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Abstract
Gene therapy has recently advanced to the level of standard of care for several diseases. However, its application to neurological
disorders is still in the experimental phase. In this review, we discuss recent advancements in the field that provide optimism on
the possibility to have first-in-human studies for gene therapy of some forms of epilepsy in the not so distant future.
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Introduction

As is well known, current therapies for epilepsy are largely

unsatisfactory.1 In spite of the many available antiepileptic

drugs and of other therapeutic approaches (surgery, brain sti-

mulation, ketogenic diet, etc), about one-third of the patients do

not get control of their seizures. We do not have any treatment

able to prevent epilepsy development in at-risk individuals. We

do not have adequate control of epilepsy comorbidities that

heavily affect the quality of life of patients. Many devastating

forms of epilepsy are resistant to any treatment. And the list

could continue.

Within this scenario, the search for new, alternative thera-

peutic approaches is always a priority, and gene therapy is

often a consideration. In principle, the idea is simple: Use some

kind of vector to transfer the DNA encoding some

“therapeutic” protein(s) into the diseased cells, in order to per-

manently heal them. There are different types of DNA that one

could desire to transfer, reflecting different therapeutic strate-

gies. The most obvious is the healthy variant of a defective

gene, which could be an option in some genetic forms of epi-

lepsy. But it would also be possible to attempt healing the

defective gene using gene editing technologies, including clus-

tered regularly interspaced short palindromic repeats

(CRISPR)-Cas9-mediated genetic modification, and gene acti-

vation or inhibition (CRISPRa or CRISPRi). Another option

could be to transfer genes that can modify cell (or circuit)

function and control hyperexcitability, such as channels, neu-

rotransmitters, or receptors. Finally, one could transfer genes

encoding proteins that render the cell sensitive to specific drugs

(chemogenetics) or to light stimulation (optogenetics).

In sum, there are multiple diverse options and strategies on

stage. But are these doable? Can they be applied to all forms of

epilepsy? Which forms of epilepsy may represent low hanging

fruit for starting a program of clinical translation? Answering

the first question means having at hand systems of gene transfer

(vectors) that are safe, allow transfer of a sufficiently large

DNA cargo, and ensure robust, lasting, and regulated expres-

sion of the therapeutic gene(s) in a specific target cell. The

other questions underlie other key problems, for example, the

fact that, for focal epilepsies, it may be sufficient to inject

the vector and express the therapeutic gene(s) in a relatively

restricted brain area, whereas in generalized epilepsies there

could be a need to obtain widespread expression in the whole

brain.

Below, we briefly summarize the state of the art of vector

development for gene therapy and the results of preclinical

studies in epilepsy models. We then describe some recent
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advances that may be implemented in epileptology, moving the

field closer to a much-awaited clinical application.

Viral Vectors for the Central Nervous System

There are 2 main classes of gene delivery tools, nonviral and

viral vectors, each endowed with specific advantages and dis-

advantages. Compared with viral vectors, nonviral vectors tend

to have lower immunogenicity, due to the absence of preexist-

ing immunity, larger payload capacity, and easier production

techniques.2,3 However, their major drawback is the low trans-

duction efficiency.

In contrast, viral vectors exploit the viruses’ highly evolved

strategies for efficient transfer of foreign DNA into eukaryotic

cells. Among different viruses engineered and tested for gene

therapy, the most promising candidates for central nervous

system (CNS) applications seem to be adeno-associated

viruses, lentiviruses and herpes viruses (Table 1). Adeno-

associated viruses (AAV) are small single-stranded DNA

viruses.4,5 In spite of their limited cargo capacity (4.5 kb), AAV

vectors are the most commonly used in clinical trials for CNS

gene therapy6 because they exhibit low immunogenicity, no

pathogenicity, and long-lasting transgene expression in both

dividing and nondividing cells.7 Several AAV serotypes have

been identified and developed, based on capsid variants that

confer different tropisms, antigenic profiles,8 and transduction

efficiency.9,10 For example, the AAV1, AAV2, AAV5, and

AAV8 serotypes display a marked neuronal tropism,11-13

whereas the AAV9 serotype can cross the blood–brain barrier

(BBB) after peripheral administration.14 A tropism shift from

neurons to glia is observed in the mature brain,15 indicating that

brain development should be considered for therapeutic appli-

cations. All these features can be modulated and improved by

combining 2 or more different serotypes,8 by mutation of

capsid tyrosine residues,16 or by fusing peptides to capsid pro-

teins.6 One major problem with AAV vectors is the inactivation

by neutralizing antibodies. However, chemical compounds8 or

association with exosomes17 have been tested to shield the

capsid from neutralizing antibodies.

