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ABSTRACT: In this study, we present the first example of using a machine learning (ML)-
assisted design strategy to optimize the synthesis formulation of enzyme/ZIFs (zeolitic
imidazolate framework) for enhanced performance. Glucose oxidase (GOx) and horseradish
peroxidase (HRP) were chosen as model enzymes, while Zn(eIM)2 (eIM = 2-ethylimidazolate)
was selected as the model ZIF to test our ML-assisted workflow paradigm. Through an iterative
ML-driven training-design-synthesis-measurement workflow, we efficiently discovered GOx/ZIF
(G151) and HRP/ZIF (H150) with their overall performance index (OPI) values (OPI
represents the product of encapsulation efficiency (E in %), retained enzymatic activity (A in %),
and thermal stability (T in %)) at least 1.3 times higher than those in systematic seed data
studies. Furthermore, advanced statistical methods derived from the trained random forest model
qualitatively and quantitatively reveal the relationship among synthesis, structure, and
performance in the enzyme/ZIF system, offering valuable guidance for future studies on enzyme/ZIFs. Overall, our proposed
ML-assisted design strategy holds promise for accelerating the development of enzyme/ZIFs and other enzyme immobilization
systems for biocatalysis applications and beyond, including drug delivery and sensing, among others.
KEYWORDS: enzyme/ZIF biocomposite, biocatalysis, machine learning, NMR spectroscopy, encapsulation efficiency,
ATR-FTIR spectroscopy

■ INTRODUCTION
In recent years, enzyme/MOF biocomposites (MOF = metal−
organic framework), produced through biomimetic mineraliza-
tion, have garnered considerable scientific attention due to
their simple synthesis and promising performance.1−6 These
biocomposites exhibit exceptional encapsulation efficiency,
retained enzymatic bioactivity, and protective effects against
stressors.1−5 However, experimental findings illustrate that
achieving these desired properties is not guaranteed,4,7−10 as
structural factors such as crystallinity,11 structural defects,12

chemical texture,9,10 and spatial localization of the enzyme13,14

all influence the performance of a biocomposite. Importantly,
all these structural factors are highly dependent on the
synthesis conditions of the enzyme/MOF. These conditions
involve the choice of organic ligand,8−10,15 synthesis
component concentrations,13 ligand-to-metal molar ratio,
etc.7,14

In ZIFs (ZIF = zeolitic imidazolate framework),13,16−18

modulation of synthesis conditions can alter the formation of
polymorphic phases. A high concentration of ZIF precursors
and/or a high ligand-to-metal molar ratio in the enzyme/ZIF
synthesis is reported to favor the porous kinetic phase
formation (e.g., sod-Zn(mIM)2

19,20 and rho-Zn(eIM)2;
20

mIM = 2-methylimidazolate and eIM = 2-ethylimidazolate).
These porous kinetic phases are theoretically more ideal in
biocatalysis applications as they offer intrinsic porosity to
facilitate mass diffusion. For example, GOx@sod-Zn(mIM)2

(GOx = glucose oxidase) has been demonstrated to exhibit
superior bioactivity compared to GOx@dia-Zn(mIM)2.

14

However, exceptions exist; for instance, enzymes encapsulated
in a crystallographically dense ZIF-L (Zn(mIM)2(HmIM)1/2·
(H2O)3/2)

21 are reported to exhibit bioactivity.22−24 These
conflicting results may arise from structural defects within ZIF-
L. The non-native defect-induced meso- and/or macro-
channels in ZIF-L enable mass diffusion.
Even when the enzyme/ZIFs share an identical crystallo-

graphic phase, distinct performances may be observed.7,14 A
recent report illustrates that GOx@sod-Zn(mIM)2 synthesized
under a low HmIM/Zn molar ratio (BZIF-8-B, [ ]

[ ]
HmIM

Zn
= 4)

exhibits significantly higher retained bioactivity compared to its
counterpart synthesized using a high HmIM/Zn molar ratio
(BZIF-8-S, [ ]

[ ]
HmIM

Zn
= 12).14 Transmission electron microscopy

(TEM) measurements reveal that the enhanced bioactivity of
BZIF-8-B is attributed to the abundant structural defects
within the sample.
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The variation in the synthesis conditions is reported to result
in distinct formation mechanisms of enzyme/ZIFs. An
operando TEM study reveals that BSA@sod-Zn(mIM)2
(BSA = bovine serum albumin) formed with a low HmIM/
Zn molar ratio ( [ ]

[ ]
HmIM

Zn
= 4) follows a biomimetic

mineralization mechanism, while a combination of coprecipi-
tation and biomimetic mineralization mechanisms is observed
in the condition of a high HmIM/Zn molar ratio ([ ]

[ ]
HmIM

Zn
=

35).25 The diverse physical properties and performance results
of the aforementioned enzyme/ZIFs7,14 can be partially
explained by their distinct formation mechanisms,14,25 which
arise from variations in their synthesis conditions.7,14

Derived from the existing enzyme/ZIF examples,2−5,14 we
realize a robust correlation emerges among their synthesis
conditions (e.g., concentration of ZIF precursor), structure
(e.g., polymorphic phases, structural defect, and crystallinity),
and performance (e.g., encapsulation ef f iciency (Ein %), retained
enzymatic activity (Ain %), and thermal stability (Tin %)E, A,
and stability). However, a comprehensive study to unveil this
synthesis−structure−performance relationship in both qual-
itative and quantitative terms is absent in the literature. This
research gap may be attributed to the formidable challenge of

conducting a thorough study of enzyme/ZIFs synthesized with
an orthogonal combination of different synthesis parameters, a
task deemed laborious, time-consuming, and resource-
intensive.
Over the past decade, machine learning (ML) has emerged

as a powerful tool for advancing materials discovery across
scientific domains.26−37 Its application greatly improved the
efficiency of identifying materials with specific target proper-
ties. In reticular chemistry, researchers have utilized ML-driven
approaches to tailor synthesis conditions for materials,
optimizing properties like phase purity,38 crystallinity,39 and
water sorption performance.40 ML has also proven particularly
valuable in screening MOF candidates for propane/propylene
separation41 and exploring innovative synthesis conditions for
the discovery of new materials.42 A comprehensive ML-assisted
study on enzyme/ZIF systems to improve immobilization
performance (E, A, and protective effect) is currently absent in
the literature.43 This untapped potential holds the promise of
identifying optimal synthesis conditions for high-performance
biocomposites as well as unveiling hidden synthesis-structure−
property patterns in the enzyme/ZIF system.
In our previous research, we report the better bioactivity

exhibited by esterase@rho-Zn(eIM)2 in catalyzing trans-

Figure 1. (a) Schematic workflow depicting the iterative ML-assisted enzyme/ZIF discovery process employed in this study. (b, c) Histograms
showing the distributions of HRP/ZIFs (b) and GOx/ZIFs (c) according to their PI values. Samples from the seed data set and exploitation stage
are shown in gray and green, respectively. Those from the iteration stage are indicated in red for HRP/ZIFs and blue for GOx/ZIFs.
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esterification reactions when compared to esterase@sod-
Zn(mIM)2.

