Based on these
results, functional pathways, targeted therapies, and repositioning drugs were discovered
using a novel AI pipeline to prolong NSCLC patient survival, improve treatment response,
inhibit proliferation, and reverse EMT. These rigorous analyses of extensive public data
generated solid results and hypotheses for future clinical investigations and will aid the
development of novel therapies to improve NSCLC patient outcomes.

6. Patents

This work is included in a US provisional patent application with serial number 63/355353.
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