Lentiviruses (LV) are integrating single-stranded RNA

viruses, capable of transducing nondividing and dividing

cells.18 Most LV vectors derive from human immunodefi-

ciency virus and have a transgene payload capacity of about

9 kb.19 Pseudotyping their envelope with glycoproteins

derived from herpes simplex virus (HSV), rabies, or vesi-

cular stomatitis virus allows one to modify, improve, and

refine cellular tropism and transduction efficiency.20-24

Insertional mutagenesis is a potential risk. Nonintegrating

LV vectors have been developed by introducing mutations

in the integrase gene, such that the viral genome persists in

the host cell mostly (even if not exclusively) in an episomal

form.25

The HSV vectors are double-stranded DNA viruses that can

be divided into 3 main categories: replication-competent

(employed in cancer), replication-defective, and amplicon vec-

tors, carrying a DNA plasmid instead of the viral genome.26

Both replication-defective and amplicon vectors display natu-

ral neuronal tropism and high payload capacity, up to 50 and

150 kb,27 respectively, which allows the insertion of large

transgenes and regulation systems. These features, together

with a high transduction efficiency, the ability of both antero-

grade and retrograde transport, and the episomal nonintegrating

genome, make HSV vectors an attractive tool for CNS disor-

ders.26-28 Their downsides are the residual toxicity and a rela-

tively transient transgene expression.27 In addition, preparations

of amplicon vectors remain contaminated by a small percentage

of helper virus.28 However, new generation vectors seem to

overcome these problems (Table 1 and see below).

Table 1. Viral Vectors.

Adeno-Associated
Vectors Lentiviral Vectors

“Classic” Herpes Virus
Vectors

“New” Herpes Virus
Vectors

Family of wild-type
virus

Parvoviridae Retroviridae Herpesviridae Herpesviridae

Infection/tropism Dividing and nondividing
cells

Dividing and nondividing cells Dividing and nondividing
cells

Dividing and nondividing
cells

Genetic material ssDNA ssRNA dsDNA dsDNA
Host–genome

interaction
Noa Yes No No

Packaging capacity 4.5 kbb 9 kb 50-150 kb 50 kb
Toxicity Low Low Moderate Low
Transgene expression Long-lasting Long-lasting Transient Long-lasting
Main limitation Very small packaging

capacity
Small packaging capacity

Integration
Inflammation
Transient transgene

expression

Not yet clinically tested

Main advantages Noninflammatory
Nonpathogenic

Persistent transgene expression Large payload capacity Large payload capacity

Abbreviations: ds, double-stranded; ss, single-stranded.
aSome integration at very low frequency.
bPackaging capacity may be increased by splitting the transgene cassette into 2 to 3 viruses.
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Gene Therapy Approaches in Animal
Models of Epilepsy

All work on gene therapy for epilepsy thus far has been per-

formed in animal models and by focal administration of vec-

tors. In most cases, the focus has been on post-status epilepticus

(SE) models. One study explored the antiepileptogenic effect

of HSV vector-mediated delivery of neurotrophic factors such

as fibroblast growth factor 2 and brain-derived neurotrophic

factor in the pilocarpine model.29 Injection of this vector into

the hippocampus during the latent period (3 days after SE)

attenuated seizure-induced damage, favored a more physiolo-

gical neurogenesis, and highly reduced the occurrence of spon-

taneous recurrent seizures (SRSs).

All other studies focused on the chronic period, when ani-

mals were experiencing SRSs, and used seizure frequency as

the primary outcome measure. This approach has greater trans-

lational potential, as it may be offered to individuals with

drug-resistant focal seizures that cannot be treated surgically.