8 However, the hydrophobic nature of rho-
Zn(eIM)2 hinders bioactivity in GOx@rho-Zn(eIM)2.

8

Here, we report an ML-driven iterative training-design-
synthesis-measurement workflow that targets optimizing [Zn]
and [HeIM] in an enzyme/Zn(eIM)2 synthesis to maximize its
performance index (PI) value. PI is calculated as the product of
encapsulation efficiency (E in %) and retained enzymatic
bioactivity (A in %) (PI = E × A). The random forest (RF)
algorithm was employed in predicting the enzyme/ZIF’s
structure and performance (Figures S7 and S8). Trained by
the data in seed and iteration studies, the RF model accurately
predicts the phase (>75%), encapsulation efficiency (R2 > 0.9),
and retained bioactivity (R2 > 0.8) of enzyme/Zn(eIM)2
biocomposites. Importantly, the ML-assisted design samples
(G151 and H150) exhibited significantly higher PI values
compared with those in the seed data. Moreover, statistical
analyses derived from the trained RF model (e.g., PCP and t-
SNE studies) uncover synthesis−structure, synthesis−perform-
ance, and structure-performance relationships in the enzyme/
ZIF system, complementing experimental observations in the
literature and providing new insights that may aid in future
enzyme/ZIF synthesis endeavors.
Overall, the proposed ML-based methodology is envisioned

to accelerate the design of high-performing enzyme/ZIFs in
biocatalysis applications. It is also noteworthy to mention that
the proposed ML-based methodology is versatile and can be
adapted to optimize the encapsulation of various biomacro-
molecules in ZIFs, including DNA, RNA, glycans, cells, and
beyond.

■ RESULTS AND DISCUSSION
As shown in Figure 1a, commencing with a seed data set and
feature engineering, the proposed ML workflow encompasses
four stages: (1) ML model learning: training an ML model
using experimental data; (2) ML-assisted design: utilizing the
Bayesian optimization (BO) algorithm in the trained ML
model to propose new synthesis recipes for enzyme/ZIFs with
an enhanced PI value; (3) synthesis, characterization, and test:
synthesizing the proposed enzyme/Zn(eIM)2, followed by
powder X-ray diffraction (PXRD) measurement, protein assay,
and activity assay to obtain characterization (phase) and
performance (E, A, and thermal stability (T in %)) data; (4)
incremental learning: integrating the synthesis recipes and
characterization/performance data of enzyme/Zn(eIM)2 ob-
tained after each iteration back into the existing data set,
providing feedback to the ML model to initiate a new iteration
cycle. It is worth noting that the spatial localization of an
enzyme in the biocomposite was not the focus of this study
and has not been examined. Thus, we termed our
biocomposite in this study as enzyme/ZIF to avoid confusion.
Seed Data

To initiate the ML-assisted enzyme/Zn(eIM)2 design work-
flow depicted in Figure 1, our first step was to acquire the seed
data set.
The seed data set for ML model training can be derived

from literature data, experimental results, or a combination of
both.27,36,44,45 Given limited data on enzyme/Zn(eIM)2,

8,18 we
decided to experimentally generate seed data sets. Two
chemically distinct enzymes�GOx and horseradish peroxidase
(HRP)�were selected for the synthesis of biocomposites,
with the aim of examining our ML-assisted enzyme/ZIF design
paradigm. HRP is a single-chain glycoprotein containing four

Figure 2. (a) Molecular representations of HRP (PDB entry 1h5d) and GOx (PDB entry 1cf3) showing the Coulombic surface of the enzymes.
The color coding on the protein surface indicates the surface charge, with positively charged and negatively charged regions shown in blue and red,
respectively. (b) Molecular representation of HeIM, with proton labeling (H1−H5) shown in blue and carbon labeling (C1−C5) in green. (c) 1D
1H CPMG NMR spectra of HeIM (400 μM in D2O, black), HeIM/HRP (400 μMHeIM and 25 μMHRP in D2O, red), and HeIM/GOx (400 μM
HeIM and 25 μM GOx in D2O, blue). The peaks in the 1D 1H CPMG spectra are assigned to the protons in HeIM, with their chemical shifts
provided (in ppm). The quantitative comparison of the integrated peak areas of the δ1H signals in the CPMG spectra and those in a one-pulse 1D
1H NMR measurements are displayed as percentages in brackets (in %, I

I
CPMG

0
). (d) 1D 1H STD NMR spectra (on-resonance) of HeIM (400 μM in

D2O, black), HeIM/HRP (400 μM HeIM and 25 μM HRP in D2O, red), and HeIM/GOx (400 μM HeIM and 25 μM GOx in D2O, blue). The
peaks in the 1D 1H STD spectra (on-resonance) are assigned to the protons in HeIM, with their chemical shifts provided (in ppm). The
quantitative comparison of the integrated peak areas of the δ1H signals in the on- and off-resonance spectrum are displayed as percentages in
brackets (in %, I

I
on resonance

off resonance
).
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disulfide bridges, with a molecular mass of ∼44 kDa46 and a
dimension of 4.0 × 4.4 × 6.8 nm3 (Figure 2a);47 while GOx is
a dimeric glycoprotein with a molecular mass of 160 kDa48 and
a dimension of 5.2 × 6.0 × 7.7 nm3 (Figure 2a).47 The
isoelectric points for GOx and HRP are 4.249 and 3−9,50
respectively.
In a biomimetic mineralization process, a strong ligand−

protein and/or metal−protein affinity is reported to be vital for
establishing a concentrated local ligand−metal ion environ-
ment on the protein surface. This environment renders the
protein molecules as the nucleation sites, enabling and/or
accelerating MOF formation around them.1

To investigate the propensity of GOx and HRP to trigger
biomimetic mineralization processes, we sought to examine the
HeIM binding to GOx or HRP using 1D 1H Carr−Purcell−
Meiboom−Gill (CPMG) and 1D 1H saturation transfer
difference (STD) NMR techniques. Both CPMG and STD
methods are widely employed in studying the binding of small
molecules to proteins, particularly in the field of drug design
and discovery.51

As shown in Figure 2b−d, the CPMG and STD NMR
results collectively substantiate a high binding affinity of HeIM
to GOx and a weak HeIM−HRP interaction (Figures S1−S4).
This is evidenced by the downfield shifts of all δ1H signals from
HeIM in the HeIM/GOx sample (Figure 2c,d), the decreased
integrated areas of all δ1H peaks in CPMG NMR measures for
HeIM/GOx (Figure 2c), and the appearance of all HeIM
protons in the on-resonance STD spectrum of HeIM/GOx
(Figure 2d). Based on the CPMG and STD NMR results, it is
anticipated that the formation mechanisms for GOx/Zn(eIM)2
and HRP/Zn(eIM)2 would be distinct. Consequently, the
optimal synthesis conditions for these biocomposites are
expected to be different.
To obtain the seed data set, we experimentally synthesized a

total of 168 samples: 84 for GOx/ZIFs and 84 for HRP/ZIFs.
The synthesis conditions covered diverse combinations of
[Zn] (25 to 1125 mM) and [HeIM] (150 to 4500 mM)
(Figures S5 and S6). The structure data for enzyme/ZIFs were
obtained via a comparison of their PXRD patterns with the
simulated rho-Zn(eIM)2,

20 ana-Zn(eIM)2,
20 qtz-Zn(eIM)2,

52

and zinc hydroxyl acetate.53 Subsequently, performance data
(E, A, and T) of each biocomposite were assessed through
Bradford54 and activity assays. Summarizing all synthesis,
structure, and performance information, we presented
comprehensive ternary figures for the seed studies in Figures
S5 and S6, forming the foundation for the subsequent ML
model training step.
Upon examining the seed data set (Figures S5 and S6), we

realized that a significant portion of enzyme/ZIFs exhibited
relatively low E, A, and T values. The mean values for GOx/
ZIFs were calculated to be E = 35.7 ± 29.2%, A = 7.6 ± 12.5%,
and T = 2.8 ± 9.0%, while those for HRP/ZIFs were E = 31.5
± 34.7%, A = 7.1 ± 11.5%, and T = 11.5 ± 18.8%. These
modest outcomes can be partially attributed to the constrained
chemical space explored during the systematic screening.
Additionally, we found that the phase and performance results
of the biocomposites vary, according to their synthesis
conditions. This observation supports our hypothesis that the
structure/performance of an enzyme/ZIF can be fine-tuned by
simply adjusting the [Zn] and [HeIM] in its synthesis.
Another notable discovery in the seed data is that variation

results are observed for GOx/ZIFs and HRP/ZIFs in phase, E,
A, and T data under any given synthesis condition (Figure S5

versus Figure S6). Such differences in structure and perform-
ance data between GOx- and HRP-based biocomposites stem
from the distinct molecular size, surface charge, surface
functionality patterns, and HeIM binding strength in GOx
and HRP (Figure 2). The chemical nature of a protein
molecule was reported to be a pivotal factor in influencing the
structure and performance of enzyme/ZIF biocomposites.55−57

For example, the morphology and performance of CAT@ZIF-
8 (CAT = catalase) and GOx@ZIF-8 have been reported to
intricately link to the functionalization and/or folding nature of
CAT and GOx.57

ML Model Selection and Evaluation

With the seed data in hand, we then shifted our focus to
identify synthesis features that influence the structure and
performance outcomes of an enzyme/ZIF (Figures S10 and
S11) and ML models applied in the subsequent studies
(Figures S7 and S8).
Synthesis feature engineering was carried out based on

literature reviews,13,58 relative importance analysis (Figure
S10), and heat map analysis (Figure S9). Four distinct ML
algorithms (gradient boosting (GB), support vector machine
(SVM), neural network (NN), and RF)36 were trained and
tested to identify a reliable ML model in predicting the phase
and performance of enzyme/ZIFs (Figures S7 and S8). The
RF model showed the best performance in predicting the
structure and performance among the studied ML algorithms
and was selected for subsequent studies.
Iterative ML-Assisted Enzyme/ZIF Design

With the synthesis features and RF model selected, we then
trained the RF model by feeding it with 84 sets of seed data for
each enzyme. In this study, we exclude the T data in the
calculation of PI values and the BO-assisted sampling process
(Figures S7 and S8).
In the literature, the optimization of synthesis formulation of

an enzyme/ZIF is generally carried out based on intuition and
experience.7,8,10,13 However, intuition and experience may
introduce unconscious biases that may favor specific
conditions and could result in oversight of unconventional
conditions that hold untapped effectiveness. In ML, the BO
algorithm is generally applied for experiment planning to
achieve optimization goals with the minimum number of
trials.36,59

In this study, we coupled BO with the RF model to plan our
synthesis experiments during the iteration stages, with the
objective of balancing exploration (searching in regions of the
chemical space where the enzyme/ZIFs’ PI values are
uncertain) and exploitation (searching in regions where the
enzyme/ZIFs’ PIs are expected to be optimal based on the
current knowledge). Typically, 30 synthesis proposals (from a
total chemical space comprising approximately 12,300 experi-
ments) were suggested by the RF-BO algorithm. BO-suggested
biocomposites with the top six PI values were subjected to
synthesis and structure/performance tests. Thereafter, the
synthesis conditions for the new enzyme/ZIFs, along with their
corresponding structure and performance data, were integrated
with the existing data set to retrain the RF model, initiating a
new iteration cycle (Figure 1a). We concluded the iteration
stage after ten iteration runs. This was attributed to (1) the
convergence of PImax values for the enzyme/ZIFs suggested by
the BO-RF algorithm; (2) a reduction in fluctuations observed
in PImax values for the BO-suggested enzyme/ZIFs; and (3) the
limitation of a fixed budget allocated for optimization efforts
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(Figure S11). We propose that alternative iteration-stopping
criteria for active learning can be devised and implemented in
future studies.
The refined RF model (after 10× iterations) exhibits

commendable performance in predicting phase E and phase
A for both GOx/ZIFs and HRP/ZIFs. The accuracy for phase
prediction is notably high, reaching 83.1% for GOx/ZIF and

75.1% for HRP/ZIF. Strong correlation coefficients (R2 > 0.8)
were observed in the cases of E and A, indicating a reliable
predictive capability of the refined RF model (Figure S12).
The efficacy of our ML-assisted enzyme/ZIF design strategy

in exploring untapped synthesis regions is evidenced in the
comparison of synthesis recipes in the seed data and iterations
in t-SNE plots (t-SNE = t-distributed stochastic neighbor

Figure 3. PCPs visualizing the synthesis features of all HRP/ZIF (a) and GOx/ZIF (d) samples in both the seed and iteration stages. The enzyme/
rho-Zn(eIM)2, enzyme/qtz-Zn(eIM)2, enzyme/zinc hydroxyl acetate, and solution phases are colored purple, orange, green, and black, respectively.
PCPs for all studied data are shown as gray lines and spots in the background. SHAP values for HRP/ZIF (b and c) and GOx/ZIF (e and f) to
quantify the importance of synthesis features on the prediction of the encapsulation efficiency (E) and retained bioactivity (A). (g, h) Two-
dimensional t-SNE visualization showing all 288 distinct synthesis recipes for GOx/ZIF (blue) and HRP/ZIF (red). Prior to dimension reduction,
normalization is applied to all synthesis features. The color and size coding of the data points corresponds to the experimental values of E (g) and A
(h) with deeper shades and larger spots indicating higher values. Optimal synthesis regions, conducive to achieving high-performance values, are
outlined by circles with dashed lines.
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embedding; Figure S15). As shown in Figure S15, our
approach effectively explores synthesis regions that were
previously untapped during systematic searches. To further
demonstrate the advantage of our proposed ML-assisted
enzyme/ZIF design strategy, we plotted the histogram of
enzyme/ZIFs in the seed and iteration stages based on their PI
values. As shown in Figure 1b,c, the proposed ML-assisted
enzyme/ZIF design strategy facilitates the identification of
numerous GOx/ZIFs (Figure 1c, e.g., G91, G118, G119, and
G139) and HRP/ZIFs (Figure 1b, e.g., H93, H98, H102,
H140, and H142) with enhanced PI values. The median PI
values of enzyme/ZIFs discovered in the iteration stage exhibit
a substantial increase as compared to those in the seed data set
(PIiteration = 681.4 versus PIseed = 260.3 for GOx/ZIFs; PIiteration
= 511.9 versus PIseed = 186.9 for HRP/ZIFs). The best-
performing GOx/ZIF and HRP/ZIF discovered within the
iteration stage show remarkable PI values of 4046 (G139) and
4436.7 (H142), respectively, surpassing both the PImean and
PImax observed in their representative seed data set (Figure
1b,c). In quantitative terms, enzyme/ZIFs discovered in the
iteration stage (comprising 41.6% of all samples in the seed
and iteration stages) are notably overrepresented as top
performers, accounting for 70.0 and 63.3% of the top twentieth
percentile of GOx/ZIFs and HRP/ZIFs, respectively, when
sorted by PI values.
In all, results from statistical (Figure 1b,c) and t-SNE