Overall, the aim of all these studies was to increase inhibition in

the epileptogenic area, but strategies were diverse. For example,

some used AAV vectors to downregulate excitatory receptor

function (by transferring antisense NR1, an essential subunit

of the NMDA receptors) or to upregulate inhibitory receptor

function (by transferring the a-1 subunit of the GABAA recep-

tor).30,31 Others used LV vectors to overexpress potassium

channels or halorhodopsin for inhibitory optogenetic stimula-

tion.32 Or, using AAV vectors, one group expressed a modified

muscarinic receptor (hM4Di) to obtain seizure suppression by

systemic administration of the hM4Di selective, normally inac-

tive agonist clozapine-N-oxide.33 Yet another strategy was to

express a genetically modified glutamate-gated Cl� channel.34

All these strategies proved effective. However, a common

challenge is the ability to express the transgene in a specific cell

population, because inhibiting inhibitory neurons would favor

the occurrence of seizures.30 To avoid this problem, therefore,

these authors drove expression of their transgenes by promoters

specifically active in excitatory neurons, in an attempt to bias

expression toward (and thereby preferentially inhibit) excita-

tory neurons. As discussed below, this is a reasonable but

imperfect solution.

One alternative strategy is the expression of a soluble inhi-

bitory factor that can be secreted by the transduced cells: In this

case, seizure control may be achieved without targeting spe-

cific cells, provided that the receptors for that factor are found

in the injected area.35 Several studies have demonstrated that

overexpression in the hippocampus of inhibitory neuropeptides

(neuropeptide Y [NPY], galanin, or somatostatin) exerts anti-

seizure effects in epilepsy models (data on NPY and galanin

reviewed in Simonato,35 Simonato et al,36 and Kullmann

et al37; for somatostatin, see Natarajan et al38).

Among these neuropeptides, NPY seems the most promis-

ing translationally because it is the most effective in suppres-

sing seizure-like activity in slices from the human epileptic

hippocampus.39 However, a complication (and an opportunity)

for NPY is that its effects are mediated by multiple receptors,

some proepileptic (the Y1 subtype), others (Y2 and Y5) anti-

epileptic.40 A combined administration of an AAV vector

expressing NPY with one expressing the Y2 or one expressing

the Y5 receptor produced much stronger reductions in seizure

frequency than NPY alone.41,42

Looking Forward

Altogether, the results of preclinical studies in epilepsy models

suggest optimism as to the possibility of translation in humans.

This optimism is sustained by recent advancements in clinical

experimentation for other CNS diseases, in vector design, and

in targeting and regulation strategies.