(Figure S15) analyses highlight the efficacy and effectiveness of
our ML-driven approach in exploring and exploiting the
optimal synthesis conditions for enzyme/ZIFs. Our strategy
achieves improving overall enzyme/ZIF performance with less
than 70% additional data beyond the initial systematic screen
and approximately 0.49% of the total design space.
Understanding the Synthesis Driving Enzyme/ZIF
Performance

In the subsequent stage, we intended to employ parallel
coordinate plots (PCPs) to examine the impact of synthesis
features on enzyme/ZIF phase formation (Figures 3a,d, S13,
and S14).
In previous studies, we and others have suggested that a high

[Zn], [ligand], and/or a high [ ]
[ ]

ligand
Zn

tend to promote the

formation of a porous kinetic ZIF phase. Conversely, a low
[Zn], [ligand], and/or a low [ ]

[ ]
ligand

Zn
is more likely to result in

the formation of a dense thermodynamic ZIF phase.13,17 Our
findings of this study are partially in line with this published
hypothesis while providing new insights. For instance, by
examining the phase distribution of all samples within both the
seed and iteration data sets in PCPs (Figure 3a,d), we observed
that low [Zn], high [HeIM], high [Zn] + [HeIM], and/or high

[ ]
[ ] + [ ]

HeIM
Zn HeIM

values tend to promote the formation of the

porous rho-Zn(eIM)2 phase. Conversely, to obtain a
thermodynamic product (qtz-Zn(eIM)2), a synthesis condition
characterized by a low [Zn], a low [ ]

[ ]
HeIM

Zn
, and/or a high

[ ]
[ ] + [ ]

HeIM
Zn HeIM

ratio is preferred. Surprisingly, we found that

variations in [ ]
[ ]

HeIM
Zn

and [HeIM] have minimal influence on

determining the formation of rho-Zn(eIM)2 and qtz-Zn-
(eIM)2, respectively, which contradicts the hypothesis
presented in the literature. While variations exist, the overall
trend regarding the impact of synthesis features on

determining the phase of GOx/ZIF and HRP/ZIF remains
consistent.
With the new knowledge obtained from PCP analysis

(Figure 3a,d), our vision of enzyme/ZIF synthesis is refreshed
and advanced. For instance, to achieve crystalline enzyme/ZIF
products, we recommend that a low concentration of [Zn] and
a high concentration of [HeIM] should be employed in the
synthesis. Additionally, if the kinetic phase is the desired
outcome, we suggest prioritizing a high [ ]

[ ] + [ ]
HeIM

Zn HeIM
ratio rather

than a high [ ]
[ ]

HeIM
Zn

value in an enzyme/ZIF synthesis.

In the subsequent analysis, we focus on examining the
influence of each synthesis feature on the performance of the
enzyme/ZIF biocomposite. Unlike the enzyme/ZIF phase, the
impact of synthesis features on the enzyme/ZIF performance is
an underexplored area. We sought to quantify the impact of
each synthesis feature on the prediction of E and A in their
respective RF models by calculating Shapley additive
explanations (SHAP) values (Figure 3b,c,e,f). Although the
SHAP values are not directly derived from experimental data,
the strong fitting of our RF models to the enzyme/ZIF’s E and
A values (Figure S12) suggests that they could effectively
reflect the synthesis−performance relationship in the enzyme/
ZIF. As depicted in Figure 3b,c,e,f, different synthesis features
exhibit distinct importance rankings in predicting the perform-
ance of an enzyme/ZIF. Such a synthesis−performance
relationship is enzyme-dependent and can be attributed to
the distinct chemical characteristics of HRP and GOx (Figure
2a), which may alter the kinetics and/or mechanisms of
enzyme/ZIF formation.7,56,57 This concept has been illustrated
experimentally and reported by Doonan and his team. The
authors have demonstrated that the surface charge of a protein,
as indicated by its zeta-potential value or isoelectric point,
governs the success or formation kinetics of biocomposite
synthesis. Specifically, proteins with a negative surface charge
tend to accelerate the formation of enzyme/ZIF biocompo-
sites, while a suppression effect is observed for proteins with a
positively charged surface.55

For HRP, [Zn] + [HeIM] ranks as the most important
synthesis feature in predicting E, with a negative SHAP value
(Figure 3b). This implies that EHRP increases with a decrease of
[Zn] + [HeIM]. Conversely, in the case of GOx/ZIF, the most
important synthesis feature governing EGOx prediction is

[ ]
[ ]

HeIM
Zn

(Figure 3e), with a positive SHAP value. This indicates that a
higher [ ]

[ ]
HeIM

Zn
molar ratio favors a higher EGOx. In terms of A,

[ ]
[ ]

HeIM
Zn

ini

ini
and [ ]

[ ] + [ ]
HeIM

Zn HeIM
rank the most important synthesis

features in AHRP and AGOx prediction, respectively. Specifically,
[ ]

[ ]
HeIM

Zn
(with a negative SHAP value) contributes significantly

to the A prediction, ranking second in importance for both
GOx/ZIF and HRP/ZIF (Figure 3c,f). This observation aligns
well with the experimental findings reported in the literature.
For example, lipase@ZIF-87 and GOx@ZIF-814 synthesized
under a low [ ]

[ ]
HeIM

Zn
molar ratio ([ ]

[ ]
HeIM

Zn
= 4) were reported to

exhibit higher A values as compared to their counterparts
synthesized under a high [ ]

[ ]
HeIM

Zn
condition.

Although there is no systematic study that quantitatively
correlates properties between enzymes and enzyme/ZIFs,
existing qualitative evidence suggests that variations in the
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surface chemical patterns,55 degrees of enzyme folding
structure,56,57 and enzyme stability toward synthesis con-
ditions60 all contribute to the diverse structure and perform-
ance of resulting enzyme/ZIFs. To clearly depict and contrast
the synthesis recipes and performance data of HRP/ZIFs and
GOx/ZIFs, we have consolidated them into t-SNE plots
(Figure 3g,h). The hot synthesis zones, characterized by high-
performance values (E, A), are notably distinct for GOx/ZIFs
and HRP/ZIFs. This observation underscores the unique and
tailored synthesis requirements for optimizing the performance
of each enzyme/ZIF biocomposite. Additionally, from another
perspective, these findings affirm the validity and versatility of
our ML-assisted enzyme/ZIF design approach in effectively

identifying high-performing enzyme/ZIFs using different
enzymes.
In the next step, we summarized all data from the seed and

iteration stages in box plots according to the phase of the
samples, aiming to study the structure−performance relation-
ship in enzyme/ZIFs.
As depicted in Figure S16, rho-Zn(eIM)2 and ana-Zn(eIM)2

were determined to be the most desired immobilization
platforms for HRP and GOx, respectively. In the literature,
amorphous ZIF (aZIF) synthesized by reacting Zn2+ and
mIM− was reported to be an ideal immobilization platform for
enzymes (GOx, HRP, lactate oxidase, and Candida antarctica
lipase B), exhibiting high E, A, and T values.11,61 However, in

Figure 4. (a) Simulated PXRD patterns for MAF-5 and MAF-6, along with the experimental PXRD patterns for H150 and G151. (b) 77 K N2
sorption isotherms of G151 (blue) and H150 (red). Closed and open symbols represent adsorption and desorption isotherms, respectively. (c)
Growth of characteristic diffraction peaks for G151 (2θ = 8.1°; filled blue circle and solid blue line) and its control sample synthesized without the
presence of GOx (open blue circle and dashed blue line), depicted in the upper position of the combined figure. Additionally, H150 (2θ = 4.2°,
filled red circle and solid red line) and its control sample synthesized without the presence of HRP (open red circle and dashed red line) are
illustrated in the lower position of the combined figure. (d, e) Radar plots summarizing the key immobilization parameters (Y in %, P in %, E in %,
A in %, and T in %) for G151 (d) and H150 (e). Error bars were generated from at least three replicates. (f−i) ATR-FTIR spectra for GOx (f),
G151 (g), HRP (h), and H150 (i), showing the structural content of α-helix (pink), β-sheet (blue), intermolecular β-sheet (purple), β-turn
(orange), and random coil (green). The structural contents were determined by the Voigt function fitted to OMNIC software.
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our case, although the amorphous enzyme/ZIFs exhibited
relatively high PI values (Figure S16), their thermal stability
was found to be poor. We attribute this discrepancy in
experimental observations to the different choices of organic
ligands in the biocomposite.
In all, the presented PCP, SHAP, and t-SNE analyses

(Figure 3) align closely with the experimental findings reported
in the literature and provide valuable new insights into the
synthesis−structure, synthesis−performance, and structure−
performance relationships in enzyme/ZIFs. These observations
advance our understanding of the synthesis-driving enzyme/
ZIF performance and are envisioned to contribute to the
design of high-performing enzyme/ZIF biocomposites in
future studies.
Characterization and Performance Test for H150 and
G151

The successful development of a trained RF model to predict
the structure/performance of enzyme/ZIFs encouraged us to
exploit the synthesis conditions for high-performing HRP/
ZIFs and GOx/ZIFs. To achieve this, we initially clustered and
filtered the biocomposites predicted by the trained RF model
based on their synthesis conditions and PI values using the
density-based spatial clustering of applications with noise
(DBSCAN) method. From the DBSCAN-filtered data set, the
top ten enzyme/ZIF candidates based on their PI ranking were
selected for experimental synthesis and performance testing (E,
A, and T). Based on the OPI values (overall performance
index, OPI = E × A × T), we selected H150 and G151 as the
best-performing biocomposites (Figure 1b,c). Importantly, the
OPI values for G151 and H150 are 5 times and 1.3 times
higher than the OPI values of the best samples in their
respective seed data sets (OPIG151 = 3.74 × 105 vs OPIG59 =
7.58 × 104; OPIH150 = 9.6 × 104 vs OPIH31 = 7.28 × 104).
PXRD measurements confirmed the crystalline phases for
G151 and H150 to be ana-Zn(eIM)2 and rho-Zn(eIM)2,
respectively (Figure 4a).
Comparing the operando X-ray diffraction results between

the H150/G151 synthesis solutions and those without enzyme
addition revealed that H150 formed via a coprecipitation
pathway, while G151 formed through a biomimetic mineraliza-
tion mechanism (Figures 4d, S23, and S24). In the G151
synthesis solution, particles formed immediately upon mixing
all synthesis components in H2O (Figure S23), with G151
crystallizing after ∼60 min (Figure 4c). Conversely, when GOx
was absent from the synthesis recipe, the Zn2+-HeIM mixture
remained as a solution (Figures 4c and S23), indicating the
crucial role of GOx in the formation of G151. Interestingly, the
presence of HRP did not affect the crystallization kinetics of
rho-Zn(eIM)2 (Figure 4c). We rationalized that the different
formation mechanisms observed for H150 and G151 stemmed
from the varying affinity of HeIM for HRP and GOx (Figure
2). As shown in the PCP analysis (Figure 3a,d), a high-

[ ]
[ ] + [ ]

HeIM
Zn HeIM

condition in the enzyme/ZIF synthesis is crucial

for obtaining crystalline GOx/ZIF and HRP/ZIF. In addition,
high crystallinity is important for achieving high thermal
stability and thus a high OPI value in the biocomposite as
evidenced by statistical studies (Figure S16). Based on the
information obtained from Figures 2, 3a,d, 4c, and S16, we
propose that if an organic ligand has a high affinity toward a
protein surface, a high local ligand concentration around the
protein surface will be generated. This will result in a highly

localized [ ]
[ ] + [ ]

HeIM
Zn HeIM

environment around the protein surface,

triggering ZIF crystallization around the protein surface. In this
case, the biomimetic mineralization process occurs even at a
relatively lower [ ]

[ ] + [ ]
HeIM

Zn HeIM
concentration in the synthesis

medium. Otherwise, a high- [ ]
[ ] + [ ]

HeIM
Zn HeIM

condition is necessary

to facilitate ZIF formation and coprecipitate the enzyme to
form the enzyme/ZIF biocomposite. In this regard, we suggest
that the proposed CPMG/STD NMR methods (Figure 2) may
serve as a straightforward approach to estimate the propensity
of a protein to biomineralize a ZIF-based biocomposite with a
specific organic ligand or vice versa.
The porosity of the studied samples was determined by 77 K