Advancements in clinical experimentation for CNS diseases. The

main obstacles on the way to human translation are the com-

plexity and heterogeneity of the target tissue, the presence of

the BBB, and the safety of viral vectors. However, successful

reports from experimentation for other CNS diseases are help-

ing to concretely chart out a roadmap toward the first-in-man

gene therapy for intractable epilepsy.43-45

The direct intraparenchymal infusion of viral vectors has

been successfully explored in a number of clinical studies for

neurological disorders.36 One of the most promising envi-

saged the bilateral injection in the subthalamic nucleus of

patients affected by medically refractory Parkinson disease

with a mix of recombinant AAVs encoding GABA synthesiz-

ing enzymes (GAD65 or GAD67). Upon assessment of safety

and tolerability,46 this study became the first double-blinded

and randomized trial of gene therapy for the CNS,47 showing

beneficial effects on motor function that persisted up to 12

months.48

A more recent study explored the use of an LV gene therapy

vector for the simultaneous delivery into the striatum of 3 key

enzymes for dopamine biosynthesis, providing a local and sus-

tained novel source of dopamine from nondopaminergic trans-

duced cells. A first trial positively verified the safety profile of

this treatment,49 which was subsequently confirmed in an 8-

year follow-up along with a moderate improvement of motor

function.50

Another major advancement was the discovery of the ability

of the AAV9 serotype to cross the BBB, which makes it poten-

tially usable to treat genetic neurological diseases by transfer-

ring the healthy allele to the brain in a widespread manner. In a

phase 1 clinical study,51 a group of patients affected by spinal

muscular atrophy type-1 (SMA1), a monogenic disorder caused

by mutation of the survival motor neuron-1 (SMN1) gene, has

been successfully treated by a single, systemic dose of a recom-

binant AAV9 vector carrying the SMN1 gene. In principle, this

approach may be used for some monogenetic forms of epi-

lepsy, such as Dravet syndrome (DS). Similar to SMA1, DS

is generally caused by heterozygous mutations of the gene

encoding the voltage-gated sodium channel a1 subunit

(SCN1A). Unfortunately, however, neither the AAV nor the

LV vectors can accommodate the entire SCN1A expression

cassette in a single vector. To overcome this hurdle, the AAV
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packaging capacity may be increased by harnessing the virus

natural propensity to generate head-to-tail DNA concatamers

in the infected cells.52,53 This feature has been exploited to split

and package large transgene cassettes in 254-56 or 357 separate

AAV viral particles. The full-length cassette can then be recov-

ered in cells that are concomitantly infected by the whole set of

vectors; however, this approach significantly reduces the effi-

ciency of gene transfer.55 Efforts are ongoing to mitigate this

problem.56,57

Advances in vector design. Vectors for CNS gene therapy should

be highly refined, in order to ensure delivery to specific cell

types, efficacy of transgene expression, capacity to host large

and/or multiple inserts, safety, lasting transgene expression,

and mechanisms to regulate expression. As described above,

AAV and LV vectors do not combine all these features, while

HSV vectors have been relatively overlooked so far because of

concerns about cytotoxicity, immunogenicity, and difficulty in

achieving persistent expression in the CNS. However, we have

recently developed a new generation of HSV vectors that over-

come these problems (Table 1). These are highly replication-

defective vectors, devoid of all viral immediately early genes,

in which viral gene expression is virtually absent.58 We found

that inserting an expression cassette in a specific locus of the

genome (the ICP4 locus) permits robust and long-term reporter

gene expression in a diversity of neurons following stereotactic

injection in the brain.59 Virus infection did not cause any neu-

rotoxicity or inflammatory infiltrates. Therefore, these are

high-capacity vectors capable of safe, long-term transgene

expression in the brain, opening up the possibility for therapeu-

tic intervention into CNS diseases that require transfer of large

amounts of DNA.

Advances in cell targeting and in regulation strategies. Other key

advances were recently made for achieving a robust expression

of the transgenes in a cell-specific manner, avoiding the risk of

off-target effects. As mentioned above, the “classic” approach

is to drive transgene expression through promoters that are

active only in the desired cell type.60 For example, candidates

to restrict gene expression in inhibitory neurons are the GAD65

or GAD67 promoters that code for the enzyme that catalyzes

the transformation of glutamate into GABA. However, this

procedure does not completely ensure selectivity of expression

and, in addition, the size of many full-length promoters is too

large for most viral vectors. An alternative and more efficient

strategy was recently proposed, based on the encoding of

microRNA target motifs downstream of the transgene. The

introduction of multiple target motifs for microRNAs

expressed in off-target cells silenced transgene expression in

these cells, thereby achieving highly specific expression in the

desired cell type.61

Another important advance involves the regulation of gene

expression. Mechanisms of autoregulation are important

requirements for clinical translation because they reduce the

risk of negative effects on physiological brain circuitries. Lieb

et al34 cloned into an LV vector an optimized sequence

encoding a glutamate-gated chloride channel with an EC50 for

glutamate of about 10 mM, that is, high concentrations that

would be reached at extrasynaptic levels only during seizures.

When injected in the rat neocortex, this vector led to a potent

attenuation of evoked and spontaneous seizures, in the absence

of alterations in normal brain function.

Conclusions

Although gene therapy is becoming an established approach for

an increasing number of diseases, its application to CNS dis-

orders still poses formidable challenges that are not yet com-

pletely overcome. Although it will be essential to sort out all

possible problems before clinical testing, the good news is that

the field is progressing rapidly and it seems plausible that the

time for a first-in-man gene therapy for epilepsy is not too far

anymore.
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