N2 sorption analysis (Figure 4b), yielding Brunauer−Emmett−
Teller (BET) specific surface areas of 459.1 and 870.9 m2 g−1

for G151 and H150, respectively. Structural defects in G151
and H150 were evidenced by the presence of expanded pores
in these samples, as confirmed by the pore size distribution
studies (Figure S19) and TEM images (Figure S29). The
presence of intrinsic and defect-induced porosities in G151
and H150 (Figures 4b and S19) benefits substrate and product
diffusion through the biocomposites in an enzymatic reaction.
To examine the tertiary structure of immobilized enzymes

and unveil the structure−bioactivity relationship, we measured
and compared the deconvoluted ATR-FTIR spectra for GOx,
G151, HRP, and H150 (Figures 4f−i, S28, and Table S1). In
the literature, ATR-FTIR spectroscopy is widely adopted to
investigate the tertiary structure of proteins, particularly
focusing on the characteristic amide I region (1700−1600
cm−1).62 Conformational change in a protein upon immobi-
lization can be sensitively reflected in the change of the
characteristic stretching of its secondary structural elements
(α-helix, β-sheet, β-turn, and random coils).62−68 As shown in
Figure 4f and Table S1, lyophilized GOx shows six peaks that
were assigned to α-helix (1652 cm−1, 26.7%), β-sheet (1631
and 1683 cm−1, 40.5%), intermolecular β-sheet (1613 cm−1,
10.6%), β-turn (1667 cm−1, 11.9%), and random coil (1640
cm−1, 10.4%). Quantitative analysis reveals that GOx appears
in a less aggregated form in/on G151, evidenced by a
significant decrease in the intermolecular β-sheet content for
GOx within the biocomposite (from 10.6 to 0.2%, Table S1).
Additionally, compared to free GOx, there is a reduction in β-
sheet content (from 40.5 to 26.2%) and an increase in random
coil content (from 10.4 to 22.7%) for GOx in/on G151,
suggesting a slight unfolding of GOx upon immobilization.
However, the α-helix stretching of GOx in G151 remains
relatively constant in terms of stretching position (1652 versus
1654 cm−1) and content (26.7% versus 31.5%), implying that
the tertiary structure of GOx in/on G151 is largely retained
(Figure 4g,h and Table S1). A similar trend was observed for
HRP versus H150 (Figure 4h,i and Table S1).
The presence of expanded porosities in G151 and H150

(Figures 4b and S19), along with the preservation of the
tertiary structure of the immobilized enzyme in H150 and
G151 (Figures 4f,g,i), explains the observed enzymatic activity
(Figure 4d,e).
As compared to free enzymes, both H150 and G151

exhibited better stability upon thermal treatment (60 °C, 60
min; Figures 4e,f, S25, and S26). The immobilization
parameters for G151 and H150 are summarized in Figure
4e,f. The yield (Y in %, based on Zn), enzyme loading (P in wt
%), E, A, and T were determined, respectively, to be 26.6 ±
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1.5%, 13.7 ± 0.7%, 73.1 ± 5.8 wt %, 67.9 ± 5.0%, and 75.4 ±
4.8% for G151 (Figure 4e). For H150, Y, P, E, A, and T were
measured to be 35.9 ± 1.1%, 3.8 ± 0.1 wt %, 54.8 ± 3.6%, 28.4
± 3.5%, and 62.0 ± 7.0%, respectively (Figure 4f). Enzyme
loadings in G151 and H150 were corroborated via TGA
analysis (Figure S20). Control experiments confirmed that
enzyme leaching from G151 and H150 was negligible as no
bioactivity was detected in the supernatant from the aqueous
suspension of G151 and H150 (Figure S27).

■ CONCLUSIONS
In conclusion, we have developed and applied an ML-assisted
design protocol to optimize enzyme/ZIF synthesis for the first
time in the literature (Figure 1). The robustness and versatility
of this ML design methodology are demonstrated by its
success in optimizing enzyme/ZIF biocomposites with two
chemically and physically distinct model enzymes, GOx and
HRP. Through an iterative ML-assisted training-design-syn-
thesis-measurement workflow, we efficiently identified en-
zyme/ZIFs (G151 and H150) with OPI values that are at least
1.3 times higher than those obtained from seed data studies.
We also realized that the optimized synthesis recipes and

formation mechanisms of ZIF-based biocomposites are
enzyme-dependent. G151 was formed under a low-[ ]

[ ]
HeIM

Zn
(3.5) condition via a biomimetic mineralization mechanism,
while H150 was formed under a high-[ ]

[ ]
HeIM

Zn
(17) condition via

a coprecipitation pathway. 1D 1H CPMG and STD NMR
measurements suggest that the distinct formation mechanism
and optimized synthesis protocol observed for G151 and H150
are attributed to the different interaction affinity between the
HeIM ligand and the protein (Figure 2). HeIM can strongly
bind to GOx and be concentrated on the protein surface, while
weak HeIM−HRP binding is observed. This information
refreshes and advances our understanding of enzyme/ZIF
synthesis, providing valuable guidelines for future studies.
In our perspective, the proposed ML-based optimization

strategy is not confined to optimizing the synthesis features
and target set investigated in this study. Instead, it can be easily
tailored to optimize various other synthesis features (e.g.,
ligand composition, synthesis time, and enzyme dosage) with
different optimization targets (e.g., release profile and sensing
property) in ZIF-based systems. There is another clear
opportunity to adopt the ML-assisted workflow and syn-
thesis−structure−performance relationship insights developed
from the present study to rationally optimize the enzyme
immobilization using other reticular framework materials, e.g.,
enzyme@MOF,2,6,69 enzyme@COF,70 and enzyme@HOF,71

enabling the realization of new biocatalytic materials with
enhanced immobilization performance. By efficiently planning
experiments and establishing robust prediction models, we
envision that ML will accelerate the discovery, optimization,
and fundamental studies of enzyme/ZIFs, leading to a deeper
understanding of their properties and ultimately broadening
the range of enzyme/ZIF applications.

■ EXPERIMENTAL SECTION

Syntheses
All chemicals and solvents were purchased from commercial sources
and used as received without further purification. Milli-Q water was
used in all experiments.

Seed Data Generating for HRP/ZIF and GOx/ZIF
In a typical set of seed data for enzyme/ZIF synthesis, a desired
volume of aqueous stock solution of Zn(OAc)2·2H2O (reagent grade,
Sigma-Aldrich), HeIM (98%, Sigma-Aldrich), enzyme (glucose
oxidase (GOx), glucose oxidase from Aspergillus niger, Type VII,
lyophilized powder, ≥100,000 units/g solid (without added oxygen),
Sigma-Aldrich; horseradish peroxidase (HRP), peroxidase from
horseradish, Type VI, essentially salt-free, lyophilized powder, ≥250
units/mg solid (using pyrogallol), Sigma-Aldrich), and H2O were
mixed. The concentration of the enzyme solution was 8 mg mL−1.
The enzyme concentration was set at 1 mg mL−1 for all of the
syntheses. In an enzyme/ZIF synthesis, various mixing orders of Zn2+,
ligand, and enzyme can be employed.12,60 While the choice of mixing
order has been reported to influence the enzyme/ZIF perform-
ance,12,60 it is not the focus of this study. In the present study, we
adhere to a synthesis protocol involving the mixing of HeIM and
enzyme in H2O prior to the addition of Zn2+. To maintain consistency
across different samples, we kept the enzyme dosage at 1 mg mL−1

during the synthesis. Additionally, we set the synthesis temperature at
4 °C and adhered to a 24 h synthesis duration.
To enable variation on [Zn] and [HeIM] in the seed data, we use

four different concentrations of Zn(OAc)2·2H2O and HeIM stock
solutions for four seed data sets. The choice of concentration was
based on the experience we gained from our previous study8 and the
water solubility of the chemicals. The concentrations of the stock
aqueous solution of Zn(OAc)2·2H2O for GOxseed1/HRPseed1,
GOxseed2/HRPseed2, GOxseed3/HRPseed3, and GOxseed4/HRPseed4
samples were set at 1.0, 0.5, 0.2, and 1.5 M, respectively. The
concentrations of the stock aqueous solution of HeIM for GOxseed1/
HRPseed1, GOxseed2/HRPseed2, GOxseed3/HRPseed3, and GOxseed4/
HRPseed4 samples were set at 6.0, 3.0, 1.2, and 5.0 M, respectively.
The mixing order for the synthesis components was H2O, enzyme
stock solution (62.5 μL), HeIM stock solution, and then Zn(OAc)2·
2H2O solution. After the addition of Zn(OAc)2·2H2O, the synthesis
mixture was vortexed for 30 s. Thereafter, the reaction mixture was
left under static conditions at 4 °C for 24 h. The volume of the
synthesis was 0.5 mL. After synthesis, the precipitates were collected
by centrifugation (148,000 rpm for 3 min) and washed three times
with Milli-Q water. The collected enzyme/ZIF was resuspended in
Milli-Q water (0.5 mL) and subjected to the Bradford assay and
activity assay for encapsulation efficiency (E in %) and retained
enzymatic bioactivity (A in %) determination, respectively. There-
after, PXRD was conducted on air-dried enzyme/ZIFs. The PXRD
patterns were compared to the simulated data to identify the MOF
phases in samples. Results were then summarized as ternary plots of
[Zn(OAc)2] versus [HeIM] versus [H2O].

Synthesis of MAF-6
MAF-6 was synthesized according to the reported protocol.16 In a
typical synthesis, a concentrated aqueous ammonia solution (25%
NH4OH, Supelco; 40 mL) of ZnO (Merck; 162.8 mg) was added
dropwise into a methanol (Merck; 30 mL) and cyclohexane (Sigma-
Aldrich; 2 mL) solution of HeIM (384 mg) under stirring conditions
at room temperature. After a 30 min reaction, the resulting precipitate
was collected via centrifugation and washed three times with H2O to
remove any unreacted precursors. Thereafter, the MAF-6 particles
were dried under vacuum at room temperature.

Characterization
Powder X-ray Diffraction (PXRD). PXRD measurements were

performed on a Rigaku SmartLAB SE powder diffractometer using Cu
Kα (λ = 1.5406 Å) radiation.
Attenuated Total Reflection Fourier Transform Infrared

Spectroscopy (ATR-FTIR) Analysis. ATR-FTIR measurements
were carried out on a Thermo Nicolet iS50 infrared spectrometer.
Repeated spectra were collected in the spectral range from 4000 to
700 cm−1, averaging 128 scans at 4 cm−1 spectral resolution. ATR-
FTIR spectra were collected and analyzed using OMNIC software.
Prior to the peak deconvolution study, the ATR-FITR spectrum of
the enzyme/ZIF was subtracted by that of MAF-6. Thereafter, second
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derivatives were computed on the subtracted spectra by using a
Savitzky−Golay algorithm with 25 smoothing points. The number
and frequencies of the individual band components in the spectral
range of 1610−1700 cm−1 were determined based on the secondary
derivative analysis. Six bands (intermolecular β-sheet (1600−1619
cm−1), β-sheet (1620−1639 and 1680−1700 cm−1), random coil
(1640−1649 cm−1), α-helix (1648−1660 cm−1), and β-turn (1660−
1679 cm−1)) were targeted according to the literature.63−65,67,68,72 In
a deconvolution process, bands were allowed to move in a ±2 cm−1

range from their initial position. The full width at half-heights (fwhh)
of the bands were fitted in a range from 0 to 50 cm−1. Deconvolution
was fitted by using a Voigt function (OMNIC 9.8, Thermo Fisher
Scientific). The secondary structure content was estimated from the
relative band areas.
In Situ Small-Angle X-ray Diffraction (SAXRD). In situ SAXRD

experiments were carried out on an Anton Paar SAXS point
diffractometer. In a typical experiment, a synthesis solution of ZIF
or enzyme/ZIF was prepared in a 2 mL Eppendorf centrifuge tube
and injected immediately after preparation into a quartz capillary (Ø
= 1 mm) placed in the X-ray beam. The SAXRD measurements were
started 1 min after the synthesis solution was prepared.

Quantification Analysis of Enzyme Loading
To quantitatively measure the loading of enzymes in enzyme/ZIF
samples, a dye-binding assay (Bradford assay) was conducted on the
acid-digested enzyme/ZIF sample. In a typical experiment, 10 μL of
enzyme/ZIF suspension was mixed with 100 μL of aqueous 0.05 M
HCl in a 96-well plate. Thereafter, 150 μL of Bradford reagent
(Sigma-Aldrich) was introduced and stored at room temperature for
30 min prior to UV−vis analysis (SPECTROstar Nano spectrometer,
BMG LABTECH). The maxima at 595 nm were recorded and
compared to the calibration curve to calculate the enzyme
encapsulation efficiency (E in %) in enzyme/ZIF samples. Protein
assay experiments were repeated three times. E was calculated for
each enzyme/ZIF by the following equation:

=E
m

m
Encapsulation efficiency( ) %enzyme in enzyme/ZIF

enzyme used in the enzyme/ZIF synthesis

Enzymatic Assay for GOx and GOx/ZIF
The enzymatic activity of GOx and GOx/ZIF was evaluated by using
OPD (OPD = o-phenylenediamine) as the substrate. The GOx
solution or biocomposites dispersed in water which contained 80 μg
of GOx (10 μL of stock solution containing 0.1 mg mL−1 GOx) was
added and mixed with 200 μL of GOx stock assay solution (200 μL)
in a 96-well plate. The final volume of the assay solution was 210 μL.
The final assay solution was performed in Tris−HCl buffer (pH 7.0,
0.1 mM) with a GOx concentration of 4.76 μg mL−1, an OPD
concentration of 2.28 mg mL−1, a glucose concentration of 5.71 mg
mL−1, and an HRP concentration of 63.5 μg mL−1. The evolution of
absorbance at 418 nm was monitored using a SPECTROstar Nano
spectrometer (BMG LABTECH). Assay experiments were repeated
three times.

Enzymatic Assay for HRP and HRP/ZIF
The activity of HRP and HRP/ZIF was determined by measuring the
rate of decomposition of hydrogen peroxide with an OPD as the
hydrogen donor. In a typical assay, solution A was prepared by mixing
10 mL of Tris−HCl buffer (100 mM, pH 7.0), 100 μL of H2O2 88
mM in H2O, and 50 μL of OPD (7.2 mg mL−1 in H2O). In a 96-well
plate, 10 μL of HRP (0.01 mg mL−1) or HRP/ZIF suspension (0.01
mg mL−1, based on HRP) was mixed with 200 μL of solution A.
Thereafter, the absorbance of the solution was immediately
monitored at 418 nm by using a SPECTROstar Nano spectrometer
(BMG LABTECH). The initial reaction rate of the enzymatic assay
was used to represent the bioactivity of the free enzyme and enzyme/
ZIFs. The retained enzymatic bioactivity (A in %) was calculated for
each enzyme/ZIF by the following equation:

=A
A

A
Retained enzymatic bioactivity( ) %enzyme/ZIF

free enzyme

Thermal Stability Test for Enzyme/ZIFs
In a typical thermal stability test, 100 μL of enzyme (0.1 mg mL−1

GOx or 0.01 mg mL−1 HRP in H2O) or enzyme/ZIF (0.1 mg mL−1

GOx/ZIF (based on GOx) or 0.01 mg mL−1 HRP/ZIF (based on
HRP) suspension in H2O) was subjected to thermal treatment (60
°C, 60 min). Our selection of 60 °C was rational. The melting
temperatures for GOx and HRP were reported to be 60 and 45 °C,
respectively.73,74 After thermal treatment, the bioactivities of GOx,
HRP, and enzyme/ZIF were subjected to bioactivity assay tests.
Thermal stability (T in %) was calculated for each enzyme/ZIF by the
following equation:

=

T
A

A

Thermal stability( )

%free enzyme or enzyme/ZIF after thermal treatment

free enzyme or enzyme/ZIF without thermal treatment

Solution-State Nuclear Magnetic Resonance (NMR)
All solution-state NMR experiments were conducted on a Bruker
Avance III 600 MHz NMR spectrometer equipped with a proton-
optimized triple resonance (H/C/N) CryoProbe. All NMR data were
analyzed using Bruker Topspin v4.2.0. Three samples were prepared
for 1D 1H CPMG and STD-NMR measurements: (1) 400 μM HeIM
in D2O; (2) 25 μM GOx and 400 μM HeIM in D2O; and (3) 25 μM
HRP and 400 μM HeIM in D2O.
CPMG spectra were acquired with a total echo time of 600 ms, a

relaxation delay of 5 s, and an acquisition time of ∼0.4 s. A total of
128 scans were collected with 16 dummy scans.
For GOx, the on- and off-resonance frequencies for STD

measurements were set at −395 and 20,000 Hz, respectively. For
HRP, the on- and off-resonance frequencies for STD measurements
were set at −860 and 20,000 Hz, respectively. The saturation time was
set at 3 s. A total of 128 scans were collected with 16 dummy scans.
All measurements were performed at 298 K.
77 K N2 Sorption Analysis
Gas adsorption isotherms were obtained on an Autosorb IQ
physisorption analyzer. Approximately 40 mg of the sample was
placed into a glass analysis tube and degassed under a dynamic
vacuum for 16 h at 120 °C prior to measurement. Nitrogen (N2)
adsorption and desorption isotherms were measured at 77 K. The
isotherms were then analyzed to determine the BET surface area
using the ASiQwin software. Pore size distribution was modeled from
the N2 adsorption isotherms using the NLDFT model.
Thermal Gravimetric Analysis (TGA)
TGA measurements were conducted on a TA STD650 instrument. In
a typical analysis, approximately 2 mg of samples were placed on an
alumina pan for TGA measurement. The TGA measurements were
conducted in an oxidative atmosphere (air). The weight change of the
samples was recorded from 50 to 700 °C at a ramp rate of 10 °C
min−1.
ML Model Selection and Development
ML Algorithm. Four ML algorithms, namely, GB, SVM, NN, and

RF, were tested in this study. Within each algorithm framework, four
separate models are trained on the seed data set, each aimed at
predicting different outcomes: phase, E, A, and T. Specifically, the
phase prediction employs a classifier model due to the categorical
nature of the target variable, while the prediction of E, A, and T uses
regression models.
A 10-fold cross-validation approach was implemented for each

model. Cross-validation is a widely utilized technique to evaluate a
model’s capacity to generalize to unseen data. It offers a more robust
and consistent estimation of the model’s performance compared to a
single train/test split. It is especially beneficial when the data set size is
limited, a common constraint in laboratory experimental research.
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In this approach, the seed data set is divided into 10 approximately
equal subsets (referred to as folds). Notably, for the phase prediction
task where a classification model was employed, a stratified K-fold
cross-validation strategy was adopted. This ensures that each fold
maintains a proportional representation of samples for each class as in
the original data set. The model undergoes training 10 times, each
time utilizing a different fold as the test set while the remaining 9 folds
for training. Subsequently, 10 sets of statistical metrics are derived
from the model prediction, facilitating the calculation of an average
score that indicates the model’s performance.
In the phase prediction task, the indicative metric used is prediction

accuracy, which represents the proportion of accurately classified
instances relative to the total number of instances in the data set.
Conversely, for the remaining target variables (A, E, and T), the mean
squared error (MSE) is employed.
After evaluation of the performance scores of the four ML

algorithms, RF is found to be the most accurate model for this study.
It is worth noting that data points with 0% E values were eliminated

for the A modeling, while data points with 0% E or 0% A values were
eliminated for the T modeling.
ML-Assisted Experiment Planning. The BO algorithm was

applied in tandem with an RF model to propose promising enzyme/
ZIF candidates. During the iteration stage, enzyme/ZIFs that
maximize the expected improvement (EI) acquisition function were
given by

= +f x Z x Z x Z( ) ( ) ( ) ( )Ø( )

=
>

=

l
m
ooooo

n
ooooo

Z

x f
x

x

x

( ( ) )
( )

, ( ) 0

0, ( ) 0

where μ(x)⃗ is the predicted mean PI (E × A) from the RF, f ′ is the
current largest mean PI predicted by the model, σ(x)⃗ is the standard
deviation of PI from the RF, and Φ and Ø are the cumulative and
probability density functions of the normal distribution, respectively. ξ
(ξ = 0.01 in the present study) is a hyperparameter that controls the
balance between exploring untapped regions of the chemical space
and exploiting known regions of it to achieve enzyme/ZIFs with a
high PI.
Specifically, after generating 30 enzyme/ZIF designs with BO,

candidates were ranked by their PI values in descending order and
iteratively chosen for the final set of six candidates.
A different down-sampling strategy was implemented during the

exploitation stage. Various variables in the synthesis recipe, such as
[Znstock], [HeIMstock], VZn, and VHeIM (where [Znstock] represents the
concentration of Zn(OAc)2·2H2O in the Zn aqueous stock solution,
[HeIMstock] represents the HeIM concentration in the HeIM aqueous
stock solution, VZn denotes the volume of the Zn aqueous stock
solution used in the enzyme/ZIF synthesis, and VHeIM indicates the
volume of the HeIM aqueous stock solution used in the enzyme/ZIF
synthesis), were included in the trained RF models to predict the E
and A values. A constraint was enforced on the RF model to maintain
the total volume of the synthesis mixture at 0.5 mL. Candidates with
PI values (products of E and A) greater than 1600 were then clustered
using a DBSCAN method with a distance threshold of 0.3 and a
minimum of three points per cluster. After cluster formation, the
enzyme/ZIF with the shortest distance to the centroid position of
each cluster in the enzyme/ZIF synthesis feature vector space was
selected as a representative candidate for further consideration. The
filtered synthesis proposals were then ranked in descending order
based on their predicted PI values, and the top ten candidates were
selected for synthesis and performance testing.
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